R
R [definition, in Coq.Logic.Berardi]
R [axiom, in Coq.Reals.Rdefinitions]
Rabsolu [definition, in Coq.Reals.Rbasic_fun]
Rabsolu_def1 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_def2 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_left [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_left1 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_minus_sym [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_mult [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_no_R0 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_pos [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_pos_eq [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_pos_lt [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_Rabsolu [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_right [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_Rinv [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_Ropp [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_R0 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_R1 [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_triang [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_triang_inv [lemma, in Coq.Reals.Rbasic_fun]
Rabsolu_Zabs [lemma, in Coq.Reals.Rbasic_fun]
rad_deg [lemma, in Coq.Reals.Rtrigo]
Ranalysis [module]
Raxioms [module]
Rbase [module]
Rbasic_fun [module]
Rdefinitions [module]
Rderiv [module]
Rdiv [definition, in Coq.Reals.Rdefinitions]
Reals [module]
Reflexive [definition, in Coq.Sets.Relations_1]
reflexive [definition, in Coq.Relations.Relation_Definitions]
refl_eqT [constructor, in Coq.Init.Logic_Type]
refl_equal [constructor, in Coq.Init.Logic]
refl_identity [constructor, in Coq.Init.Datatypes]
refl_identityT [constructor, in Coq.Init.Logic_Type]
Rel [definition, in Coq.Sets.Partial_Order]
relation [inductive, in Coq.ZArith.fast_integer]
Relation [definition, in Coq.Sets.Relations_1]
relation [definition, in Coq.Relations.Relation_Definitions]
Relations [module]
Relations_1 [module]
Relations_1_facts [module]
Relations_2 [module]
Relations_2_facts [module]
Relations_3 [module]
Relations_3_facts [module]
Relation_Definitions [module]
Relation_Operators [module]
rename [lemma, in Coq.ZArith.Zmisc]
Req_EM [lemma, in Coq.Reals.Rbase]
retract_pow_U_U [lemma, in Coq.Logic.Berardi]
rev [definition, in Coq.Lists.PolyList]
rev_ind [lemma, in Coq.Lists.PolyList]
Rfunctions [module]
Rge [definition, in Coq.Reals.Rdefinitions]
Rgeom [module]
Rge_ge_eq [lemma, in Coq.Reals.Rbase]
Rge_gt_trans [lemma, in Coq.Reals.Rbase]
Rge_le [lemma, in Coq.Reals.Rbase]
Rge_minus [lemma, in Coq.Reals.Rbase]
Rge_monotony [lemma, in Coq.Reals.Rbase]
Rge_plus_plus_r [lemma, in Coq.Reals.Rbase]
Rge_Ropp [lemma, in Coq.Reals.Rbase]
Rge_RO_Ropp [lemma, in Coq.Reals.Rbase]
Rge_r_plus_plus [lemma, in Coq.Reals.Rbase]
Rge_trans [lemma, in Coq.Reals.Rbase]
Rgt [definition, in Coq.Reals.Rdefinitions]
Rgt_ge [lemma, in Coq.Reals.Rbase]
Rgt_ge_trans [lemma, in Coq.Reals.Rbase]
Rgt_minus [lemma, in Coq.Reals.Rbase]
Rgt_not_eq [lemma, in Coq.Reals.Rbase]
Rgt_not_le [lemma, in Coq.Reals.Rbase]
Rgt_plus_plus_r [lemma, in Coq.Reals.Rbase]
Rgt_Ropp [lemma, in Coq.Reals.Rbase]
Rgt_RoppO [lemma, in Coq.Reals.Rbase]
Rgt_RO_Ropp [lemma, in Coq.Reals.Rbase]
Rgt_r_plus_plus [lemma, in Coq.Reals.Rbase]
Rgt_trans [lemma, in Coq.Reals.Rbase]
Rgt_2PI_0 [lemma, in Coq.Reals.Rtrigo]
Rgt_2_0 [lemma, in Coq.Reals.Rtrigo]
Rgt_3PI2_0 [lemma, in Coq.Reals.Rtrigo]
Rgt_3_0 [lemma, in Coq.Reals.Rtrigo]
right [constructor, in Coq.Init.Specif]
rightT [constructor, in Coq.Reals.TypeSyntax]
right_lex [constructor, in Coq.Relations.Relation_Operators]
right_prefix [lemma, in Coq.Wellfounded.Lexicographic_Exponentiation]
right_sym [constructor, in Coq.Relations.Relation_Operators]
Rinv [axiom, in Coq.Reals.Rdefinitions]
Rinv_l [axiom, in Coq.Reals.Raxioms]
Rinv_lt [lemma, in Coq.Reals.Rbase]
Rinv_l_sym [lemma, in Coq.Reals.Rbase]
Rinv_neq_R0 [lemma, in Coq.Reals.Rbase]
Rinv_pow [lemma, in Coq.Reals.Rfunctions]
Rinv_r [lemma, in Coq.Reals.Rbase]
Rinv_Rinv [lemma, in Coq.Reals.Rbase]
Rinv_Rmult [lemma, in Coq.Reals.Rbase]
Rinv_Rmult_simpl [lemma, in Coq.Reals.Rbase]
Rinv_R1 [lemma, in Coq.Reals.Rbase]
Rinv_r_simpl_l [lemma, in Coq.Reals.Rbase]
Rinv_r_simpl_m [lemma, in Coq.Reals.Rbase]
Rinv_r_simpl_r [lemma, in Coq.Reals.Rbase]
Rinv_r_sym [lemma, in Coq.Reals.Rbase]
Rle [definition, in Coq.Reals.Rdefinitions]
Rle_antisym [lemma, in Coq.Reals.Rbase]
Rle_anti_compatibility [lemma, in Coq.Reals.Rbase]
Rle_anti_monotony [lemma, in Coq.Reals.Rbase]
Rle_compatibility [lemma, in Coq.Reals.Rbase]
Rle_compatibility_r [lemma, in Coq.Reals.Rbase]
Rle_ge [lemma, in Coq.Reals.Rbase]
Rle_le_eq [lemma, in Coq.Reals.Rbase]
Rle_lt_trans [lemma, in Coq.Reals.Rbase]
Rle_minus [lemma, in Coq.Reals.Rbase]
Rle_monotony [lemma, in Coq.Reals.Rbase]
Rle_monotony_contra [lemma, in Coq.Reals.Rbase]
Rle_monotony_r [lemma, in Coq.Reals.Rbase]
Rle_not [lemma, in Coq.Reals.Rbase]
Rle_not_lt [lemma, in Coq.Reals.Rbase]
Rle_or_lt [lemma, in Coq.Reals.Rbase]
Rle_Rabsolu [lemma, in Coq.Reals.Rbasic_fun]
Rle_Rmult_comp [lemma, in Coq.Reals.Rbase]
Rle_Ropp [lemma, in Coq.Reals.Rbase]
Rle_Ropp1 [lemma, in Coq.Reals.Rbase]
Rle_RO_Ropp [lemma, in Coq.Reals.Rbase]
Rle_sym [lemma, in Coq.Reals.Rbase]
Rle_sym1 [lemma, in Coq.Reals.Rbase]
Rle_sym2 [lemma, in Coq.Reals.Rbase]
Rle_trans [lemma, in Coq.Reals.Rbase]
Rlimit [module]
Rlt [axiom, in Coq.Reals.Rdefinitions]
Rlt_antirefl [lemma, in Coq.Reals.Rbase]
Rlt_antisym [axiom, in Coq.Reals.Raxioms]
Rlt_anti_compatibility [lemma, in Coq.Reals.Rbase]
Rlt_anti_monotony [lemma, in Coq.Reals.Rbase]
Rlt_compatibility [axiom, in Coq.Reals.Raxioms]
Rlt_compatibility_r [lemma, in Coq.Reals.Rbase]
Rlt_eps2_eps [lemma, in Coq.Reals.Rlimit]
Rlt_eps4_eps [lemma, in Coq.Reals.Rlimit]
Rlt_ge_not [lemma, in Coq.Reals.Rbase]
Rlt_le [lemma, in Coq.Reals.Rbase]
Rlt_le_not [lemma, in Coq.Reals.Rbase]
Rlt_le_trans [lemma, in Coq.Reals.Rbase]
Rlt_minus [lemma, in Coq.Reals.Rbase]
Rlt_monotony [axiom, in Coq.Reals.Raxioms]
Rlt_monotony_contra [lemma, in Coq.Reals.Rbase]
Rlt_monotony_r [lemma, in Coq.Reals.Rbase]
Rlt_monotony_rev [lemma, in Coq.Reals.Rbase]
Rlt_not_eq [lemma, in Coq.Reals.Rbase]
Rlt_not_ge [lemma, in Coq.Reals.Rbase]
Rlt_PI_3PI2 [lemma, in Coq.Reals.Rtrigo]
Rlt_pow [lemma, in Coq.Reals.Rfunctions]
Rlt_pow_R1 [lemma, in Coq.Reals.Rfunctions]
Rlt_Rinv [lemma, in Coq.Reals.Rbase]
Rlt_Rinv2 [lemma, in Coq.Reals.Rbase]
Rlt_Rinv_R1 [lemma, in Coq.Reals.Rbase]
Rlt_Ropp [lemma, in Coq.Reals.Rbase]
Rlt_RoppO [lemma, in Coq.Reals.Rbase]
Rlt_Ropp1 [lemma, in Coq.Reals.Rbase]
Rlt_RO_Ropp [lemma, in Coq.Reals.Rbase]
Rlt_R0_R1 [lemma, in Coq.Reals.Rbase]
Rlt_r_plus_R1 [lemma, in Coq.Reals.Rbase]
Rlt_r_r_plus_R1 [lemma, in Coq.Reals.Rbase]
Rlt_sqrt2_0 [lemma, in Coq.Reals.Rtrigo]
Rlt_sqrt3_0 [lemma, in Coq.Reals.Rtrigo]
Rlt_sym [lemma, in Coq.Reals.Rbase]
Rlt_trans [axiom, in Coq.Reals.Raxioms]
Rlt_3PI2_2PI [lemma, in Coq.Reals.Rtrigo]
Rmax [definition, in Coq.Reals.Rbasic_fun]
RmaxAbs [lemma, in Coq.Reals.Rbasic_fun]
RmaxLess1 [lemma, in Coq.Reals.Rbasic_fun]
RmaxLess2 [lemma, in Coq.Reals.Rbasic_fun]
RmaxRmult [lemma, in Coq.Reals.Rbasic_fun]
RmaxSym [lemma, in Coq.Reals.Rbasic_fun]
Rmax_N [definition, in Coq.Reals.Rseries]
Rmax_Rle [lemma, in Coq.Reals.Rbasic_fun]
Rmax_stable_in_negreal [lemma, in Coq.Reals.Rbasic_fun]
Rmin [definition, in Coq.Reals.Rbasic_fun]
Rminus [definition, in Coq.Reals.Rdefinitions]
Rminus_distr [lemma, in Coq.Reals.Rbase]
Rminus_eq [lemma, in Coq.Reals.Rbase]
Rminus_eq_contra [lemma, in Coq.Reals.Rbase]
Rminus_eq_right [lemma, in Coq.Reals.Rbase]
Rminus_fp1 [lemma, in Coq.Reals.R_Ifp]
Rminus_fp2 [lemma, in Coq.Reals.R_Ifp]
Rminus_Int_part1 [lemma, in Coq.Reals.R_Ifp]
Rminus_Int_part2 [lemma, in Coq.Reals.R_Ifp]
Rminus_le [lemma, in Coq.Reals.Rbase]
Rminus_lt [lemma, in Coq.Reals.Rbase]
Rminus_not_eq [lemma, in Coq.Reals.Rbase]
Rminus_not_eq_right [lemma, in Coq.Reals.Rbase]
Rminus_Ropp [lemma, in Coq.Reals.Rbase]
Rmin_l [lemma, in Coq.Reals.Rbasic_fun]
Rmin_r [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt_l [lemma, in Coq.Reals.Rbasic_fun]
Rmin_Rgt_r [lemma, in Coq.Reals.Rbasic_fun]
Rmin_stable_in_posreal [lemma, in Coq.Reals.Rbasic_fun]
Rmult [axiom, in Coq.Reals.Rdefinitions]
Rmult_assoc [axiom, in Coq.Reals.Raxioms]
Rmult_gt [lemma, in Coq.Reals.Rbase]
Rmult_le_pos [lemma, in Coq.Reals.Rbase]
Rmult_lt [lemma, in Coq.Reals.Rbase]
Rmult_lt2 [lemma, in Coq.Reals.Rbase]
Rmult_lt_pos [lemma, in Coq.Reals.Rbase]
Rmult_lt_0 [lemma, in Coq.Reals.Rbase]
Rmult_mult_r [lemma, in Coq.Reals.Rbase]
Rmult_ne [lemma, in Coq.Reals.Rbase]
Rmult_Ol [lemma, in Coq.Reals.Rbase]
Rmult_Or [lemma, in Coq.Reals.Rbase]
Rmult_Rplus_distr [axiom, in Coq.Reals.Raxioms]
Rmult_Rplus_distrl [lemma, in Coq.Reals.Rbase]
Rmult_sym [axiom, in Coq.Reals.Raxioms]
Rmult_1l [axiom, in Coq.Reals.Raxioms]
Rmult_1r [lemma, in Coq.Reals.Rbase]
Ropp [axiom, in Coq.Reals.Rdefinitions]
Ropp_distr1 [lemma, in Coq.Reals.Rbase]
Ropp_distr2 [lemma, in Coq.Reals.Rbase]
Ropp_distr3 [lemma, in Coq.Reals.Rbase]
Ropp_mul1 [lemma, in Coq.Reals.Rbase]
Ropp_mul2 [lemma, in Coq.Reals.Rbase]
Ropp_neq [lemma, in Coq.Reals.Rbase]
Ropp_O [lemma, in Coq.Reals.Rbase]
Ropp_Rinv [lemma, in Coq.Reals.Rbase]
Ropp_Rle [lemma, in Coq.Reals.Rbase]
Ropp_Rlt [lemma, in Coq.Reals.Rbase]
Ropp_Ropp [lemma, in Coq.Reals.Rbase]
Ropp_Ropp_IZR [lemma, in Coq.Reals.Rbase]
rotation_PI2 [lemma, in Coq.Reals.Rgeom]
rotation_0 [lemma, in Coq.Reals.Rgeom]
Rplus [axiom, in Coq.Reals.Rdefinitions]
Rplus [inductive, in Coq.Sets.Relations_2]
Rplus_assoc [axiom, in Coq.Reals.Raxioms]
Rplus_contains_R [lemma, in Coq.Sets.Relations_2_facts]
Rplus_eq_R0 [lemma, in Coq.Reals.Rbase]
Rplus_eq_R0_l [lemma, in Coq.Reals.Rbase]
Rplus_le [lemma, in Coq.Reals.Rbase]
Rplus_le_lt_lt [lemma, in Coq.Reals.Rbase]
Rplus_lt [lemma, in Coq.Reals.Rbase]
Rplus_lt_le_lt [lemma, in Coq.Reals.Rbase]
Rplus_n [constructor, in Coq.Sets.Relations_2]
Rplus_ne [lemma, in Coq.Reals.Rbase]
Rplus_ne_i [lemma, in Coq.Reals.Rbase]
Rplus_Ol [axiom, in Coq.Reals.Raxioms]
Rplus_Or [lemma, in Coq.Reals.Rbase]
Rplus_plus_r [lemma, in Coq.Reals.Rbase]
Rplus_Rminus [lemma, in Coq.Reals.Rbase]
Rplus_Ropp [lemma, in Coq.Reals.Rbase]
Rplus_Ropp_l [lemma, in Coq.Reals.Rbase]
Rplus_Ropp_r [axiom, in Coq.Reals.Raxioms]
Rplus_Rsr_eq_R0 [lemma, in Coq.Reals.Rbase]
Rplus_Rsr_eq_R0_l [lemma, in Coq.Reals.Rbase]
Rplus_sym [axiom, in Coq.Reals.Raxioms]
Rplus_0 [constructor, in Coq.Sets.Relations_2]
Rseries [module]
Rsigma [module]
Rsqr [definition, in Coq.Reals.Rbase]
Rsqr_abs [lemma, in Coq.Reals.R_sqr]
Rsqr_derivable [lemma, in Coq.Reals.Ranalysis]
Rsqr_derivable_pt [lemma, in Coq.Reals.Ranalysis]
Rsqr_derive [lemma, in Coq.Reals.Ranalysis]
Rsqr_div [lemma, in Coq.Reals.R_sqr]
Rsqr_eq [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_asb_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_eq_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_gt_0_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_incrst_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_incrst_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_0_var [lemma, in Coq.Reals.R_sqr]
Rsqr_incr_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_inj [lemma, in Coq.Reals.R_sqr]
Rsqr_inv [lemma, in Coq.Reals.R_sqr]
Rsqr_le_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_le_abs_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_lt_abs_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_lt_abs_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_minus_plus [lemma, in Coq.Reals.R_sqr]
Rsqr_neg [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_pos_le_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_neg_pos_le_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_O [lemma, in Coq.Reals.Rbase]
Rsqr_plus [lemma, in Coq.Reals.R_sqr]
Rsqr_plus_minus [lemma, in Coq.Reals.R_sqr]
Rsqr_pos_lt [lemma, in Coq.Reals.R_sqr]
Rsqr_r_R0 [lemma, in Coq.Reals.Rbase]
Rsqr_sin_cos_d_one [lemma, in Coq.Reals.Rtrigo]
Rsqr_sol_eq_0_0 [lemma, in Coq.Reals.R_sqr]
Rsqr_sol_eq_0_1 [lemma, in Coq.Reals.R_sqr]
Rsqr_sqrt [lemma, in Coq.Reals.R_sqr]
Rsqr_times [lemma, in Coq.Reals.R_sqr]
Rsqr_1 [lemma, in Coq.Reals.R_sqr]
Rstar [definition, in Coq.Relations.Rstar]
Rstar [inductive, in Coq.Sets.Relations_2]
Rstar [module]
RstarRplus_RRstar [lemma, in Coq.Sets.Relations_2_facts]
Rstar' [definition, in Coq.Relations.Rstar]
Rstar'_R [lemma, in Coq.Relations.Rstar]
Rstar'_reflexive [lemma, in Coq.Relations.Rstar]
Rstar'_Rstar [lemma, in Coq.Relations.Rstar]
Rstar1 [inductive, in Coq.Sets.Relations_2]
Rstar1_n [constructor, in Coq.Sets.Relations_2]
Rstar1_0 [constructor, in Coq.Sets.Relations_2]
Rstar1_1 [constructor, in Coq.Sets.Relations_2]
Rstar_cases [lemma, in Coq.Sets.Relations_2_facts]
Rstar_coherence [lemma, in Coq.Relations.Newman]
Rstar_contains_R [lemma, in Coq.Sets.Relations_2_facts]
Rstar_contains_Rplus [lemma, in Coq.Sets.Relations_2_facts]
Rstar_equiv_Rstar1 [lemma, in Coq.Sets.Relations_2_facts]
Rstar_imp_coherent [lemma, in Coq.Sets.Relations_3_facts]
Rstar_n [constructor, in Coq.Sets.Relations_2]
Rstar_R [lemma, in Coq.Relations.Rstar]
Rstar_reflexive [lemma, in Coq.Relations.Rstar]
Rstar_reflexive [lemma, in Coq.Sets.Relations_2_facts]
Rstar_Rstar' [lemma, in Coq.Relations.Rstar]
Rstar_transitive [lemma, in Coq.Sets.Relations_2_facts]
Rstar_transitive [lemma, in Coq.Relations.Rstar]
Rstar_0 [constructor, in Coq.Sets.Relations_2]
rst_refl [constructor, in Coq.Relations.Relation_Operators]
rst_step [constructor, in Coq.Relations.Relation_Operators]
rst_sym [constructor, in Coq.Relations.Relation_Operators]
rst_trans [constructor, in Coq.Relations.Relation_Operators]
Rsym_imp_notRsym [lemma, in Coq.Sets.Relations_1_facts]
Rsym_imp_Rstarsym [lemma, in Coq.Sets.Relations_2_facts]
Rsyntax [module]
RTheory [lemma, in Coq.Reals.Rbase]
Rtrigo [module]
Rtrigo_fun [module]
rt_refl [constructor, in Coq.Relations.Relation_Operators]
rt_step [constructor, in Coq.Relations.Relation_Operators]
rt_trans [constructor, in Coq.Relations.Relation_Operators]
R0 [axiom, in Coq.Reals.Rdefinitions]
R0_fp_O [lemma, in Coq.Reals.R_Ifp]
R1 [axiom, in Coq.Reals.Rdefinitions]
R1_neq_R0 [axiom, in Coq.Reals.Raxioms]
R1_sqrt2_neq_0 [lemma, in Coq.Reals.Rtrigo]
R_dist [definition, in Coq.Reals.Rlimit]
R_dist_eq [lemma, in Coq.Reals.Rlimit]
R_dist_plus [lemma, in Coq.Reals.Rlimit]
R_dist_pos [lemma, in Coq.Reals.Rlimit]
R_dist_refl [lemma, in Coq.Reals.Rlimit]
R_dist_sym [lemma, in Coq.Reals.Rlimit]
R_dist_tri [lemma, in Coq.Reals.Rlimit]
R_Ifp [module]
R_met [definition, in Coq.Reals.Rlimit]
r_Rmult_mult [lemma, in Coq.Reals.Rbase]
r_Rplus_plus [lemma, in Coq.Reals.Rbase]
R_sqr [module]