I (definition)
identityT_ind_r [in Coq.Init.Logic_Type]
identityT_rect_r [in Coq.Init.Logic_Type]
identityT_rec_r [in Coq.Init.Logic_Type]
IF [in Coq.Init.Logic]
ifb [in Coq.Bool.Bool]
ifdec [in Coq.Bool.DecBool]
iff [in Coq.Init.Logic]
IFProp [in Coq.Logic.Berardi]
implb [in Coq.Bool.Bool]
In [in Coq.Sets.Ensembles]
In [in Coq.Lists.List]
In [in Coq.Sets.Uniset]
In [in Coq.Lists.PolyList]
incl [in Coq.Lists.List]
incl [in Coq.Lists.PolyList]
incl [in Coq.Sets.Uniset]
Included [in Coq.Sets.Ensembles]
inclusion [in Coq.Relations.Relation_Definitions]
increasing [in Coq.Reals.Ranalysis]
index_p [in Coq.Lists.TheoryList]
infinit_sum [in Coq.Reals.Rfunctions]
inf_dec [in Coq.Arith.Div]
injective [in Coq.Sets.Image]
inject_nat [in Coq.ZArith.zarith_aux]
INR [in Coq.Reals.Raxioms]
INR2 [in Coq.Reals.Rbase]
InR_inv [in Coq.Lists.TheoryList]
Int_part [in Coq.Reals.R_Ifp]
INZ [in Coq.Reals.Rbase]
in_dom [in Coq.IntMap.Fset]
in_FSet [in Coq.IntMap.Fset]
in_int [in Coq.Arith.Between]
Isnil [in Coq.Lists.TheoryList]
IsSucc [in Coq.Init.Peano]
is_lub [in Coq.Reals.Raxioms]
Is_power [in Coq.ZArith.Zlogarithm]
Is_true [in Coq.Bool.Bool]
is_upper_bound [in Coq.Reals.Raxioms]
iter [in Coq.ZArith.Zmisc]
iter_nat [in Coq.ZArith.Zmisc]
iter_pos [in Coq.ZArith.Zmisc]
IZR [in Coq.Reals.Raxioms]