We prove that there is only one proof of x=x , i.e (refl_equal ? x) . This holds if the equality upon the set of x is decidable. A corollary of this theorem is the equality of the right projections of two equal dependent pairs.
Author: Thomas Kleymann |<tms@dcs.ed.ac.uk>| in Lego adapted to Coq by B. Barras
Credit: Proofs up to |
We need some dependent elimination schemes |
Set Implicit Arguments.
Require
Elimdep.
Bijection between eq and eqT
|
Definition
eq2eqT: (A:Set)(x,y:A)x=y->x==y :=
[A,x,_,eqxy]<[y:A]x==y>Cases eqxy of refl_equal => (refl_eqT ? x) end.
Definition
eqT2eq: (A:Set)(x,y:A)x==y->x=y :=
[A,x,_,eqTxy]<[y:A]x=y>Cases eqTxy of refl_eqT => (refl_equal ? x) end.
Lemma
eq_eqT_bij: (A:Set)(x,y:A)(p:x=y)p==(eqT2eq (eq2eqT p)).
Intros.
Elim p using eq_indd.
Reflexivity.
Save
.
Lemma
eqT_eq_bij: (A:Set)(x,y:A)(p:x==y)p==(eq2eqT (eqT2eq p)).
Intros.
Elim p using eqT_indd.
Reflexivity.
Save
.
Section
DecidableEqDep.
Variable
A: Type.
Local
comp [x,y,y':A]: x==y->x==y'->y==y' :=
[eq1,eq2](eqT_ind ? ? [a]a==y' eq2 ? eq1).
Remark
trans_sym_eqT: (x,y:A)(u:x==y)(comp u u)==(refl_eqT ? y).
Intros.
Elim u using eqT_indd.
Trivial.
Save
.
Variable
eq_dec: (x,y:A) x==y \/ ~x==y.
Variable
x: A.
Local
nu [y:A]: x==y->x==y :=
[u]Cases (eq_dec x y) of
(or_introl eqxy) => eqxy
| (or_intror neqxy) => (False_ind ? (neqxy u))
end.
Local
nu_constant : (y:A)(u,v:x==y) (nu u)==(nu v).
Intros.
Unfold nu.
Elim (eq_dec x y) using or_indd; Intros.
Reflexivity.
Case b; Trivial.
Save
.
Local
nu_inv [y:A]: x==y->x==y := [v](comp (nu (refl_eqT ? x)) v).
Remark
nu_left_inv : (y:A)(u:x==y) (nu_inv (nu u))==u.
Intros.
Elim u using eqT_indd.
Unfold nu_inv.
Apply trans_sym_eqT.
Save
.
Theorem
eq_proofs_unicity: (y:A)(p1,p2:x==y) p1==p2.
Intros.
Elim nu_left_inv with u:=p1.
Elim nu_left_inv with u:=p2.
Elim nu_constant with y p1 p2.
Reflexivity.
Save
.
Theorem
K_dec: (P:x==x->Prop)(P (refl_eqT ? x)) -> (p:x==x)(P p).
Intros.
Elim eq_proofs_unicity with x (refl_eqT ? x) p.
Trivial.
Save
.
The corollary |
Local
proj: (P:A->Prop)(ExT P)->(P x)->(P x) :=
[P,exP,def]Cases exP of
(exT_intro x' prf) =>
Cases (eq_dec x' x) of
(or_introl eqprf) => (eqT_ind ? x' P prf x eqprf)
| _ => def
end
end.
Theorem
inj_right_pair: (P:A->Prop)(y,y':(P x))
(exT_intro ? P x y)==(exT_intro ? P x y') -> y==y'.
Intros.
Cut (proj (exT_intro A P x y) y)==(proj (exT_intro A P x y') y).
Simpl.
Elim (eq_dec x x) using or_indd.
Intro e.
Elim e using K_dec; Trivial.
Intros.
Case b; Trivial.
Case H.
Reflexivity.
Save
.
End
DecidableEqDep.
We deduce the K axiom for (decidable) Set
|
Theorem
K_dec_set: (A:Set)((x,y:A){x=y}+{~x=y})
->(x:A)(P: x=x->Prop)(P (refl_equal ? x))
->(p:x=x)(P p).
Intros.
Rewrite eq_eqT_bij.
Elim (eq2eqT p) using K_dec.
Intros.
Case (H x0 y); Intros.
Elim e; Left ; Reflexivity.
Right ; Red; Intro neq; Apply n; Elim neq; Reflexivity.
Trivial.
Save
.