Properties of a binary relation R on type A
|
Section
Rstar.
Variable
A : Type.
Variable
R : A->A->Prop.
Definition of the reflexive-transitive closure R* of R
|
Smallest reflexive P containing R o P
|
Definition
Rstar := [x,y:A](P:A->A->Prop)
((u:A)(P u u))->((u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)) -> (P x y).
Theorem
Rstar_reflexive: (x:A)(Rstar x x).
Proof
[x:A][P:A->A->Prop]
[h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
(h1 x).
Theorem
Rstar_R: (x:A)(y:A)(z:A)(R x y)->(Rstar y z)->(Rstar x z).
Proof
[x:A][y:A][z:A][t1:(R x y)][t2:(Rstar y z)]
[P:A->A->Prop]
[h1:(u:A)(P u u)][h2:(u:A)(v:A)(w:A)(R u v)->(P v w)->(P u w)]
(h2 x y z t1 (t2 P h1 h2)).
We conclude with transitivity of Rstar :
|
Theorem
Rstar_transitive: (x:A)(y:A)(z:A)(Rstar x y)->(Rstar y z)->(Rstar x z).
Proof
[x:A][y:A][z:A][h:(Rstar x y)]
(h ([u:A][v:A](Rstar v z)->(Rstar u z))
([u:A][t:(Rstar u z)]t)
([u:A][v:A][w:A][t1:(R u v)][t2:(Rstar w z)->(Rstar v z)]
[t3:(Rstar w z)](Rstar_R u v z t1 (t2 t3)))).
Another characterization of R*
|
Smallest reflexive P containing R o R*
|
Definition
Rstar' := [x:A][y:A](P:A->A->Prop)
((P x x))->((u:A)(R x u)->(Rstar u y)->(P x y)) -> (P x y).
Theorem
Rstar'_reflexive: (x:A)(Rstar' x x).
Proof
[x:A][P:A->A->Prop][h:(P x x)][h':(u:A)(R x u)->(Rstar u x)->(P x x)]h.
Theorem
Rstar'_R: (x:A)(y:A)(z:A)(R x z)->(Rstar z y)->(Rstar' x y).
Proof
[x:A][y:A][z:A][t1:(R x z)][t2:(Rstar z y)]
[P:A->A->Prop][h1:(P x x)]
[h2:(u:A)(R x u)->(Rstar u y)->(P x y)](h2 z t1 t2).
Equivalence of the two definitions: |
Theorem
Rstar'_Rstar: (x:A)(y:A)(Rstar' x y)->(Rstar x y).
Proof
[x:A][y:A][h:(Rstar' x y)]
(h Rstar (Rstar_reflexive x) ([u:A](Rstar_R x u y))).
Theorem
Rstar_Rstar': (x:A)(y:A)(Rstar x y)->(Rstar' x y).
Proof
[x:A][y:A][h:(Rstar x y)](h Rstar' ([u:A](Rstar'_reflexive u))
([u:A][v:A][w:A][h1:(R u v)][h2:(Rstar' v w)]
(Rstar'_R u w v h1 (Rstar'_Rstar v w h2)))).
Property of Commutativity of two relations |
Definition
commut := [A:Set][R1,R2:A->A->Prop]
(x,y:A)(R1 y x)->(z:A)(R2 z y)
->(EX y':A |(R2 y' x) & (R1 z y')).
End
Rstar.