Module Coq.Logic.Classical_Pred_Set

Classical Predicate Logic on Set

Require Classical_Prop.

Section Generic.
Variable U: Set.

de Morgan laws for quantifiers

Lemma not_all_ex_not : (P:U->Prop)(~(n:U)(P n)) -> (EX n:U | ~(P n)).
Proof.
Unfold not; Intros P notall.
Apply NNPP; Unfold not.
Intro abs.
Cut ((n:U)(P n)); Auto.
Intro n; Apply NNPP.
Unfold not; Intros.
Apply abs; Exists n; Trivial.
Qed.

Lemma not_all_not_ex : (P:U->Prop)(~(n:U)~(P n)) -> (EX n:U |(P n)).
Proof.
Intros P H.
Elim (not_all_ex_not [n:U]~(P n) H); Intros n Pn; Exists n.
Apply NNPP; Trivial.
Qed.

Lemma not_ex_all_not : (P:U->Prop) (~(EX n:U |(P n))) -> (n:U)~(P n).
Proof.
Unfold not; Intros P notex n abs.
Apply notex.
Exists n; Trivial.
Qed.

Lemma not_ex_not_all : (P:U->Prop)(~(EX n:U | ~(P n))) -> (n:U)(P n).
Proof.
Intros P H n.
Apply NNPP.
Red; Intro K; Apply H; Exists n; Trivial.
Qed.

Lemma ex_not_not_all : (P:U->Prop) (EX n:U | ~(P n)) -> ~(n:U)(P n).
Proof.
Unfold not; Intros P exnot allP.
Elim exnot; Auto.
Qed.

Lemma all_not_not_ex : (P:U->Prop) ((n:U)~(P n)) -> ~(EX n:U |(P n)).
Proof.
Unfold not; Intros P allnot exP; Elim exP; Intros n p.
Apply allnot with n; Auto.
Qed.

End Generic.


Index