Complements for the real numbers |
Require
Export
R_Ifp.
Require
Export
Rbase.
Require
Fourier.
Rmin |
Definition
Rmin :R->R->R:=[x,y:R]
Cases (total_order_Rle x y) of
(leftT _) => x
| (rightT _) => y
end.
Lemma
Rmin_Rgt_l:(r1,r2,r:R)(Rgt (Rmin r1 r2) r) ->
((Rgt r1 r)/\(Rgt r2 r)).
Intros r1 r2 r;Unfold Rmin;Case (total_order_Rle r1 r2);Intros.
Split.
Assumption.
Unfold Rgt;Unfold Rgt in H;Exact (Rlt_le_trans r r1 r2 H r0).
Split.
Generalize (not_Rle r1 r2 n);Intro;Exact (Rgt_trans r1 r2 r H0 H).
Assumption.
Save
.
Lemma
Rmin_Rgt_r:(r1,r2,r:R)(((Rgt r1 r)/\(Rgt r2 r)) ->
(Rgt (Rmin r1 r2) r)).
Intros;Unfold Rmin;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;
Assumption.
Save
.
Lemma
Rmin_Rgt:(r1,r2,r:R)(Rgt (Rmin r1 r2) r)<->
((Rgt r1 r)/\(Rgt r2 r)).
Intros; Split.
Exact (Rmin_Rgt_l r1 r2 r).
Exact (Rmin_Rgt_r r1 r2 r).
Save
.
Lemma
Rmin_l : (x,y:R) ``(Rmin x y)<=x``.
Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Right; Reflexivity | Auto with real].
Save
.
Lemma
Rmin_r : (x,y:R) ``(Rmin x y)<=y``.
Intros; Unfold Rmin; Case (total_order_Rle x y); Intro H1; [Assumption | Auto with real].
Save
.
Lemma
Rmin_stable_in_posreal : (x,y:posreal) ``0<(Rmin x y)``.
Intros; Apply Rmin_Rgt_r; Split; [Apply (cond_pos x) | Apply (cond_pos y)].
Save
.
Rmax |
Definition
Rmax :R->R->R:=[x,y:R]
Cases (total_order_Rle x y) of
(leftT _) => y
| (rightT _) => x
end.
Lemma
Rmax_Rle:(r1,r2,r:R)(Rle r (Rmax r1 r2))<->
((Rle r r1)\/(Rle r r2)).
Intros;Split.
Unfold Rmax;Case (total_order_Rle r1 r2);Intros;Auto.
Intro;Unfold Rmax;Case (total_order_Rle r1 r2);Elim H;Clear H;Intros;Auto.
Apply (Rle_trans r r1 r2);Auto.
Generalize (not_Rle r1 r2 n);Clear n;Intro;Unfold Rgt in H0;
Apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)).
Save
.
Lemma
RmaxLess1: (r1, r2 : R) (Rle r1 (Rmax r1 r2)).
Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real.
Save
.
Lemma
RmaxLess2: (r1, r2 : R) (Rle r2 (Rmax r1 r2)).
Intros r1 r2; Unfold Rmax; Case (total_order_Rle r1 r2); Auto with real.
Save
.
Lemma
RmaxSym: (p, q : R) (Rmax p q) == (Rmax q p).
Intros p q; Unfold Rmax;
Case (total_order_Rle p q); Case (total_order_Rle q p); Auto; Intros H1 H2;
Apply Rle_antisym; Auto with real.
Save
.
Lemma
RmaxRmult:
(p, q, r : R)
(Rle R0 r) -> (Rmax (Rmult r p) (Rmult r q)) == (Rmult r (Rmax p q)).
Intros p q r H; Unfold Rmax.
Case (total_order_Rle p q); Case (total_order_Rle (Rmult r p) (Rmult r q));
Auto; Intros H1 H2; Auto.
Case H; Intros E1.
Case H1; Auto with real.
Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto.
Case H; Intros E1.
Case H2; Auto with real.
Apply Rle_monotony_contra with z := r; Auto.
Rewrite <- E1; Repeat Rewrite Rmult_Ol; Auto.
Save
.
Lemma
Rmax_stable_in_negreal : (x,y:negreal) ``(Rmax x y)<0``.
Intros; Unfold Rmax; Case (total_order_Rle x y); Intro; [Apply (cond_neg y) | Apply (cond_neg x)].
Save
.
Rabsolu |
Lemma
case_Rabsolu:(r:R)(sumboolT (Rlt r R0) (Rge r R0)).
Intro;Generalize (total_order_Rle R0 r);Intro;Elim X;Intro;Clear X.
Right;Apply (Rle_sym1 R0 r a).
Left;Fold (Rgt R0 r);Apply (not_Rle R0 r b).
Save
.
Definition
Rabsolu:R->R:=
[r:R](Cases (case_Rabsolu r) of
(leftT _) => (Ropp r)
|(rightT _) => r
end).
Lemma
Rabsolu_R0:(Rabsolu R0)==R0.
Unfold Rabsolu;Case (case_Rabsolu R0);Auto;Intro.
Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
Save
.
Lemma
Rabsolu_R1: (Rabsolu R1)==R1.
Unfold Rabsolu; Case (case_Rabsolu R1); Auto with real.
Intros H; Absurd ``1 < 0``;Auto with real.
Save
.
Lemma
Rabsolu_no_R0:(r:R)~r==R0->~(Rabsolu r)==R0.
Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro;Auto.
Apply Ropp_neq;Auto.
Save
.
Lemma
Rabsolu_left: (r:R)(Rlt r R0)->((Rabsolu r) == (Ropp r)).
Intros;Unfold Rabsolu;Case (case_Rabsolu r);Trivial;Intro;Absurd (Rge r R0).
Exact (Rlt_ge_not r R0 H).
Assumption.
Save
.
Lemma
Rabsolu_right: (r:R)(Rge r R0)->((Rabsolu r) == r).
Intros;Unfold Rabsolu;Case (case_Rabsolu r);Intro.
Absurd (Rge r R0).
Exact (Rlt_ge_not r R0 r0).
Assumption.
Trivial.
Save
.
Lemma
Rabsolu_left1: (a : R) (Rle a R0) -> (Rabsolu a) == (Ropp a).
Intros a H; Case H; Intros H1.
Apply Rabsolu_left; Auto.
Rewrite H1; Simpl; Rewrite Rabsolu_right; Auto with real.
Save
.
Lemma
Rabsolu_pos:(x:R)(Rle R0 (Rabsolu x)).
Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro.
Generalize (Rlt_Ropp x R0 r);Intro;Unfold Rgt in H;
Rewrite Ropp_O in H;Unfold Rle;Left;Assumption.
Apply Rle_sym2;Assumption.
Save
.
Lemma
Rle_Rabsolu:
(x:R) (Rle x (Rabsolu x)).
Intro; Unfold Rabsolu;Case (case_Rabsolu x);Intros;Fourier.
Save
.
Lemma
Rabsolu_pos_eq:(x:R)(Rle R0 x)->(Rabsolu x)==x.
Intros;Unfold Rabsolu;Case (case_Rabsolu x);Intro;
[Generalize (Rle_not R0 x r);Intro;ElimType False;Auto|Trivial].
Save
.
Lemma
Rabsolu_Rabsolu:(x:R)(Rabsolu (Rabsolu x))==(Rabsolu x).
Intro;Apply (Rabsolu_pos_eq (Rabsolu x) (Rabsolu_pos x)).
Save
.
Lemma
Rabsolu_pos_lt:(x:R)(~x==R0)->(Rlt R0 (Rabsolu x)).
Intros;Generalize (Rabsolu_pos x);Intro;Unfold Rle in H0;
Elim H0;Intro;Auto.
ElimType False;Clear H0;Elim H;Clear H;Generalize H1;
Unfold Rabsolu;Case (case_Rabsolu x);Intros;Auto.
Clear r H1; Generalize (Rplus_plus_r x R0 (Ropp x) H0);
Rewrite (let (H1,H2)=(Rplus_ne x) in H1);Rewrite (Rplus_Ropp_r x);Trivial.
Save
.
Lemma
Rabsolu_minus_sym:(x,y:R)
(Rabsolu (Rminus x y))==(Rabsolu (Rminus y x)).
Intros;Unfold Rabsolu;Case (case_Rabsolu (Rminus x y));
Case (case_Rabsolu (Rminus y x));Intros.
Generalize (Rminus_lt y x r);Generalize (Rminus_lt x y r0);Intros;
Generalize (Rlt_antisym x y H);Intro;ElimType False;Auto.
Rewrite (Ropp_distr2 x y);Trivial.
Rewrite (Ropp_distr2 y x);Trivial.
Unfold Rge in r r0;Elim r;Elim r0;Intros;Clear r r0.
Generalize (Rgt_RoppO (Rminus x y) H);Rewrite (Ropp_distr2 x y);
Intro;Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rminus y x) H0);
Intro;ElimType False;Auto.
Rewrite (Rminus_eq x y H);Trivial.
Rewrite (Rminus_eq y x H0);Trivial.
Rewrite (Rminus_eq y x H0);Trivial.
Save
.
Lemma
Rabsolu_mult:(x,y:R)
(Rabsolu (Rmult x y))==(Rmult (Rabsolu x) (Rabsolu y)).
Intros;Unfold Rabsolu;Case (case_Rabsolu (Rmult x y));
Case (case_Rabsolu x);Case (case_Rabsolu y);Intros;Auto.
Generalize (Rlt_anti_monotony y x R0 r r0);Intro;
Rewrite (Rmult_Or y) in H;Generalize (Rlt_antisym (Rmult x y) R0 r1);
Intro;Unfold Rgt in H;ElimType False;Rewrite (Rmult_sym y x) in H;
Auto.
Rewrite (Ropp_mul1 x y);Trivial.
Rewrite (Rmult_sym x (Ropp y));Rewrite (Ropp_mul1 y x);
Rewrite (Rmult_sym x y);Trivial.
Unfold Rge in r r0;Elim r;Elim r0;Clear r r0;Intros;Unfold Rgt in H H0.
Generalize (Rlt_monotony x R0 y H H0);Intro;Rewrite (Rmult_Or x) in H1;
Generalize (Rlt_antisym (Rmult x y) R0 r1);Intro;ElimType False;Auto.
Rewrite H in r1;Rewrite (Rmult_Ol y) in r1;Generalize (Rlt_antirefl R0);
Intro;ElimType False;Auto.
Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0);
Intro;ElimType False;Auto.
Rewrite H0 in r1;Rewrite (Rmult_Or x) in r1;Generalize (Rlt_antirefl R0);
Intro;ElimType False;Auto.
Rewrite (Ropp_mul2 x y);Trivial.
Unfold Rge in r r1;Elim r;Elim r1;Clear r r1;Intros;Unfold Rgt in H0 H.
Generalize (Rlt_monotony y x R0 H0 r0);Intro;Rewrite (Rmult_Or y) in H1;
Rewrite (Rmult_sym y x) in H1;
Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto.
Generalize (imp_not_Req x R0 (or_introl (Rlt x R0) (Rgt x R0) r0));
Generalize (imp_not_Req y R0 (or_intror (Rlt y R0) (Rgt y R0) H0));Intros;
Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False;
Auto.
Rewrite H0 in H;Rewrite (Rmult_Or x) in H;Unfold Rgt in H;
Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
Rewrite H0;Rewrite (Rmult_Or x);Rewrite (Rmult_Or (Ropp x));Trivial.
Unfold Rge in r0 r1;Elim r0;Elim r1;Clear r0 r1;Intros;Unfold Rgt in H0 H.
Generalize (Rlt_monotony x y R0 H0 r);Intro;Rewrite (Rmult_Or x) in H1;
Generalize (Rlt_antisym (Rmult x y) R0 H1);Intro;ElimType False;Auto.
Generalize (imp_not_Req y R0 (or_introl (Rlt y R0) (Rgt y R0) r));
Generalize (imp_not_Req R0 x (or_introl (Rlt R0 x) (Rgt R0 x) H0));Intros;
Generalize (without_div_Od x y H);Intro;Elim H3;Intro;ElimType False;
Auto.
Rewrite H0 in H;Rewrite (Rmult_Ol y) in H;Unfold Rgt in H;
Generalize (Rlt_antirefl R0);Intro;ElimType False;Auto.
Rewrite H0;Rewrite (Rmult_Ol y);Rewrite (Rmult_Ol (Ropp y));Trivial.
Save
.
Lemma
Rabsolu_Rinv:(r:R)(~r==R0)->(Rabsolu (Rinv r))==
(Rinv (Rabsolu r)).
Intro;Unfold Rabsolu;Case (case_Rabsolu r);
Case (case_Rabsolu (Rinv r));Auto;Intros.
Apply Ropp_Rinv;Auto.
Generalize (Rlt_Rinv2 r r1);Intro;Unfold Rge in r0;Elim r0;Intros.
Unfold Rgt in H1;Generalize (Rlt_antisym R0 (Rinv r) H1);Intro;
ElimType False;Auto.
Generalize
(imp_not_Req (Rinv r) R0
(or_introl (Rlt (Rinv r) R0) (Rgt (Rinv r) R0) H0));Intro;
ElimType False;Auto.
Unfold Rge in r1;Elim r1;Clear r1;Intro.
Unfold Rgt in H0;Generalize (Rlt_antisym R0 (Rinv r)
(Rlt_Rinv r H0));Intro;ElimType False;Auto.
ElimType False;Auto.
Save
.
Lemma
Rabsolu_Ropp:
(x:R) (Rabsolu (Ropp x))==(Rabsolu x).
Intro;Cut (Ropp x)==(Rmult (Ropp R1) x).
Intros; Rewrite H.
Rewrite Rabsolu_mult.
Cut (Rabsolu (Ropp R1))==R1.
Intros; Rewrite H0.
Ring.
Unfold Rabsolu; Case (case_Rabsolu (Ropp R1)).
Intro; Ring.
Intro H0;Generalize (Rle_sym2 R0 (Ropp R1) H0);Intros.
Generalize (Rle_Ropp R0 (Ropp R1) H1).
Rewrite Ropp_Ropp; Rewrite Ropp_O.
Intro;Generalize (Rle_not R1 R0 Rlt_R0_R1);Intro;
Generalize (Rle_sym2 R1 R0 H2);Intro;
ElimType False;Auto.
Ring.
Save
.
Lemma
Rabsolu_triang:(a,b:R)(Rle (Rabsolu (Rplus a b))
(Rplus (Rabsolu a) (Rabsolu b))).
Intros a b;Unfold Rabsolu;Case (case_Rabsolu (Rplus a b));
Case (case_Rabsolu a);Case (case_Rabsolu b);Intros.
Apply (eq_Rle (Ropp (Rplus a b)) (Rplus (Ropp a) (Ropp b)));
Rewrite (Ropp_distr1 a b);Reflexivity.
Rewrite (Ropp_distr1 a b);
Apply (Rle_compatibility (Ropp a) (Ropp b) b);
Unfold Rle;Unfold Rge in r;Elim r;Intro.
Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp b) R0 b H);
Intro;Elim (Rplus_ne (Ropp b));Intros v w;Rewrite v in H0;Clear v w;
Rewrite (Rplus_Ropp_l b) in H0;Apply (Rlt_trans (Ropp b) R0 b H0 H).
Right;Rewrite H;Apply Ropp_O.
Rewrite (Ropp_distr1 a b);
Rewrite (Rplus_sym (Ropp a) (Ropp b));
Rewrite (Rplus_sym a (Ropp b));
Apply (Rle_compatibility (Ropp b) (Ropp a) a);
Unfold Rle;Unfold Rge in r0;Elim r0;Intro.
Left;Unfold Rgt in H;Generalize (Rlt_compatibility (Ropp a) R0 a H);
Intro;Elim (Rplus_ne (Ropp a));Intros v w;Rewrite v in H0;Clear v w;
Rewrite (Rplus_Ropp_l a) in H0;Apply (Rlt_trans (Ropp a) R0 a H0 H).
Right;Rewrite H;Apply Ropp_O.
ElimType False;Generalize (Rge_plus_plus_r a b R0 r);Intro;
Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
Generalize (Rge_trans (Rplus a b) a R0 H r0);Intro;Clear H;
Unfold Rge in H0;Elim H0;Intro;Clear H0.
Unfold Rgt in H;Generalize (Rlt_antisym (Rplus a b) R0 r1);Intro;Auto.
Absurd (Rplus a b)==R0;Auto.
Apply (imp_not_Req (Rplus a b) R0);Left;Assumption.
ElimType False;Generalize (Rlt_compatibility a b R0 r);Intro;
Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
Generalize (Rlt_trans (Rplus a b) a R0 H r0);Intro;Clear H;
Unfold Rge in r1;Elim r1;Clear r1;Intro.
Unfold Rgt in H;
Generalize (Rlt_trans (Rplus a b) R0 (Rplus a b) H0 H);Intro;
Apply (Rlt_antirefl (Rplus a b));Assumption.
Rewrite H in H0;Apply (Rlt_antirefl R0);Assumption.
Rewrite (Rplus_sym a b);Rewrite (Rplus_sym (Ropp a) b);
Apply (Rle_compatibility b a (Ropp a));
Apply (Rminus_le a (Ropp a));Unfold Rminus;Rewrite (Ropp_Ropp a);
Generalize (Rlt_compatibility a a R0 r0);Clear r r1;Intro;
Elim (Rplus_ne a);Intros v w;Rewrite v in H;Clear v w;
Generalize (Rlt_trans (Rplus a a) a R0 H r0);Intro;
Apply (Rlt_le (Rplus a a) R0 H0).
Apply (Rle_compatibility a b (Ropp b));
Apply (Rminus_le b (Ropp b));Unfold Rminus;Rewrite (Ropp_Ropp b);
Generalize (Rlt_compatibility b b R0 r);Clear r0 r1;Intro;
Elim (Rplus_ne b);Intros v w;Rewrite v in H;Clear v w;
Generalize (Rlt_trans (Rplus b b) b R0 H r);Intro;
Apply (Rlt_le (Rplus b b) R0 H0).
Unfold Rle;Right;Reflexivity.
Save
.
Lemma
Rabsolu_triang_inv:(a,b:R)(Rle (Rminus (Rabsolu a) (Rabsolu b))
(Rabsolu (Rminus a b))).
Intros;
Apply (Rle_anti_compatibility (Rabsolu b)
(Rminus (Rabsolu a) (Rabsolu b)) (Rabsolu (Rminus a b)));
Unfold Rminus;
Rewrite <- (Rplus_assoc (Rabsolu b) (Rabsolu a) (Ropp (Rabsolu b)));
Rewrite (Rplus_sym (Rabsolu b) (Rabsolu a));
Rewrite (Rplus_assoc (Rabsolu a) (Rabsolu b) (Ropp (Rabsolu b)));
Rewrite (Rplus_Ropp_r (Rabsolu b));
Rewrite (proj1 ? ? (Rplus_ne (Rabsolu a)));
Replace (Rabsolu a) with (Rabsolu (Rplus a R0)).
Rewrite <- (Rplus_Ropp_r b);
Rewrite <- (Rplus_assoc a b (Ropp b));
Rewrite (Rplus_sym a b);
Rewrite (Rplus_assoc b a (Ropp b)).
Exact (Rabsolu_triang b (Rplus a (Ropp b))).
Rewrite (proj1 ? ? (Rplus_ne a));Trivial.
Save
.
Lemma
Rabsolu_def1:(x,a:R)(Rlt x a)->(Rlt (Ropp a) x)->(Rlt (Rabsolu x) a).
Unfold Rabsolu;Intros;Case (case_Rabsolu x);Intro.
Generalize (Rlt_Ropp (Ropp a) x H0);Unfold Rgt;Rewrite Ropp_Ropp;Intro;
Assumption.
Assumption.
Save
.
Lemma
Rabsolu_def2:(x,a:R)(Rlt (Rabsolu x) a)->(Rlt x a)/\(Rlt (Ropp a) x).
Unfold Rabsolu;Intro x;Case (case_Rabsolu x);Intros.
Generalize (Rlt_RoppO x r);Unfold Rgt;Intro;
Generalize (Rlt_trans R0 (Ropp x) a H0 H);Intro;Split.
Apply (Rlt_trans x R0 a r H1).
Generalize (Rlt_Ropp (Ropp x) a H);Rewrite (Ropp_Ropp x);Unfold Rgt;Trivial.
Fold (Rgt a x) in H;Generalize (Rgt_ge_trans a x R0 H r);Intro;
Generalize (Rgt_RoppO a H0);Intro;Fold (Rgt R0 (Ropp a));
Generalize (Rge_gt_trans x R0 (Ropp a) r H1);Unfold Rgt;Intro;Split;
Assumption.
Save
.
Lemma
RmaxAbs:
(p, q, r : R)
(Rle p q) -> (Rle q r) -> (Rle (Rabsolu q) (Rmax (Rabsolu p) (Rabsolu r))).
Intros p q r H' H'0; Case (Rle_or_lt R0 p); Intros H'1.
Repeat Rewrite Rabsolu_right; Auto with real.
Apply Rle_trans with r; Auto with real.
Apply RmaxLess2; Auto.
Apply Rge_trans with p; Auto with real; Apply Rge_trans with q; Auto with real.
Apply Rge_trans with p; Auto with real.
Rewrite (Rabsolu_left p); Auto.
Case (Rle_or_lt R0 q); Intros H'2.
Repeat Rewrite Rabsolu_right; Auto with real.
Apply Rle_trans with r; Auto.
Apply RmaxLess2; Auto.
Apply Rge_trans with q; Auto with real.
Rewrite (Rabsolu_left q); Auto.
Case (Rle_or_lt R0 r); Intros H'3.
Repeat Rewrite Rabsolu_right; Auto with real.
Apply Rle_trans with (Ropp p); Auto with real.
Apply RmaxLess1; Auto.
Rewrite (Rabsolu_left r); Auto.
Apply Rle_trans with (Ropp p); Auto with real.
Apply RmaxLess1; Auto.
Save
.
Lemma
Rabsolu_Zabs: (z : Z) (Rabsolu (IZR z)) == (IZR (Zabs z)).
Intros z; Case z; Simpl; Auto with real.
Apply Rabsolu_right; Auto with real.
Intros p0; Apply Rabsolu_right; Auto with real zarith.
Intros p0; Rewrite Rabsolu_Ropp.
Apply Rabsolu_right; Auto with real zarith.
Save
.