SnortMUsers Manual
2.8.0

The Snort Project

November 14, 2007

Copyright(©1998-2003 Martin Roesch
Copyright(©2001-2003 Chris Green
Copyright(©2003-2007 Sourcefire, Inc.

Contents

[L__Snort Overview 7
L1 _Getfing Startdd e 7
L2 _snifferMade 7
L3 PacketloggerMaole 8
[1.4 Network Intrusion Detection System Mbde e 9

.41 NIDSMode QutputOptions o v oo e e 9
.42 Understanding Standard Alert OUEpUt o oot i 10
.43 High Performance Configurafion 0 10
44 ChangingAlertOrder 11
L5 dnlineMadk 11
[L51 Snortinline Rule Application Ordler 12
[1.5.2 New STREAMA4 Options for Use with SnortInfine 12
[.5.3 Replacing Packets with SnortInline 13
[L5.4 nstalling Snortinlide 13
.55 RunningSnortinlihe o 13
[L.5.6 Using the Honeynet SnortInline Todlkit 13
[L5.7 TroubleshootingSnortlnline oo 14

[L6 Miscellaneolis e 14
61 RunninginDaemonMddet 14
[L.6.2 Obfuscating IP ADdress PANIOUES o v v v e e e e e e e e e 14
[1.6.3 Specifying Multiple-Instance Identifiers 15

L7 Morelnformatioh 15
[2__Configuring Snort] 16
PO1 Includds 16
P02 Vvarableb 16
P03 Confll. . . . oo 19

R __PreproCessOrs o v v e e 25
P11 _FEragd 25
P12 Streamd 28
P13 Flob 32

D15 sfPartschn. 36
216 RPCDecalle 42
R.1.7 Performance MONMOr o e e 42
P18 HTTPInspedt e 44
1.9 SMTP Prepracesbor 52
2.1.10 FTP/Telnet PreproCedsor o v v v v v e e e e e e e 54
DT SSH . . . e 59
R112 DCEIRPIC e 60
PII3DNE 62
B2 _EVentThresholding . . « -« o o oot e e e e e 62
2.3 Performance Profiling e 63
P31 RuleProfilidg 63
2.3.2 PreprocessorProfiling e e 64
P4 OutputModulels 65
P41 alertsyslod 66
D42 alertfast 67
BA3 alemfull 67
P44 alerunixsock. 68
P45 logtcpdumb 86
P46 databade 68
DAz e . 70
P48 unifieh 71
P49 unifiedD 71
2410 alerpreludl 27
PAT1 dogndll 72
2412 alemfarubaactioh 73
P 5 DynamicMOdUIBS o oo 73
DB _Formlt 73
D52 Directivas 73
B Writing Snort Rules:How to Write Snort Rules and Keep Your Sanity 75
B TR Basibs o oo 75
B2 RulesHeaddrs o s 76
B21 RUCACHONE o o oo 76
B22 Protocals . . . o oot 76
B23 PAddressks 77
B24 PortNumbars 77
B25 TheDirectionOperalor 79

B3 RuleOptiofs 80
B4 GeneralRule OPHONS v vttt e e e e 80
BAT My . . o 80
B42 teferende 80
B3 gifl 81
B4 _Sil. 81
BAS5 1ol . . . 82
BA6 CIASSIYDE . . o o oo 82
BAZ _pronty oo 83
BA8 metadadta 84
B.49 GeneralRule Quick Referehce 84
B.5 _Payload Detection RUle OptiNS o o vt e e e e 85
BET _CONENt . . . oot e 85
BE2 nacabe. 86
BE3 1aWbVIEs . . . o . e e 86
BE4 _deplh 87
BEE _OMSAt . . o v o oo e 87
BEB _ISANEE oot 87
BEZ _WIlhih . . . o o oo e 88
B5.8 hitpclientbodV. oo 88
BE9 httpurd 89
B510 uriconteht 89
BEI1 urleho 90
BEI2 ISR . . . o v o oo e e 90
BEIZ NCIE . . o o 91
3 4 _bytetest e e e e e 29
BEA5 hyteump 94
B516 ftphounde e 94
BEIZ asdl oo 95
[3.5.18 Payload Detection Quick Referdnce e 95
3.6 Non-Payload Detection Rule Opfibns i 96
B61 fragoffsdt 96
BB2 1l ... 96
B3 105 . . o . 97
BOA il . . . 97
BBE _00DES -« o o e 97
BB6 _HAQDIS . . . o o o o e 98
BOZ _ASIZe . . o v oo 99

BE.O fOW . . . o oot 100
BEI0 AOWDIES o oo 100
BOI1 Sdq . . . oo 101
BEA2 adko 101
BOI3 windoW oo 102
BOI4 Gypk 102
B6I5 icadeo 102
BEI6 dompid o 102
BOAZ icmpsell oo 103
BEIB Ik . . o 103
BBI9 0RO . . . o o o 103
BB20 Samelp o 104
[3.6.21 Non-Payload Detection Quick Referénceo .. 104
- i NS . . . e e e 105
BZI 10gib . . . oo 105
BZ2 sessibn 105
BZ3 163D . . o o 105
BZa xeabt. 106
BZE 10 . . o oo 107
BZ6 ACIVAIRS . . . o o o oo et e 108
BZ7 activatedbyl. 108
BZ8 COUBt . . o o oo 108
- B it e e 108
B8 FEventThresholdifg e 109
B.81 Standalone Optidnst 109
B82 StandaloneFormhat 110
B83 RuleKeywordFormat 110
B84 RuleKeywordFormat 110
B85 Examplds 111
B9 FventSuppression 113
BOT Formdt oo 113
BO2 FExamplds e 113
[3.10 Snort Multi-Event Logging (EventQuelie) 114
B.10.1 Event Queue Configuration OptioNS o vttt i 114
B.10.2 Event Queue Configuration Exambles\ wuu 114
B11 Writing Good RUl®S o 115
B11.1 ContentMatchig i e 115
3.11.2 Catch the Vulnerability, Not the Exploit 115

B11.4 Optimizing RUIBS o o o oot e e e e e e 116

B115 TestingNumericalValUBS o oot 117
4__Making Snort Fastet 120
B1 MMAPedpcdp 120
i5__Dynamic Modules 121
Bl DataStucturbs 121
B11 DynamicPluginMeta oo 121

B.1.2 DynamicPreprocessordata ou i i e e 121

B.1.3 DynamicEngineDataot e e e e 122

B.1.4 SESnortPacket 123

B15 DynamicRUIBS e 128

B2 RequiredFunctiohs 135
B.21 Preprocessbrs 135

B22 DetectionEngihe 135

B23 RUES . . o oo 137

B3 Exampldso 137
5.3.1 _PreprocessorExamiple 138

B32 RUES oo 139
{6__Snort Developmerit 143
6.1 Submiffing Patches 143
B.2 SnortData FlaW vt 143
B.21 Preprocessdrs 143

B.22 DetectionPlugihs e 144

.23 OutputPIUGINS 144

B3 TheSnortTedm 144

Chapter 1

Snort Overview

This manual is based aftriting Snort Ruleby Martin Roesch and further work from Chris Greenmg@snort.org .

It is now maintained by Brian Casweltbmc@snort.org. If you have a better way to say something or find that
something in the documentation is outdated, drop us a lidensnwill update it. If you would like to submit patches
for this document, you can find the latest version of the dcentation in ATeX format in the Snort CVS repository at
/doc/snort_manual.tex . Small documentation updates are the easiest way to heth@@®nort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of caandhline options to play with, and it's not always obvious
which ones go together well. This file aims to make using Seaster for new users.

Before we proceed, there are a few basic concepts you shadktstand about Snort. Snort can be configured to run
in three modes:

¢ Sniffer modewhich simply reads the packets off of the network and displdaem for you in a continuous
stream on the console (screen).

e Packet Logger modevhich logs the packets to disk.

e Network Intrusion Detection System (NIDS) moithe, most complex and configurable configuration, which
allows Snort to analyze network traffic for matches againster-defined rule set and performs several actions
based upon what it sees.

¢ Inline mode which obtains packets from iptables instead of from libpaad then causes iptables to drop or
pass packets based on Snort rules that use inline-spedéitypes.

1.2 Sniffer Mode

First, let's start with the basics. If you just want to printtahe TCP/IP packet headers to the screen (i.e. sniffer jnode
try this:

Jsnort -v

This command will run Snort and just show the IP and TCP/UDRWP headers, nothing else. If you want to see the
application data in transit, try the following:

Jsnort -vd

This instructs Snort to display the packet data as well ah#alers. If you want an even more descriptive display,
showing the data link layer headers, do this:

Jsnort -vde

(As an aside, these switches may be divided up or smashetthéwge any combination. The last command could also
be typed out as:

Jsnort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want tord the packets to the disk, you need to specify a
logging directory and Snort will automatically know to gdarpacket logger mode:

Jsnort -dev - ./log

Of course, this assumes you have a directory nalogedn the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it colle@s/gacket it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -1 switch, you may notice that Snemmetimes uses the address of the remote computer
as the directory in which it places packets and sometimeseis the local host address. In order to log relative to the
home network, you need to tell Snort which network is the howigvork:

Jsnort -dev -l Jlog -h 192.168.1.0/24

This rule tells Snort that you want to print out the data limdar CP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.1681assdC network. All incoming packets
will be recorded into subdirectories of the log directorythwthe directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are ondheemetwork, they are logged to a directqry
with a name based on the higher of the two port numbers orgicdise of a tie, the source address.

If you're on a high speed network or you want to log the packets a more compact form for later analysis, you
should consider logging in binary mode. Binary mode loggtaekets in tcpdump format to a single binary file in the
logging directory:

Jsnort -l Jlog -b

Note the command line changes here. We don’t need to spetifymee network any longer because binary mode
logs everything into a single file, which eliminates the nédell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or spettife -d or -e switches because in binary mode the entire
packetis logged, not just sections of it. All you really néedo to place Snort into logger mode is to specify a logging
directory at the command line using the -I switch—the -b byrlagging switch merely provides a modifier that tells
Snort to log the packets in something other than the defatittud format of plain ASCII text.

Once the packets have been logged to the binary file, you eaithe packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or E#lerSnort can also read the packets back by using the

-r switch, which puts it into playback mode. Packets from sopdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run afyitg file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

Jsnort -dv -r packet.log

You can manipulate the data in the file in a number of ways tinoBnort’s packet logging and intrusion detection
modes, as well as with the BPF interface that's availablefloe command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPE(fitt the command line and Snort will only see the
ICMP packets in the file:

Jsnort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snartgrdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) modéhstd you don'’t record every single packet sent down
the wire, try this:

Jsnort -dev -l Jlog -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your rules file. This will apply the rules confiediin thesnort.conf file to
each packet to decide if an action based upon the rule typmifile should be taken. If you don'’t specify an output
directory for the program, it will default tévar/log/snort

One thing to note about the last command line is that if Srsoging to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake afexh The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It's also not necessary to record the data link headers fat yaplications, so you can usually omit the -e switch, too.
Jsnort -d -h 192.168.1.0/24 -l ./llog -c snort.conf

This will configure Snort to run in its most basic NIDS formglging packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory strui (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort BS\inode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alertee full alert mechanism prints out the alert message in
addition to the full packet headers. There are several atleer output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are sevenmatates available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modemcaessed with the -A command line switch. These
options are:

| Option | Description

-A fast Fast alert mode. Writes the alert in a simple format with aestamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will bedugetomatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can lmten

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

Packets can be logged to their default decoded ASCII formtt a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N commadshmitch.

For output modes available through the configuration file, Sectiod Z14.

ANOTE

Command line logging options override any output optiorecefied in the configuration file. This allows
debugging of configuration issues quickly via the commanel.i

To send alerts to syslog, use the -s switch. The defaulitiasifor the syslog alerting mechanism are LAGTHPRIV
and LOGALERT. If you want to configure other facilities for syslog tput, use the output plugin directives in the
rules files. See Secti@gn Z.#.1 for more details on configwsirsipg output.

For example, use the following command line to log to deféddcoded ASCII) facility and send alerts to syslog:
Jsnort -c snort.conf -I Jlog -h 192.168.1.0/24 -s

As another example, use the following command line to lodéodefault facility in /var/log/snort and send alerts to a
fast alert file:

Jsnort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually likekthe following:

[**] [116:56:1] (snort_decoder): T/TCP Detected [*]

The first number is the Generator ID, this tells the user wioatmonent of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. drcéisie, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred toggmagire ID). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directtytim rules with thesid option. In this case;6 represents a
T/TCP event.

The third number is the revision ID. This number is primarilged when writing signatures, as each rendition of the
rule should increment this number with thex option.

1.4.3 High Performance Configuration

If you want Snort to gdast(like keep up with a 1000 Mbps connection), you need to uskagiibgging and a unified
log reader such dsarnyard This allows Snort to log alerts in a binary form as fast assjie while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsable, but still sorhevfast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce minimalis. For example:

Jsnort -b -A fast -c snort.conf

10

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packetyg n@ be appropriate for all installations. The Alert rules
are applied first, then the Pass rules, and finally, Log rulesapplied. This sequence is somewhat counterintuitive,
but it's a more foolproof method than allowing a user to wetbhundred alert rules that are then disabled by an errant
pass rule. For more information on rule types, see SeEfiad 3.

If you know what you're doing, you can use the -0 switch to dethe default rule application behavior to apply Pass
rules, then Alert rules, then Log rules:

Jsnort -d -h 192.168.1.0/24 -l ./llog -c snort.conf -0

As of Snort 2.6.0, the command line flagaert-before-pass and--treat-drop-as-alert were added to han-
dle changesto rule ordering and fix an issue when pass anduespvere not always enforced. Thaert-before-pass
option forces alert rules to take affect in favor of a pase.rilhe--treat-drop-as-alert causes drop, sdrop, and

reject rules and any associated alerts to be logged as, algtier then the normal action. This allows use of an inline
policy with passive/IDS mode.

Additionally, the--process-all-events option causes Snort to process every event associated pébket, while
taking the actions based on the rules ordering. Withoutdpiton (default case), only the events for the first action
based on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event prigésserminated when a pass rule is encountered,
regardless of the use eprocess-all-events

ANOTE

‘ The additions with Snort 2.6.0 will result in the deprecatad the -o switch in a future release.

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention sygi€&8) capability ofSnort Inline into the official Snort
project.Snort Inline obtains packets from iptables instead of libpcap and thes new rule types to help iptables
pass or drop packets based on Snort rules.

In order forSnort Inline to work properly, you must download and compile the iptalzlede to include “make
install-devel” |ttp:/lwww.iptables.org). This will install thelibipg library that allowsSnort Inline to inter-
face with iptables. Also, you must build and install LibNehich is available frorimttp://iwww.packettactory.net

There are three rule types you can use when running SnortSndtt Inline

e drop - The drop rule type will tell iptables to drop the packet aag it via usual Snort means.

e reject - The reject rule type will tell iptables to drop the packenq lit via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable ifgt@ocol is UDP.

e sdrop - The sdrop rule type will tell iptables to drop the packet.tiNog is logged.

ANOTE

You can also replace sections of the packet payload wheig st Inline . See Sectioh 1.3.3 for more
information.

When using aeject rule, there are two options you can use to send TCP resets:

11

http://www.iptables.org
http://www.packetfactory.net

e You can use a RAW socket (the default behaviorSoort Inline), in which case you must have an interface
that has an IP address assigned to it. If there is not an auerkith an IP address assigned with access to the
source of the packet, the packet will be logged and the reszgh will never make it onto the network.

e You can also now perform resets via a physical device whemguigitables. We take the indev name from
ip_queue and use this as the interface on which to send resetaoV@ager need an IP loaded on the bridge,
and can remain pretty stealthy as tlafig layer2 _resets in snortinline.conf takes a source MAC address
which we substitue for the MAC of the bridge. For example:

config layer2resets

tells Snort Inline to use layer2 resets and uses the MAC address of the bridgeeaource MAC in the
packet, and:

config layer2resets: 00:06:76:DD:5F:E3

will tell Snort Inline to use layer2 resets and uses the seMAC of 00:06:76:DD:5F:E3 in the reset packet.

e The command-line optiondisable-inline-initialization can be used to not initialize IPTables when in
inline mode. To be used with command-line optidnto test for a valid configuration without requiring opening
inline devices and adversely affecting traffic flow.

1.5.1 Snort Inline Rule Application Order
The current rule application order is:
->activation->dynamic->drop->sdrop->reject->alert-> pass->log

This will ensure that a drop rule has precedence over an@léog rule. You can use the -o flag to change the rule
application order to:

->activation->dynamic->pass->drop->sdrop->reject->a lert->log

1.5.2 New STREAMA4 Options for Use with Snort Inline

When usingSnort Inline , you can use two additional stream4 options:

e enforce _state drop
Adding drop to theenforce _state option causes Snort to drop TCP packets that are not assdaciath an
existing TCP session, and that are not valid TCP initiators.

e midstream _drop _alerts (no arguments)

By default, when running in inline mode, Snort will silentliyop any packets that are matched agairgsbp
rule and considered to be part of a midstream session, thstdagging the alert as usual. This is to mitigate
stick/snot type attacks when the user hasn’t enabledrtfoece _state option. If you want to log these drops,
enable this option. Note that by enabling this option, youehapened yourself up to stick/snot-type attacks if
you haven't also used tremforce _state option.

e disable _session _blocking (no arguments)
By default, when running in inline mode, Snort will block #iaffic on a TCP session after it is told to drop a
non-stateless packet on that session. Enable this opty@muifion’t want Snort to exhibit this default behavior.

For more information about Stream4, see SedilonP.1.2.

12

1.5.3 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows yourtodify packets before they leave the network. For
example:
alert tcp any any <> any 80 (msg: "tcp replace”; content:"GET "
alert udp any any <> any 53 (msg: "udp replace"; \

content: "yahoo"; replace: "Xxxxx";)

; replace:"BET";)

These rules will comb TCP port 80 traffic looking for GET, anB® port 53 traffic looking for yahoo. Once they are
found, they are replaced with BET and xxxxx, respectivelye dnly catch is that the replace must be the same length
as the content.

1.5.4 |Installing Snort Inline
To install Snort inline, use the following command:

Jconfigure --enable-inline
make
make install

1.5.5 Running Snort Inline

First, you need to ensure that thedmeue module is loaded. Then, you need to send traffic to Smone using the
QUEUE target. For example:

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 te fAUEUE target. This is what sends the packet from
kernel space to user spa@ndrt Inline). A quick way to get all outbound traffic going to the QUEUEdsuse the
rc.firewall script created and maintained by the Honeynejget |ttp://www.honeynet.org/papers/noneynet/itools/

This script is well-documented and allows you to direct gaskoSnort Inline by simply changing the QUEUE
variable to yes.

Finally, start Snort Inline:
snort_inline -QDc ../etc/drop.conf -I /var/log/snort
You can use the following command line options:

e -Q - Gets packets from iptables.
e -D - RunsSnort Inline in daemon mode. The process ID is storef¥atrun/snort —inline.pid
e ¢ - Reads the following configuration file.

e -| -Logs to the following directory.
Ideally, Snort Inline will be run using only its own drop.ad. If you want to use Snort for just alerting, a separate

process should be running with its own rule set.

1.5.6 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compit&gbrt Inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drdesutheSnort Inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

nttp://www.honeynet.org/papers/noneynet/tools/

13

http://www.honeynet.org/papers/honeynet/tools/
http://www.honeynet.org/papers/honeynet/tools/

1.5.7 Troubleshooting Snort Inline

If you run Snort Inline and see something like this:
Initializing Output Plugins!

Reading from iptables

Log directory = Ivarflog/snort

Initializing Inline mode
Inlinelnit; : Failed to send netlink message: Connection re fused

More than likely, the ipgueue module is not loaded or_gueue support is not compiled into your kernel. Either
recompile your kernel to supportigueue, or load the module.

The ip.queue module is loaded by executing:

insmod ip_queue

Also, if you want to ensure Snort Inline is getting packets) gan start it in the following manner:
snort_inline -Qvc <configuration file>

This will display the header of every packet that Snort lalgees.

1.6 Miscellaneous

1.6.1 Running in Daemon Mode

If you want to run Snort in daemon mode, you can the add -D $mtitcany combination described in the previous
sections. Please notice that if you want to be able to reStaott by sending a SIGHUP signal to the daemon, you
mustspecify the full path to the Snort binary when you start it,dgample:

lusr/local/bin/snort -d -h 192.168.1.0/24 \
-l ivarflog/snortlogs -c /fust/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run in daemon mode, the daemon creates a PID e ilog directory. In Snort 2.6, thepid-path
command line switch causes Snort to write the PID file in theaory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when mmting in
daemon mode.

The PID file will be locked so that other snort processes castant. Use the-nolock-pidfile switch to not lock
the PID file.

1.6.2 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, yowghtiwant to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if yoo'tdeant people on the mailing list to know the IP
addresses involved. You can also combine the -O switch Wwéhh switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who séesaddress of the attacking host. For example, you
could use the following command to read the packets from dilegnd dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

Jsnort -d -v -r snortlog -O -h 192.168.1.0/24

14

1.6.3 Specifying Multiple-Instance Identifiers

In Snortv2.4, theG command line option was added that specifies an instancgfidefor the eventlogs. This option
can be used when running multiple instances of snort, eghatifferent CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specifiggeherate unique event IDs. Users can specify either a
decimal value{G 1) or hex value preceded by 03 0x11). This is also supported via a long optielogid

1.7 More Information

Chaptef® contains much information about many configunatiations available in the configuration file. The Snort
manual page and the outputsfort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslash)(is needed to escape the ?, so you may have todgme - \? instead of
snort -? for a list of Snort command line options.

The Snort web pag®itp://www.snort.org) and the Snort Users mailing ligtt{p://marc.theaimsgroup.com/?I=snort-users
at snort-users@lists.sourceforge.net provide informative announcements as well as a venue fomoanity
discussion and support. There’s a lot to Snort, so sit bath &beverage of your choosing and read the documenta-
tion and mailing list archives.

15

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.0.1 Includes
Theinclude keyword allows other rules files to be included within theegiile indicated on the Snort command line.

It works much like an #include from the C programming langaiagading the contents of the named file and adding
the contents in the place where the include statement appete file.

Format

include <include file path/name>

ANOTE

| Note that there is no semicolon at the end of this line. |

Included files will substitute any predefined variable valirgo their own variable references. See SedfionP.0.2 for
more information on defining and using variables in Snomslles.

2.0.2 \Variables

Three types of variables may be defined in Snort:

e var
e portvar

e ipvar

ANOTE

‘ Note: ’ipvar’s are only enabled with IPv6 support. WithoBt/b support, use a regular 'var'. ‘

These are simple substitution variables set withvélte ipvar , orportvar keywords as shown in Figufe2.1.

16

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket")
include $RULE_PATH/example.rule

Figure 2.1: Example of Variable Definition and Usage

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block.aay combination of the three. If IPv6 support is

enabled, IP variables should be specified using 'ipvareadtof 'var’. Using 'var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in dite release.

IPs, IP lists, and CIDR blocks may be negated with 'I". Negiais handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list waschlly OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IBrfr 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The @h¢rany’ can be used to match all IPs, although lany’
is not allowed. Also, negated IP ranges that are more getfemalnon-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP. lists

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example”; sid:1;)

alert tcp [1.0.0.0/8,11.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses oflfalles and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp '$EXAMPLE any -> any any (msg:"Example";sid:3;)

Different use of lany:

ipvar EXAMPLE lany
alert tcp $EXAMPLE any -> any any (msg:"Example”;sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,11.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

17

Port Variables and Port Lists
Portlists supports the declaration and lookup of ports &edrépresentation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with 'I". Also, 'any’ wilpecify any ports, but 'lany’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranggdmapecified with a ', such as in:
[10:50,888:900]

Port variables should be specified using 'portvar’. The Usear’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a 'var’ cal be used to declare a port variable, provided the variable
name either ends withPORT’ or begins with 'PORT.

The following examples demonstrate several valid usagbsibf port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [170:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLEL -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)
alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid 2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lisessdgmonstrated below:

Use of lany:

portvar EXAMPLES lany
var EXAMPLES lany

Logical contradictions:
portvar EXAMPLES [80,180]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLES8 80
alert tcp any $EXAMPLES -> any any (msg:"Example”; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLEL any -> any any (msg:"Example”; sid:5;)

18

Variable Modifiers

Rule variable names can be modified in several ways. You cémed@eta-variables using the $ operator. These can
be used with the variable modifier operat®@rand- , as described in the following table:

| Variable Syntax | Description |

var Defines a meta-variable.

$(var) or $var Replaces with the contents of varialbbe .

$(var:-default) Replaces the contents of the varialde with “default” if var is undefined.
$(var:?message) Replaces with the contents of varialshe or prints out the error message and exits.

See Figur€Z]2 for an example of advanced variable usageiamac

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Figure 2.2: Figure Advanced Variable Usage Example
2.0.3 Config

Many configuration and command line options of Snort can leeifipd in the configuration file.

Format

config <directive> [: <value>]

Directives
Table 2.1: Config Directives

| Command | Example | Description |

alert _with _interface _name config alert ~ _with _interface _name | Appends interface name to alesh¢rt
-1).

alertfile config alertfile: alerts Sets the alerts output file.

asnl config asn1:256 Specifies the maximum number of nodes
to track when doing ASN1 decoding.
See Sectiof-3.5.17 for more information
and examples.

bpf _file config bpf _file: filters.bpf Specifies BPF filterssfort -F).

checksum _drop config checksum _drop : all Types of packets to drop if invalid check-

sums. Values: none, noip , notcp ,
noicmp , noudp, ip , tcp , udp, icmp or
all (only applicable in inline mode and
for packets checked pehecksum _mode
config option).

checksum _mode config checksum _mode : all Types of packets to calculate checksums.
Values: none, noip , notcp , noicmp ,
noudp, ip , tcp , udp, icmp orall .

chroot config chroot: /home/snort Chroots to specified disfort -t).

classification config classification: See Tabl&3]2 for a list of classifications.
misc-activity,Misc activity,3

daemon config daemon Forks as a daemonrort -D).

decode _data _link config decode _data _link Decodes Layer2 headesnfrt -).

19

default

_rule _state

config default
disabled

_rule _state:

Global configuration directive to enab

or disable the loading of rules into the de-

tection engine. Default (with or withou
directive) is enabled. Specifjisabled
to disable loading rules.

detection

config detection:

search-method ac
no_stream _inserts
max_queue _events 128

—

Makes changes to the detection engipe.

The following options can be used:
e search-method <ac | ac-std
| ac-bnfa | acs | ac-banded

| ac-sparsebands | lowmem >

— ac Aho-Corasick Full (high
memory, best performance)

— ac-std Aho-Corasick Stan
dard (moderate memory
high performance)

— ac-bnfa Aho-Corasick NFA
(low memory, high perfor-
mance)

— acs Aho-Corasick Sparse

(small memory, moderat
performance)

— ac-banded Aho-Corasick
Banded (small memory
moderate performance)

— ac-sparsebands Aho-
Corasick Sparse-Bande
(small memory, high perfor
mance)

— lowmem Low Memory Key-
word Trie (small memory,
low performance)

e no_stream _inserts

e Mmax._queue _events <integer >

disable

_decode _alerts

config disable

_decode _alerts

Turns off the alerts generated by the d
code phase of Snort.

disable

_inline _init _failopen

config disable
failopen

_inline _init _

Disables failopen thread that 4
lows inline traffic to pass whilg
Snort is starting up. Only useg
ful if Snort was configured with
—enable-inline-init-failopen. sfort
--disable-inline-init-failopen)

U

o

disable

_ipopt _alerts

config disable

_ipopt _alerts

Disables IP option length validatio
alerts.

disable

_tcpopt _alerts

config disable

_tcpopt _alerts

Disables option length validation alerts.

disable
alerts

_tcpopt _experimental

config disable
al _alerts

_tcpopt _experiment

Turns off alerts generated by experime
tal TCP options.

>
1

disable
alerts

_tcpopt _obsolete _

config disable
te _alerts

_tcpopt _obsole

Turns off alerts generated by obsole
TCP options.

te

disable

_tcpopt _ttcp _alerts

config disable

_tcpopt _ttcp _alerts

Turns off alerts generated by T/TCP o
tions.

20

disable _ttcp _alerts config disable _ttcp _alerts Turns off alerts generated by T/TCP o
tions.
dump_chars _only config dump _chars _only Turns on character dumpsnfrt -C).

dump_payload

config

dump _payload

Dumps application layesfort -d).

dump_payload _verbose

config

dump _payload _verbose

Dumps raw packet starting at link layer

(snort -X).

enable

_decode _drops

config

enable

_decode _drops

Enables the dropping of bad packets

identified by decoder (only applicable i

inline mode).

=]

enable
alerts

_decode _oversized

config
alerts

enable

_decode _oversized

Enable alerting on packets that have

headers containing length fields f

DI

which the value is greater than the length

of the packet.

enable

_decode _oversized _drops

config
drops

enable

_decode _oversized

Enable dropping packets that ha

headers containing length fields
for which the value is greate
than the length of the packet.

enable _decode _oversized _alerts

Ve

=

must also be enabled for this to be

effective (only applicable in inling

mode).

enable

_ipopt _drops

config

enable

_ipopt _drops

Enables the dropping of bad packets w

bad/truncated IP options (only applicahle

in inline mode).

th

enable

_tcpopt _drops

config

enable

_tcpopt _drops

Enables the dropping of bad packets w
bad/truncated TCP option (only applic
ble in inline mode).

enable
drops

_tcpopt _experimental _

config

enable

mental _drops

_tcpopt _experi

Enables the dropping of bad packets w

experimental TCP option. (only applica-

ble in inline mode).

enable
drops

_tcpopt _obsolete _

config

enable

te _drops

_tcpopt _obsole

Enables the dropping of bad packets w
obsolete TCP option. (only applicable
inline mode).

th

>

enable

_tcpopt _ttcp _drops

enable _tcpopt

_ttcp _drops

Enables the dropping of bad packets w

T/TCP option. (only applicable in inline

mode).

enable

_ttcp _drops

enable _ttcp _drops

Enables the dropping of bad packets w

T/TCP option. (only applicable in inline

mode).

event _queue

config

event

_queue: max _queue

512 log 100 order _events

priority

Specifies conditions about Snort's event

queue. You can use the following o
tions:

e max.queue <integer > (max
events supported)

e log <integer > (number of
events to log)

e order _events
[priority ~ |content _length]
(how to order events within thg
queue)

See Sectiof_3.10 for more informatid
and examples.

21

14

flexresp2 _attempts

config flexresp2 _attempts: 15

Specify the number of TCP reset packe
to send to the source of the attack. Va
values are 0 to 20, however values le
than 4 will defaultto 4. The default valu
without this option is 4. (Snort must b
compiled with —enable-flexresp2)

flexresp2 _interface

config flexresp2 _interface:

eth0

Specify the response interface to use.
Windows this can also be the interfa
number. (Snort must be compiled wif
—enable-flexresp?2)

flexresp2 _memcap

config flexresp2

_memcap: 100000

Specify the memcap for the hash tal
used to track the time of responses. T
times (hashed on a socket pair plus p

tocol) are used to limit sending a re

sponse to the same half of a socket p
every couple of seconds. Default
1048576 bytes. (Snort must be compil
with —enable-flexresp?2)

pts
id

ss
e
e

In
ce
h

le
he
-

D

air
is
ed

flexresp2 _rows

config flexresp2 _rows: 2048

Specify the number of rows for the has

table used to track the time of respons
Default is 1024 rows. (Snort must b
compiled with —enable-flexresp2)

flowbits _size

config flowbits _size: 128

Specifies the maximum number of flowy
bit tags that can be used within arule s

ignore _ports

config ignore _ports: udp 1:17
53

Specifies ports to ignore (useful for ig
noring noisy NFS traffic). Specify th
protocol (TCP, UDP, IP, or ICMP), fol
lowed by a list of ports. Port ranges a
supported.

interface

config interface: xI0

Sets the network interfacenort -i).

ipv6 _frag

config ipv6é _frag:

bsd _icmp _frag _alert off,
bad _ipv6 _frag _alert

off, frag _timeout 120,
max_frag _sessions 100000

The following options can be used:

e bsd _icmp _frag _alert on|off

(Specify whether or not to alert.

Default is on)

e bad_ipv6 _frag _alert on|off

(Specify whether or not to alert.

Default is on)

e frag _timeout <integer >

(Specify amount of time in sec-

onds to timeout first frag in has
table)

e max frag _sessions
<integer > (Specify the numbe
of fragments to track in the hag
table)

=

layer2resets

config layer2resets:
00:06:76:DD:5F:E3

This option is only available when run
ning in inline mode. See Sectign1L.5.

logdir

config logdir: /var/log/snort

Sets the logdirgnort -I).

min _ttl

config min _ttl:30

Sets a Snort-wide minimum ttl to ignor
all traffic.

[¢)

no_promisc

config no _promisc

Disables promiscuous modesnfrt

P)-

22

nolog config nolog Disables logging. Note: Alerts will stil
occur. gnort -N).
nopcre config nopcre Disables pcre pattern matching.
obfuscate config obfuscate Obfuscates IP Addressesifrt -O).
order config order: pass alert log Changes the order that rules are evalu-
activation ated.
pidpath config pidpath: /var/snort Set path to directory to store snort pjd
file.
pkt _count config pkt _count: 13 Exits after N packetssqort -n).
profile _preprocs config profile _preprocs Print statistics on preprocessor perfor-
mance. See Sectidn 2.B.2 for more de-
tails.
profile _rules config profile _rules Print statistics on rule performance. Sge
SectiorZ311 for more details.
quiet config quiet Disables banner and status reparts
(snort -q).
read _bin _file config read _bin _file; Specifies a pcap file to use (instead |of
test _alert.pcap reading from network), same effect ag -
r <tf> option.
reference config reference: myref Adds a new reference system to Snort
http://myurl.com/?id=
reference _net config reference _net For IP obfuscation, the obfuscated net
192.168.0.0/24 will be used if the packet contains an
IP address in the reference net. Also
used to determine how to set up the lgg-
ging directory structure for theession
post detection rule option and ascii out-
put plugin - an attempt is made to name
the log directories after the IP address
that is not in the reference net.
set _gid config set _gid: 30 Changes GID to specified GIDsnort
-g)-
set _uid set _uid: snort _user Sets UID to<id> (snort -u).
show_year config show _year Shows year in timestampsnprt -y).
snaplen config snaplen: 2048 Set the snaplength of packet, same ff-
fect as-P <snaplen > or --snaplen
<snaplen > options.
stateful config stateful Sets assurance mode for stream4 (est).
See the streamteassemble configura-
tion in tabldZ.B.
tagged _packet _limit config tagged _packet _limit: 512 When a metric other thapackets is
used in a tag option in a rule, this op-
tion sets the maximum number of pack-
ets to be tagged regardless of the amount
defined by the other metric. See Sectipn
B3 on using the tag option when writ-
ing rules for more details. The defaylt
value when this option is not configured
is 256 packets. Setting this option to|a
value of 0 will disable the packet limit.
threshold config threshold: memcap Set global memcap in bytes for thresh-
100000 olding. Default is 1048576 bytes (1
megabyte).
umask config umask: 022 Sets umask when runningnprt -m).

23

utc config utc Uses UTC instead of local time fq
timestampsgnort -U).
verbose config verbose Uses verbose logging to STDOU

(snort -v).

24

2.1 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. @Hew the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snatyfeasily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. adkefpcan be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured usingrépeocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

preprocessor <name>: <options>

preprocessor minfrag: 128

Figure 2.3: Preprocessor Directive Format Example

2.1.1 Frag3

The frag3 preprocessor is a target-based IP defragmentatalule for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed withall@xfing goals:

1. Faster execution than frag2 with less complex data manageme

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively foagiag the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use ydu have some assurance of locality of reference for the
data that you are handling but in high speed, heavily frageteanvironments the nature of the splay trees worked
against the system and actually hindered performance 3Rrrsgs the sfxhash data structure and linked lists for data
handling internally which allows it to have much more préedite and deterministic performance in any environment
which should aid us in managing heavily fragmented envirents.

Target-based analysis is a relatively new concept in né&ased intrusion detection. The idea of a target-based
system is to model the actual targets on the network instéatbrely modeling the protocols and looking for attacks
within them. When IP stacks are written for different operatsystems, they are usually implemented by people
who read the RFCs and then write their interpretation of whatRFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edgditimms that may occurr and when this happens
different people implement certain aspects of their IPlgtalifferently. For an IDS this is a big problem.

In an environment where the attacker can determine whae stiyIP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets suahttie target will put them back together in a specific

manner while any passive systems trying to model the hoSictfzave to guess which way the target OS is going

to handle the overlaps and retransmits. As | like to say, &f dttacker has more information about the targets on
a network than the IDS does, it is possible to evade the ID% iBhwhere the idea for “target-based IDS” came

from. For more detail on this issue and how it affects IDS,aheut the famous Ptacek & Newsham paper at
http:/iwww.snort.org/docs/idspaper/

The basic idea behind target-based IDS is that we tell theihifimation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on iatiwmabout how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this y@gyito?003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implemeatethandled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it ojattat/www.icir.org/vern/papers/activemap-0ak03.pdf

We can also present the IDS with topology information to dvioT L-based evasions and a variety of other issues, but
that’s a topic for another day. Once we have this informatiercan start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a targetiimaodule within Snort to test this idea.

25

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2.r&'hee at least two preprocessor directives required
to activate frag3, a global configuration directive and agie@ instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, mly one global configuration.

Global Configuration

e Preprocessor naméag3 _global
e Available options: NOTE: Global configuration options acesnma separated.

— maxfrags <number > - Maximum simultaneous fragments to track. Default is 8192.
— memcap <bytes > - Memory cap for self preservation. Default is 4MB.

— prealloc _frags <number > - Alternate memory management mode. Use preallocated fagrmodes
(faster in some situations).

Engine Configuration

e Preprocessor naméag3 _engine
¢ Available options: NOTE: Engine configuration options grace separated.
— timeout <seconds > - Timeout for fragments. Fragments in the engine for lonbantthis period will

be automatically dropped. Default is 60 seconds.

—ttl _limit <hops > - Max TTL delta acceptable for packets based on the first gankie fragment.
Defaultis 5.

— min_ttl <value > - Minimum acceptable TTL value for a fragment packet. Deffal .
— detect _anomalies - Detect fragment anomalies.

— bind _to <ip _list > -IP Listto bind this engine to. This engine will only run faagkets with destination
addresses contained within the IP List. Default valualis

— policy <type > - Select a target-based defragmentation mode. Availalplestare first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminofeay3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more imgp@and would like to add to this list
please feel free to send us an email!

26

Platform | Type |

AlX 2 BSD
AlX4.38.9.3 BSD
Cisco 10S Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) | linux
OpenBSD (version unknown) | linux
OpenVMS 7.1 BSD
0S/2 (version unknown) BSD
OSF1V3.0 BSD
OSF1V3.2 BSD
OSF1V4.0,5.0,5.1 BSD
Sun0S4.1.4 BSD
Sun0S5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) First

format

preprocessor
preprocessor

preprocessor
preprocessor
preprocessor
preprocessor

frag3_global
frag3_engine

Figure 2.4: Example configuration (Basic)

frag3_global: prealloc_nodes 8192

frag3_engine: policy linux, bind_to 192.168 .1.0124
frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
frag3_engine: policy last, detect anomalie S

Figure 2.5: Example configuration (Advanced)

Note in the advanced example (Figlirel 2.5), there are thrgimes specified running withinux, first andlast
policies assigned. The first two engines are bound to spéPBifaxidress ranges and the last one applies to all other
traffic. Packets that don't fall within the address requiestts of the first two engines automatically fall through te th

third one.

27

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of ari@salts event output is packet-based so it will work with
all output modes of Snort. Read the documentation irdtesignatures directory with filenames that begin with
“123-" for information on the different event types.

2.1.2 Stream4

The Stream4 module provides TCP stream reassembly andustatalysis capabilities to Snort. Robust stream
reassembly capabilities allow Snort to ignore "statelest$dcks (which include the types of attacks that Stick and
Snot produce). Stream4 also gives large scale users thtydbitrack many simultaneous TCP streams. Stream4
is set to handle 8192 simultaneous TCP connections in isuttefonfiguration; however, it scales to handle over
100,000 simultaneous connections.

Stream4 can also provide session tracking of UDP conversatiTo enable this in the Snort binary, passable-stream4udp
to configure before compiling. You will also need to enable it in titeam4 configuration.

Stream4 contains two configurable modules: the gletredm4 preprocessor and thstream4 _reassemble prepro-
cessor.

ANOTE

‘ Additional options can be used if Snort is running in inlineae. See Sectidn_L}.2 for more information

Stream4 Format

preprocessor streamd4: [noinspect], [asynchronous_link] , [keepstats [machine|binary]], \
[detect_scans], [log_flushed streams], [detect state problems], \
[disable_evasion_alerts], [timeout <seconds>], [memcap <bytes>], \
[max_sessions <num sessions>], [enforce_state], \
[cache_clean_sessions <num of sessions>], [ttl_limit <co unt>], \

[self_preservation_threshold <threshold>], \
[self_preservation_period <seconds>], \

[suspend_threshold <threshold>], [suspend period <seco nds>], \
[state_protection], [server_inspect limit <bytes>], \
[enable_udp_sessions], [max_udp_sessions <num sessions >\

[udp_ignore_any]

28

Option

Description |

asynchronous _link

Uses state transitions based only on one-sided conveangatio
tracking of acknowledge/sequence numbers).

cache _clean _sessions <num sessions>

Purges this number of least-recently used sessions frosete
sion cache.

detect _scans

Turns on alerts for portscan events.

detect _state _problems

Turns on alerts for stream events of note, such as evasive
packets, data on the SYN packet, and out of window sequ
numbers.

RST
ence

enforce _state

Enforces statefulness so that sessions aren’t picked up
stream.

mid

keepstats

Records session
<logdir >/session.log
output is human readable.

summary information
If no options are specified

in

log flushed _streams

Log the packets that are part of reassembled stream.

disable _evasion _alerts

Turns off alerts for events such as TCP overlap.

timeout <seconds>

Amount of time to keep an inactive stream in the state ta
sessions that are flushed will automatically be picked ujna
if more activity is seen. The default value is 30 seconds.

pble;
ja

memcap <bytes>

Sets the number of bytes used to store packets for reassen

bly

max_sessions <num sessions>

Sets the maximum number of simultaneous sessions.

noinspect

Disables stateful inspection.

ttl _limit <count>

Sets the delta value that will set off an evasion alert.

self _preservation _threshold <threshold>

Set limit on number of sessions before entering s
preservation mode (only reassemble data on the default)po

elf-
It

self _preservation _period <seconds>

Set length of time (seconds) to remain in self-preserval
mode.

tion

suspend _threshold <threshold>

Sets limit on number of sessions before entering suspene
(no reassembly).

nod

suspend _period <seconds>

Sets length of time (seconds) to remain in suspend mode.

server _inspect _limit <bytes>

Restricts inspection of server traffic to this many byted! amt-
other client request is seen (ie: client packet with data).

state _protection

Protects self against DoS attacks.

enable _udp _sessions

Enable UDP session tracking.

max_udp _sessions <num sessions>

The maximum number of UDP sessions to be tracked. Def
is 8192 if UDP sessions are enabled.

ault

udp _ignore _any

Ignore traffic on port without port-specific rules. The resafl
this is that NO rules (include IP only rules) are applied toRJ
traffic that has a source/destination port that is listed pog-

U

specific ruls.

stream4.reassemble Format

preprocessor stream4_reassemble: [clientonly], [server

only], [both], [noalerts], \

[favor_old], [favor_new], [flush_on_alert], \
[flush_behavior random|default|large_window], \
[flush_base <number>], [flush_range <number>], \
[flush_seed <number>], [overlap_limit <number>], \
[ports <portlist>], [emergency ports <portlist>] \

[zero_flushed_packets], [flush_data_diff _size <number

>\

[large_packet_performance]

29

| Option | Description

clientonly Provides reassembly for the client side of a connection
only.

serveronly Provides reassembly for the server side of a connection
only.

both Reassemble for client and server sides of connection.

noalerts Won't alert on events that may be insertion or evasion|at-
tacks.

favor _old Favor old segments based on sequence number over a new
segments.

favor _new Favor new segments based on sequence number over|a old

segments.

flush _on_alert

Flush a stream when an individual packet causes an al

flush _behavior random|default|large _window

Use specified flush behavialefault means use old stati
flush points. large _window means use new larger flug
points. random means use random flush points defined
flush _base, flush _seed andflush _range .

flush _base <number>

Lowest allowed random flush point. The default valug
512 bytes. Only used flush _behavior israndom.

flush _range <number>

Space within random flush points are generated. The
fault value is 1213. Only used fflush _behavior is
random .

flush _seed <number>

Random seed for flush points. The default value] i

computed from Snort PID + time. Only used
flush _behavior israndom.

overlap _limit <number>

Alert when the number of overlapping data bytes reach
threshold.

ports <portlist>

Provides reassembly for a whitespace-separated lig
ports. By default, reassembly is performed for ports
23, 25, 42,53, 80, 110, 111, 135, 136, 137, 139, 143, 4
513, 1443, 1521, and 3306. To perform reassembly fo
ports, usall as the port list.

ert.

h
by

S

de-

£S a

t of

1,

145,
all

emergency _ports <portlist>

Emergency ports are those which we ALWAYS do 1
assembly when in 'self-preservation’ mode. They are u
to have a lowest level when snort is under duress bec
of high traffic rates. The default ports are the same as
the ports option.

e-

sed

ause
for

flush _data _diff _size <number>

minumum size of a packet to zero out the empty space
rebuilt packet.

ina

zero _flushed _packets

Zero out any space that is not filled in when flushing a
built packet.

re-

large _packet _performance

Do not buffer and reassemble consecutive large pac
(larger than twice the flush point). The chances of catch
an attack that spans those large packets is small, comg
to the CPU and memory utilization to copy and re-copy

kets
ing
ared
the

large packet.

Notes

Just setting thetream4 andstream4 _reassemble directives without arguments in tiseort.conf file will set them
up in their default configurations shown in Tabl€l2.2 and #BbB.

Table 2.2: Stream4 Defaults

| Option | Default
session timeoutifneout) 30 seconds
session memory camémcap) 8388608 bytes
stateful inspectionnpinspect) active foinspect disabled)
stream statskéepstats) inactive
state problem alertsiétect _state _problems) inactive @etect _state _problems disabled)
evasion alertsdisable _evasion _alerts) inactive @isable _evasion _alerts enabled)
asynchronous linkagynchronous _link) inactive
log flushed streamdof _flushed _streams) inactive
max TCP sessionsnax_sessions) 8192
session cache purgeathe _clean _sessions) 5
self preservation thresholdg|f _preservation _threshold) | 50 sessions/sec
self preservation period¢lf _preservation _period) 90 seconds
suspend thresholdyspend _threshold) 200 sessions/sec
suspend periods(spend _period) 30 seconds
state protectionsate _protection) inactive
server inspect limitgerver _inspect _limit) -1 (inactive)
UDP session trackingfable _udp _sessions) inactive
max UDP sessionsn@x_udp _sessions) 8192

Table 2.3: stream4eassemble Defaults

| Option | Default
reassemble clientientonly) active
reassemble servesgveronly) inactive
reassemble bottbdth) inactive

reassemble portpgrts)

212325425380110111 135136 137 139 143 4
5131433 1521 3306

145

emergency reassemble pontsrfs)

212325425380110111 135136 137 139 143 4
5131433 1521 3306

145

reassembly alertsalerts) active foalerts disabled)
favor old packetfavor _old) active

favor new packetfvor _new) inactive

flush on alertflush _on_alert) inactive

overlap limit @verlap _limit) -1 (inactive)

large packet performancki@e _packet _performance) | inactive

31

2.1.3 Flow

The Flow tracking module is meant to start unifying the skateping mechanisms of Snort into a single place. As of
Snort 2.1.0, only a portscan detector is implemented, bthiénlong term, many of the stateful subsystems of Snort
will be migrated over to becoming flow plugins. With the irdiaction of flow, this effectively makes the conversation
preprocessor obsolete.

An IPv4 flow is unique when the IP protocap (_proto), source IPgip), source portgport), destination IPdip),
and destination portiport) are the same. Thdport andsport are 0 unless the protocol is TCP or UDP.

Format

preprocessor flow: [memcap <bytes>], [rows <count>], \
[stats_interval <seconds>], [hash <1]|2>]

Table 2.4: Flow Options

| Option | Description |
memcap Number of bytes to allocate.
rows Number of rows for the flow hash table.
stats _interval Interval (in seconds) to dump statistics to STDOUT. Settitni3 to disable.
hash Hashing method to uge.

aThis number can be increased, at the cost of using more memacephance performance. Increasing rows provides a l&a@msh
table.

b1 - hash by byte, 2 - hash by integer (faster, not as much of mcehi@ become diverse). The hash table has a pseudo-ranttom sa
picked to make algorithmic complexity attacks much moréaift.

Example Configuration

preprocessor flow: stats_interval 0 hash 2

2.1.4 Stream5

The Stream5 preprocessor is a target-based TCP reasseroblylarfor Snort. It is intended to replace both the
Stream4 and flow preprocessors, and it is capable of trad@sgions for both TCP and UDP. With Streamb5, the rule
'flow’ and 'flowbits’ keywords are usable with TCP as well as Biraffic.

NOTE
Since Streamb replaces Stream4, both cannot be used siemilisly. Remove the Stream4 and flow contig-
urations from snort.conf when the Stream5 configuratiordea.

Transport Protocols
TCP sessions are identified via the classic TCP "connectidBP sessions are established as the result of a series of

UDP packets from two end points via the same set of ports. |@MBsages are tracked for the purposes of checking
for unreachable and service unavailable messages, wHattieély terminate a TCP or UDP session.

Target-Based
Streamb, like Frag3, introduces target-based actionsdndling of overlapping data and other TCP anomalies. The

methods for handling overlapping data, TCP Timestampsa DatSYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extemssearch with many target operating systems.

32

Stream API

Streamb5 fully supports the Stream API (partly supportedtoge®n4), allowing other protocol normalizers/preprooess
to dynamically configure reassembly behavior as requiretthbyapplication layer protocol, identify sessions that may
be ignored (large data transfers, etc), and update theifigiagtinformation about the session (application protipco
direction, etc) that can later be used by rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, da&edoutside the TCP window, etc are configured via
thedetect _anomalies option to the TCP configuration. Some of these anomaliesetectéd on a per-target basis.
For example, a few operating systems allow data in TCP SYMetacwhile others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global: [track_tcp <yes|no>], [max _tep <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets]

| Option | Description |
track _tcp <yes|no> Track sessions for TCP. The default is "yes”.
max_tcp <num sessions> Maximum simultaneous TCP sessions tracked. The defaylt is
"256000”, maximum is "1052672", minimum is "1".
memcap <num bytes> Memcap for TCP packet storage. The default is "8388608”

(8MB), maximum is "1073741824" (1GB), minimum is
"32768" (32KB).

track _udp <yes|no> Track sessions for UDP. The default is "yes”.

max_.udp <num sessions> Maximum simultaneous UDP sessions tracked. The defadlt is
"128000”, maximum is "1052672", minimum is "1".

track _icmp <yes|no> Track sessions for ICMP. The default is "yes”.

max_icmp <num sessions> Maximum simultaneous ICMP sessions tracked. The default is
"64000”, maximum is "1052672", minimum is "1”.

flush _on _alert Backwards compatibilty. Flush a TCP stream when an aleft is
generated on that stream. The default is set to off.

show_rebuilt _packets Print/display packet after rebuilt (for debugging). Théaildt is
set to off.

Stream5 TCP Configuration

Provides a means on a per IP address target to configure T@R.pohis can have multiple occurances, per policy
that is bound to an IP address or network. One default poliggtroe specified, and that policy is not bound to an IP
address or network.

preprocessor stream5_tcp: [bind_to <ip_addr>], [timeout <number secs>], \
[policy <policy_id>], [min_ttl <number>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect anomalies], \
[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large_packets], \
[ports <client|server|both> <alljnumber [number]*>]

33

| Option

Description |

bind _to <ip _addr>

IP address or network for this policy. The default is set tg. an

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, a
the maximum is "86400” (approximately 1 day).

policy <policy _id>

The Operating System policy for the target O
The policyid can be one of the following
| Policy Name| Operating Systems. |

first Favor first overlapped segment.

last Favor first overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x ar
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

S.

min _ttl <number>

Minimum TTL. The defaultis "1”, the minimum is "1” and th
maximum is "255".

1%

overlap _limit <number>

Limits the number of overlapping packets per session. The
fault is "0” (unlimited), the minimum is "0”, and the maximurj
is "255".

max_window <number>

Maximum TCP window allowed. The default is "0” (unlim
ited), the minimum is "0”, and the maximum is "107372544
(65535 left shift 14). That is the highest possible TCP wimnd
per RFCs. This option is intended to prevent a DoS agd
Stream5 by an attacker using an abnormally large window
using a value near the maximum is discouraged.

require _3whs [<number seconds>]

Establish sessions only on completion of a SYN/SY
ACK/ACK handshake. The default is set to off. The optio
number of seconds specifies a startup timeout. This alloy
grace period for existing sessions to be considered eskegali
during that interval immediately after Snort is started eTde-
fault is "0” (don’t consider existing sessions establishete
minimum is "0”, and the maximum is "86400” (approximate|
1 day).

ly

detect _anomalies

Detect and alert on TCP protocol anomalies. The defaulttig
to off.

se

check _session _hijacking

Check for TCP session hijacking. This check validates tie-h
ware (MAC) address from both sides of the connect — as eg
lished on the 3-way handshake against subsequent packe
ceived on the session. If an ethernet layer is not part of the
tocol stack received by Snort, there are no checks perforr
Alerts are generated (pedéetect _anomalies ' option) for ei-
ther the client or server when the MAC address for one sid
the other does not match. The default is set to off.

tab-
ts re

ned

use _static _footprint _sizes

emulate Stream4 behavior for building reassembled padket.
default is set to off.

dont _store _large _packets

Performance improvement to not queue large packets in
assembly buffer. The default is set to off. Using this opt
may result in missed attacks.

re-
on

ports <client|server|both> <alllnumber(s)>

3fan once in a given config. The default settin

Specify the client, server, or both and list of ports
which to perform reassembly. This can appear m

in
ore

gs

ANOTE

If no options are specified for a given TCP policy, that is tleéadlt TCP policy. If only a bindo option is
used with no other options that TCP policy uses all of the ulefalues.

Stream5 UDP Configuration

Configuration for UDP session tracking. Since there is ngetipased binding, there should be only one occurance of
the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]
| Option | Description |
timeout <num seconds> Session timeout. The default is "30”, the minimum is 1", anhd
the maximum is "86400” (approximately 1 day).
ignore _any _rules Don't process any> any (ports) rules for UDP that attempt to

match payload if there are no port specific rules for the sr¢ or
destination port. Rules that have flow or flowbits will never b
ignored. This is a performance improvement and may result
in missed attacks. Using this does not affect rules that kiok
protocol headers, only those with content, PCRE, or byte|tes
options. The default is "off".

ANOTE

With the ignoreany.rules option, a UDP rule will be ignored except when therenigther port specific rulg
that may be applied to the traffic. For example, if a UDP rulecsiies destination port 53, the 'ignored’ any
-> any rule will be applied to traffic to/from port 53, but NOT tayaother source or destination port. A lis
of rule SIDs affected by this option are printed at Snortstsip.

ANOTE

With the ignoreany.rules option, if a UDP rule that uses afy any ports includes either flow or flowbits
the ignoreany.rules option is effectively pointless. Because of the ptig¢éimpact of disabling a flowbitg
rule, the ignoreany rules option will be disabled in this case.

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is mgebased binding, there should be only one occurance
of the ICMP configuration.

ANOTE

ICMP is currently untested, in minimal code form and is NO@d for use in production networks. It is npt
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

| Option | Description |
timeout <num seconds> Session timeout. The default is "30”, the minimum is "1”, and
the maximum is "86400” (approximately 1 day).

35

Example Configurations

1. This example configuration emulates the default behafiiow and Stream4 (with UDP support enabled). It
is the default configuration in snort.conf.
preprocessor stream5_global: max_tcp 8192, track_tcp yes o\

track_udp yes, track_icmp no \

preprocessor stream5_tcp: policy first, use_static_foot print_sizes
preprocessor stream5_udp: ignore_any_rules

2. This configuration maps two network segments to diffef@8tpolicies, one for Windows and one for Linux,
with all other traffic going to the default policy of Solaris.
preprocessor stream5_global: track tcp yes
preprocessor stream5_tcp: bind to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy i nux
preprocessor stream5_tcp: policy solaris

Alerts

Stream5 uses generator ID 129. It is capable of alerting aigh{) anomalies, all of which relate to TCP anomalies.
There are no anomalies detected relating to UDP or ICMP.

The list of SIDs is as follows:

© N o g ~ w bd

SYN on established session

Data on SYN packet

Data sent on stream not accepting data

TCP Timestamp is outside of PAWS window

Bad segment, overlap adjusted size less than/equal 0
Window size (after scaling) larger than policy allows
Limit on number of overlapping TCP packets reached

Data after Reset packet

2.1.5 sfPortscan

The sfPortscan module, developed by Sourcefire, is designddtect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker idetemmnat types of network protocols or services a host
supports. This is the traditional place where a portscaps@kace. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported byaifiet; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its interatget, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the natutegittmate network communications, negative responses
from hosts are rare, and rarer still are multiple negatigpomses within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negaspanses.

One of the most common portscanning tools in use today is NMagap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to béatiétect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types ofiNap scans:

e TCP Portscan

36

e UDP Portscan

e |P Portscan

These alerts are for oreone portscans, which are the traditional types of scans;hose scans multiple ports on
another host. Most of the port queries will be negative,simost hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy geahs:

e TCP Decoy Portscan
e UDP Decoy Portscan

e |P Decoy Portscan

Decoy portscans are much like the Nmap portscans descrifmdaonly the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactipfiéide the true identity of the attacker.

sfPortscan alerts for the following types of distributedtpoans:

e TCP Distributed Portscan
e UDP Distributed Portscan

e |P Distributed Portscan

These are manyone portscans. Distributed portscans occur when multipttshquery one host for open services.
This is used to evade an IDS and obfuscate command and chostsl.

ANOTE

Negative queries will be distributed among scanning hastsye track this type of scan through the scanned
host.

sfPortscan alerts for the following types of portsweeps:

e TCP Portsweep
e UDP Portsweep
e |IP Portsweep

e ICMP Portsweep

These alerts are for oremany portsweeps. One host scans a single port on multipte.nfsis usually occurs when
a new exploit comes out and the attacker is looking for a $igesgrvice.

ANOTE

The characteristics of a portsweep scan may not result iymegative responses. For example, if an attacker
portsweeps a web farm for port 80, we will most likely not seenynnegative responses.

sfPortscan alerts on the following filtered portscans antspa@eps:

e TCP Filtered Portscan
e UDP Filtered Portscan
e |P Filtered Portscan

e TCP Filtered Decoy Portscan

37

e UDP Filtered Decoy Portscan

e |P Filtered Decoy Portscan

e TCP Filtered Portsweep

e UDP Filtered Portsweep

o |P Filtered Portsweep

e ICMP Filtered Portsweep

e TCP Filtered Distributed Portscan

e UDP Filtered Distributed Portscan

¢ |P Filtered Distributed Portscan
“Filtered” alerts indicate that there were no network esrfCMP unreachables or TCP RSTS) or responses on closed
ports have been suppressed. It's also a good indicator ofhehthe alert is just a very active legitimate host. Active

hosts, such as NATSs, can trigger these alerts because thesend out many connection attempts within a very small
amount of time. A filtered alert may go off before responsesaifthe remote hosts are received.

sfPortscan only generates one alert for each host pair istigmeduring the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any opetsbat were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert haslteggered. Open port events are not individual alerts, but
tags based on the orginal scan alert.

sfPortscan Configuration

You may want to use the following line in yognort.conf to disable evasion alerts within stream4 because some
scan packets can cause these alerts to be generated:

preprocessor stream4: disable_evasion_alerts

Use of the Flow preprocessor is required for sfPortscanwkives portscan direction in the case of connectionless
protocols like ICMP and UDP. You should enable the Flow poepssor in yousnort.conf by using the following:

preprocessor flow: stats_interval 0 hash 2
The parameters you can use to configure the portscan module ar

1. proto <protocol>
Available options:

e TCP
e UDP
e IGMP
ip _proto

e all

2. scantype <scantype>
Available options:

e portscan
e portsweep
e decoy _portscan

38

e distributed _portscan
e all

3. sensdevel <level>
Available options:

e low - “Low” alerts are only generated on error packets sent froetarget host, and because of the nature
of error responses, this setting should see very few falséves. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responsés sé&tting is based on a static time window of
60 seconds, afterwhich this window is reset.

e medium - “Medium” alerts track connection counts, and so will gexterfiltered scan alerts. This setting
may false positive on active hosts (NATSs, proxies, DNS cacht), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

e high - “High” alerts continuously track hosts on a network usingjrae window to evaluate portscan
statistics for that host. A "High” setting will catch somewl scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitely igiguire the user to tune sfPortscan.

4. watchip <ipl|ip2/cidr[:[port |port2-port3]] >

Defines which IPs, networks, and specific ports on those liostgtch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionaitys pre specified after the IP address/CIDR using a
colon and can be either a single port or a range denoted byha tRsor networks not falling into this range are
ignored if this option is used.

5. ignorescanners<ip_list>
Ignores the source of scan aleris.list can be a comma separated list of IP addresses or IP addre#sgs u
CIDR notation.

6. ignorescanned<ip_list>
Ignores the destination of scan aleris. list can be a comma separated list of IP addresses or IP addresses
using CIDR notation.

7. lodfile <file>

This option will output portscan events to the file specifidfile does not contain a leading slash, this file
will be placed in the Snort config dir.

Format

preprocessor sfportscan: proto <protocols> \

scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscan|all>\

sense_level <low|medium|high> watch_ip <IP or IP/CIDR> ig nore_scanners <IP list>\
ignore_scanned <IP list> logfile <path and filename>

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan: proto { all } \
scan_type { all }\
sense_level { low }

Figure 2.6: sfPortscan Preprocessor Configuration

sfPortscan Alert Output
Unified Output In order to get all the portscan information logged with tierta snort generates a pseudo-packet

and uses the payload portion to store the additional porisdarmation of priority count, connection count, IP count
port count, IP range, and port range. The characteristitdseopacket are:

39

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL ==

Other than that, the packet looks like the IP portion of thekpathat caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload sizeheopacket are equal to the length of the additional
portscan information that is logged. The size tends to beratd 00 - 200 bytes.

Open port alerts differ from the other portscan alerts, beeapen port alerts utilize the tagged packet output system
This means that if an output system that doesn't print tagg@ttets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload anda&iostthe port that is open.

The sfPortscan alert output was designed to work with unggezket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional infofarain the IP payload using the above packet characteristics

Log File Output Log file output is displayed in the following format, and eaipled further below:

Time: 09/08-15:07:31.603880

event id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additi@uged packet(s) will be appended:

Time: 09/08-15:07:31.603881

event ref: 2

192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Eventid/Event_ref
These fields are used to link an alert with the correspondpey Port tagged packet

2. Priority Count
Priority Count keeps track of bad responses (resets, unreachables). ghner e priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src Qr dbhis is accurate for
connection-based protocols, and is more of an estimatetf@mr®. Whether or not a portscan was filtered is
determined here. High connection count and low priorityrdonould indicate filtered (no response received
from target).

4. |P Count

IP Count keeps track of the last IP to contact a host, and imengs the count if the next IP is different. For
one-to-one scans, this is a low number. For active hoststimisber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range
This field changes depending on the type of alert. Portswemg-{0-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and inangsribis number when that changes. We use this
count (along with IP Count) to determine the difference letwone-to-one portscans and one-to-one decoys.

40

Tuning sfPortscan

The most important aspect in detecting portscans is tumiagietection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore_scanners, and ignorescanned options.

It's important to correctly set these options. Twech _ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they wamvezich. If nowatch _ip is defined, sfPortscan will
watch all network traffic.

Theignore _scanners andignore _scanned options come into play in weeding out legitimate hosts that a
very active on your network. Some of the most common examgurleNAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generatepfadéieves for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the typ&ea that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweemesjehen add it to th@nore _scanners option.

If the host is generating portscan alerts (and is the hostishaeing scanned), add it to tlignore _scanned
option.

2. Filtered scan alerts are much more prone to false positive

When determining false positives, the alert type is veryantgnt. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be mucé suspicious of filtered portscans. Many times
this just indicates that a host was very active during the firriod in question. If the host continually generates
these types of alerts, add it to tlyaore _scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count Port Count, IP Range, and Port Range to
determine false positives.

The portscan alert details are vital in determining the saaffa portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis ilgasg) a scope level and confidence level, but
for now the user must manually do this. The easiest way toriehite false positives is through simple ratio
estimations. The following is a list of ratios to estimataldhe associated values that indicate a legimite scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connectiondp&or portscans,
this ratio should be high, the higher the better. For poreggethis ratio should be low.

Port Count/IP Count: This ratio indicates an estimated average of ports condéaiger IP. For portscans, this
ratio should be high and indicates that the scanned host's pere connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning hasinected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connectionppe. For
portscans, this ratio should be low. This indicates thaheannection was to a different port. For portsweeps,
this ratio should be high. This indicates that there wereywamnections to the same port.

The reason tha®riority Count is not included, is because the priority count is includethi@ connection
count and the above comparisons take that into considarafibe Priority Count play an important role in
tuning because the higher the priority count the more likiely a real portscan or portsweep (unless the host is
firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyssd't have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensjtleitel, but it's also important that the portscan detection
engine generate alerts that the analyst will find inforneativhe low sensitivity level only generates alerts based
on error responses. These responses indicate a portscémeaalérts generated by the low sensitivity level are
highly accurate and require the least tuning. The low siitgitevel does not catch filtered scans; since these
are more prone to false positives.

41

2.1.6 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmentedde into a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. I1aim4 is enabled, it will only process client-side traffic. By
default, it runs against traffic on ports 111 and 32771.

Table 2.5: RPC Decoder Options

| Option | Description |
alert _fragments Alert on any fragmented RPC record.
no_alert _multiple _requests Don't alert when there are multiple records in one packet.
no_alert _large _fragments Don't alert when the sum of fragmented records exceeds ockepa
no_alert _incomplete Don't alert when a single fragment record exceeds the sizmefpacket,
Format

preprocessor rpc_decode: <ports> [alert fragments] \
[no_alert_multiple_requests] [no_alert_large_fragmen ts] \
[no_alert_incomplete]

2.1.7 Performance Monitor

This preprocessor measures Snort’s real-time and theatatiaximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, eitherstaei which prints statistics to the console window or
“file” with a file name, where statistics get printed to the @fied file name. By default, Snort’s real-time statistics
are processed. This includes:

e Time Stamp

e Drop Rate

e Mbits/Sec (wire) [duplicated below for easy comparisortwmather rates]

e Alerts/Sec

e K-Pkts/Sec (wire) [duplicated below for easy comparisothwither rates]

e Avg Bytes/Pkt (wire) [duplicated below for easy comparisath other rates]

e Pat-Matched [percent of data received that Snort procésgegtern matching]

e Syns/Sec

e SynAcks/Sec

e New Sessions Cached/Sec

e Sessions Del fr Cache/Sec

e Current Cached Sessions

e Max Cached Sessions

e Stream Flushes/Sec

e Stream Session Cache Faults

e Stream Session Cache Timeouts

42

e New Frag Trackers/Sec

e Frag-Completes/Sec

e Frag-Inserts/Sec

e Frag-Deletes/Sec

e Frag-Auto Deletes/Sec [memory DoS protection]

e Frag-Flushes/Sec

e Frag-Current [number of current Frag Trackers]

e Frag-Max [max number of Frag Trackers at any time]

e Frag-Timeouts

e Frag-Faults

e Number of CPUs [*** Only if compiled with LINUXSMP *** the next three appear for each CPU]
e CPU usage (user)

e CPU usage (sys)

e CPU usage (Idle)

e Mbits/Sec (wire) [average mbits of total traffic]

e Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

e Mbits/Sec (ipreass) [average mbits Snort injects afteedssembly]
e Mbits/Sec (tcprebuilt) [average mbits Snort injects astieeam4 reassembly]
e Mbits/Sec (applayer) [average mbits seen by rules and pobttecoders]
e Avg Bytes/Pkt (wire)

e Avg Bytes/Pkt (ipfrag)

e Avg Bytes/Pkt (ipreass)

e Avg Bytes/Pkt (tcprebuilt)

e Avg Bytes/Pkt (applayer)

o K-Pkts/Sec (wire)

e K-Pkts/Sec (ipfrag)

e K-Pkts/Sec (ipreass)

e K-Pkts/Sec (tcprebuilt)

e K-Pkts/Sec (applayer)

e Total Packets Received

e Total Packets Dropped (not processed)

e Total Packets Blocked (inline)
The following options can be used with the performance nawnit

e flow - Prints out statistics about the type of traffic and protatistributions that Snort is seeing. This option
can produce large amounts of output.

43

e events - Turns on event reporting. This prints out statistics ahtriumber of signatures that were matched
by the setwise pattern matchewop-qualified evenjsand the number of those matches that were verified with
the signature flaggg(alified evenfs This shows the user if there is a problem with the rule sat they are
running.

e max- Turns on the theoretical maximum performance that Sndctitates given the processor speed and current
performance. This is only valid for uniprocessor machirs@sse many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

e console - Prints statistics at the console.

e file - Prints statistics in a comma-delimited format to the filattis specified. Not all statistics are output to
this file. You may also usenortfile which will output into your defined Snort log directory. Bodifithese
directives can be overridden on the command line with-Zzher --perfmon-file options.

e pkicnt - Adjusts the number of packets to process before checkinthéotime sample. This boosts perfor-
mance, since checking the time sample reduces Snort’srpafce. By default, this is 10000.

e time - Represents the number of seconds between intervals.

e accumulate orreset - Defines which type of drop statistics are kept by the opegasiystem. By default,
reset is used.

e atexitonly - Dump stats for entire life of Snort.

Examples

preprocessor perfmonitor: time 30 events flow file stats.p rofile max \
console pktcnt 10000

preprocessor perfmonitor: time 300 file /var/tmp/snortst at pktcnt 10000

2.1.8 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applicati@isen a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Ingpearks on both client requests and server responses.

The current version of HTTP Inspect only handles statelessgssing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if péslare not reassembled. This works fine when there is
another module handling the reassembly, but there aredliimits in analyzing the protocol. Future versions will have

a stateful processing mode which will hook into various seasbly modules.

HTTP Inspect has a very “rich” user configuration. Users camfigure individual HTTP servers with a variety of
options, which should allow the user to emulate any type df server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration optioret tihetermine the global functioning of HTTP Inspect. The
following example gives the generic global configuratiomfat:

Format

preprocessor http_inspect: global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you'll getearor if you try otherwise.

44

Configuration

1. iis _unicode _map <map.filename > [codemap <integer >]

This is the globaiis _unicode _mapfile. Theiis _unicode _mapis a required configuration parameter. The map
file can reside in the same directorysasrt.conf or be specified via a fully-qualified path to the map file.

Theiis _unicode _mapfile is a Unicode codepoint map which tells HTTP Inspect whioHepage to use when
decoding Unicode characters. For US servers, the codemespaly 1252.

A Microsoft US Unicode codepoint map is provided in the Srsontirceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is availableoissupplied with Snort to generate
custom Unicodeaps--ms _unicode _generator.c , which is available éittp://www.snort.org/dl/contrib/

ANOTE

Remember that this configuration is for the global IIS Unieadap, individual servers can reference their
own IS Unicode map.

2. detect _anomalous _servers

This global configuration option enables generic HTTP sdarnadfic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don't turn this on if you dolnave a default server configuration that
encompasses all of the HTTP server ports that your userstraggiess. In the future, we want to limit this to
specific networks so it's more useful, but for right now, timispects all network traffic.

3. proxy _alert

This enables global alerting on HTTP server proxy usage. @yfiguring HTTP Inspect servers and enabling
allow _proxy _use, you will only receive proxy use alerts for web users thahdnasing the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure wekypuse, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy envimamts. Blind firewall proxies don’t count.

Example Global Configuration

preprocessor http_inspect: global iis_unicode_map unico de.map 1252

Server Configuration

There are two types of server configurations: default andgddress.

Default This configuration supplies the default server configurefiis any server that is not individually configured.
Most of your web servers will most likely end up using the déffaonfiguration.

Example Default Configuration

preprocessor http_inspect_server: server default profil e all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server: server 10.1.1.1 profi le all ports { 80 }

45

http://www.snort.org/dl/contrib/

Server Configuration Options

Important: Some configuration options have an argumented’pr ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect al not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only thierting functionality. In other words, whether set to ‘yes
or 'no’, HTTP normalization will still occur, and rules basen HTTP traffic will still trigger.

1. profle <all |apache Jis >

Users can configure HTTP Inspect by using pre-defined HTTWweserofiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server, laubat required for proper operation.

There are three profiles available: all, apache, and iis.

1-A. all

Theall profile is meant to normalize the URI using most of the comnnichk$ available. We alert on the
more serious forms of evasions. This is a great profile foed@ig all types of attacks, regardless of the
HTTP serverprofile all sets the configuration options described in Table 2.6.

Table 2.6: Options for the “all” Profile

| Option | Setting
flow_depth 300
chunk encoding alert on chunks larger than 500000 bytes
iis_unicodemap codepoint map in the global configuration
ascii decoding on, alert off
multiple slash on, alert off

directory normalization on, alert off
apache whitespace on, alert off
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alerton
iis unicode codepoints| on, alert on

iis backslash on, alert off
iis delimiter on, alert off
webroot on, alert on
nonstrict URL parsing| on
tab_uri_delimiter is set

1-B. apache

Theapache profile is used for Apache web servers. This differs fromithe profile by only accepting
UTF-8 standard Unicode encoding and not accepting badietaas legitimate slashes, like IIS does.
Apache also accepts tabs as whitespamefile apache sets the configuration options described in

TableZY.

1-C. iis
Theiis profile mimics IIS servers. So that means we use IIS Unicodiemps for each server, %u
encoding, bare-byte encoding, double decoding, backetas#c. profile iis sets the configuration

options described in Table2.8.
The default options used by HTTP Inspect do not use a profdeaamdescribed in Table2.9.

46

Table 2.7: Options for thapache Profile

Option |

Setting

flow_depth

300

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
apache whitespace on, alerton
utf_8 encoding on, alert off
non.strict url parsing | on

tab uri_delimiter is set

Table 2.8: Options for thizs Profile

Option |

Setting

flow_depth

300

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
double decoding on, alert on
%u decoding on, alert on
bare byte decoding on, alert on
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alert on
apache whitespace on, alert on
nonstrict URL parsing| on

Table 2.9: Default HTTP Inspect Options

| Option | Setting
port 80
flow_depth 300

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding

on, alert off

utf_8 encoding on, alert off
multiple slash on, alert off
directory normalization on, alert off
webroot on, alert on
iis backslash on, alert off
apache whitespace on, alert off
iis delimiter on, alert off
nonstrict URL parsing| on

47

Profiles must be specified as the first server option and cdrencombined with any other options except:
e ports
e iis _unicode _map
e allow _proxy _use
o flow _depth
e no_alerts
e inspect _uri _only
e oversize _dir _length

These options must be specified afterpiwile option.

Example

preprocessor http_inspect_server; server 1.1.1.1 profil e all ports { 80 3128 }

. ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode on theRH3@arver. Encrypted traffic (SSL) cannot be
decoded, so adding port 443 will only yield encoding falssifpzes.

. lis _unicode _map <map.filename > codemap <integer >

The IIS Unicode map is generated by the programunigodegenerator.c. This program is located on the
Snort.org web site éittp://www.snort.org/dl/contrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get theifsp&nicode mappings for an 1S web server,

you run this program on that server and use that Unicode m#psrconfiguration.

When using this option, the user needs to specify the filedbatains the 11S Unicode map and also specify
the Unicode map to use. For US servers, this is usually 125PtH& msunicodegenerator program tells you
which codemap to use for you server; it's the ANSI code pa@eL 6an select the correct code page by looking
at the available code pages that theummicodegenerator outputs.

. flow _depth <integer >

This specifies the amount of server response payload todhspleis option significantly increases IDS perfor-

mance because we are ignoring a large part of the netwoffict(efTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic andadl $low_depth value may cause false negatives in
some of these rules. Most of these rules target either theRHi@ader, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers ardyusnder 300 bytes long, but your mileage may

vary.

This value can be set from -1 to 1460. A value of -1 causes $mayhore all server side traffic for ports defined
in ports . Inversely, a value of O causes Snort to inspect all HTTPesgrayloads defined iports (note that
this will likely slow down IDS performance). Values abovedl tSnort the number of bytes to inspect in the
first packet of the server response.

. ascii <yes|no>
Theasci decode option tells us whether to decode encoded ASCII chdesa %2f =/, %2e = ., etc. Itis

normal to see ASCII encoding usage in URLSs, so it is recomraétitht you disable HTTP Inspect alerting for
this option.

. utf 8 <yes|no>

Theutf-8 decode option tells HTTP Inspect to decode standard UTFi8dde sequences that are in the URI.

This abides by the Unicode standard and only uses % encodparhe uses this standard, so for any Apache
servers, make sure you have this option turned on. As fotiladgryou may be interested in knowing when you

have a UTF-8 encoded URI, but this will be prone to false pestas legitimate web clients use this type of

encoding. Whentf _8 is enabled, ASCII decoding is also enabled to enforce cbfuectioning.

48

http://www.snort.org/dl/contrib/

10.

11.

12.

13.

14.

15.

u-encode <yes |no>

This option emulates the 1IS %u encoding scheme. How the %uoding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 charactkes%uxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value castrdefinitely be ASCII. An ASCII character is

encoded like %u002f = /, %u002e = ., etc. If naiisicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not awarg ¢égitimate clients that use this encoding. So
it is most likely someone trying to be covert.
bare _byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII chara@s valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haviee encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret nanestrd encodings correctly.

The alert on this decoding should be enabled, because theredegitimate clients that encode UTF-8 this
way since it is non-standard.

base36 <yes |no>

This is an option to decode base36 encoded chars. This aptiased on of info frorhttp://iwww.yK.rm.or.|p/ shikap/patch

If %u encoding is enabled, this option will not work. You hawveause thebase36 option with theutf _8 option.
Don't use the %u option, because base36 won't work. Wiase36 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

iis _unicode <yes |no>

Theiis _unicode option turns on the Unicode codepoint mapping. If there iisionicodemap option spec-
ified with the server configiis _unicode uses the default codemap. Tlge _unicode option handles the
mapping of non-ASCII codepoints that the IIS server accaptsdecodes normal UTF-8 requests.

You should alert on thiés _unicode option , because itis seen mainly in attacks and evasion attemgtenW
iis _unicode is enabled, ASCIl and UTF-8 decoding are also enabled taremfmrrect decoding. To alert on
UTF-8 decoding, you must enable also enaltie 8 yes .

double _decode <yes|no> Thedouble _decode option is once again 11S-specific and emulates IS function-
ality. How this works is that IIS does two passes through #piest URI, doing decodes in each one. In the
first pass, it seems that all types of iis encoding is done8uthicode, ascii, bare byte, and %u. In the second
pass, the following encodings are done: ascii, bare by %m. We leave out utf-8 because | think how this

works is that the % encoded utf-8 is decoded to the Unicodeibythe first pass, and then UTF-8 is decoded in
the second stage. Anyway, this is really complex and addsdbdifferent encodings for one character. When

double _decode is enabled, so ASCII is also enabled to enforce correct dagod

non_rfc _char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RFarglare used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we cahafhethat. Please use this option with care,
because you could configure it to say, alert on all */’ or sdwrgg like that. It's flexible, so be careful.

multi _slash <yes |no>

This option normalizes multiple slashes in a row, so somethke: “foo/////////bar’ get normalized to “foo/bar.”

If you want an alert when multiple slashes are seen, thenganefivith ayes ; otherwise, useo.

iis _backslash <yes [no>

Normalizes backslashes to slashes. This is again an ||Sationul So a request URI of “/fodar” gets normal-
ized to “/foo/bar.”

directory <yes |no>
This option normalizes directory traversals and selfref¢ial directories.
The directory:

ffoolfake_dir/../bar

49

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

16.

17.

18.

19.

20.

21.

22.

23.

gets normalized to:
ffoolbar

The directory:
ffool./bar

gets normalized to:
[foo/bar

If you want to configure an alert, specijgs, otherwise, specifyio. This alert may give false positives, since
some web sites refer to files using directory traversals.
apache _whitespace <yes |[no>

This option deals with the non-RFC standard of using tab fepace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alertthimnoption may be interesting, but may also be
false positive prone.

iis _delimiter <yes [no>

This started out being 11S-specific, but Apache takes thisstandard delimiter was well. Since this is common,
we always take this as standard since the most popular webrseaccept it. But you can still get an alert on
this option.

chunk _length <non-zero positive integer >

This option is an anomaly detector for abnormally large dhsimes. This picks up the Apache chunk encoding
exploits, and may also alert on HTTP tunneling that uses kleacoding.

no_pipeline _req

This option turns HTTP pipeline decoding off, and is a perfance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this optiondbled, pipeline requests are not decoded and ana-
lyzed per HTTP protocol field. It is only inspected with thengdc pattern matching.

non _strict

This option turns on non-strict URI parsing for the brokenyvia which Apache servers will decode a URI.
Only use this option on servers that will accept URIs likestfiget /index.html alsjdfk alsj |j aj la jsj\1". The
non.strict option assumes the URI is between the first and sequamkseven if there is no valid HTTP identifier
after the second space.

allow _proxy _use

By specifying this keyword, the user is allowing proxy usethis server. This means that no alert will be
generated if theroxy _alert global keyword has been used. If the proadert keyword is not enabled, then
this option does nothing. Thalow _proxy _use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

no_alerts
This option turns off all alerts that are generated by the ATiispect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

oversize _dir _length <non-zero positive integer >

This option takes a non-zero positive integer as an argunigm argument specifies the max char directory
length for URL directory. If a url directory is larger thanishargument size, an alert is generated. A good
argument value is 300 characters. This should limit thetsterIDS evasion type attacks, like whisker -i 4.

50

24. inspect _uri _only

This is a performance optimization. When enabled, only tid portion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the wihcks, you'll catch most of the attacks. So if
you need extra performance, enable this optimization.irtijgortant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obviougsithe URI is only inspected with
uricontent rules, and if there are none available, then there is notioifmgspect.

For example, if we have the following rule set:
alert tcp any any -> any 80 (msg:"content”; content: "foo";)

and the we inspect the following URI:
get /foo.htm http/1.0\rA\n\r\n

No alert will be generated whemspect _uri _only is enabled. Thaspect _uri _only configuration turns off
all forms of detection excepticontent inspection.

25. webroot <yes|no>

This option generates an alert when a directory traversaktses past the web server root directory. This
generates much fewer false positives than the directorpopbecause it doesn’t alert on directory traversals
that stay within the web server directory structure. It oalgrts when the directory traversals go past the web
server root directory, which is associated with certain \w#hcks.

26. tab _uri _delimiter

This option turns on the use of the tab character (0x09) adlimitier for a URI. Apache accepts tab as a
delimiter; IIS does not. For 1IS, a tab in the URI should bateel as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space char@g@0)precedes it. No argument is specified.

Examples

preprocessor http_inspect_server: server 10.1.1.1 \
ports { 80 3128 8080 } \
flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { 0x00 } \
flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

51

preprocessor http_inspect_server: server default \
profile all \
ports { 80 8080 }

2.1.9 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applicati®iven a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark thev@omd, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saatststtween individual packets. However maintaining
correct state is dependent on the reassembly of the clidéatdithe stream (ie, a loss of coherent stream data results
in a loss of state).

Configuration

SMTP has the usual configuration items, suclp@s andinspection _type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encryptéittcan be ignored, which improves performance. In
addition, regular mail data can be ignored for an additigreaformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relatigaife to do and can improve the performance of data inspection

The configuration options are described below:

1. ports { <port> [<port>] ... }
This specifies on what ports to check for SMTP data. Typicdhis will include 25 and possibly 465, for
encrypted SMTP.

2. inspection _type <stateful | stateless>
Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for mthr@n one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCBYOx0

all checks all commands
none turns off normalization for all commands.
cmds just checks commands listed with themalize _cmds parameter.

4. ignore _data
Ignore data section of mail (except for mail headers) wheegssing rules.

5. ignore _tls _data
Ignore TLS-encrypted data when processing rules.

6. max.command.line _len <int>
Alert if an SMTP command line is longer than this value. Alxseof this option or a "0” means never alert on
command line length. RFC 2821 recommends 512 as a maximumaanrhline length.

7. maxheader _line _len <int>
Alert if an SMTP DATA header line is longer than this value.s8imce of this option or a "0” means never alert
on data header line length. RFC 2821 recommends 1024 as anaxdata header line length.

8. maxresponse _line _len <int>

Alert if an SMTP response line is longer than this value. Alegeof this option or a "0” means never alert on
response line length. RFC 2821 recommends 512 as a maxingponge line length.

52

10.

alt _maxcommandline _len <int> { <cmd> [<cmd>] }
Overridesmax_command.line _len for specific commands.

no_alerts
Turn off all alerts for this preprocessor.

11. invalid _cmds { <Space-delimited list of commands> }
Alert if this command is sent from client side. Default is anpy list.

12. valid _cmds { <Space-delimited list of commands> }
List of valid commands. We do not alert on commands in this Fefault is an empty list, but preprocessor
has this list hard-codedf ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN
EVFY EXPN} { HELO HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX (BU
} { STARTTLS TICK TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STAE } { XADR XAUTH
XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR}

13. alert _unknown _cmds
Alert if we don’t recognize command. Default is off.

14. normalize _cmds { <Space-delimited list of commands> }
Normalize this list of commands Default{SRCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }
Enable/disable xlink2state alert. Drop if alerted. Defauénable .

16. print _cmds
List all commands understood by the preprocessor. Thisarwbally printed out with the configuration because
it can print so much data.

Example

preprocessor SMTP; \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

Default

preprocessor SMTP; \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \

53

alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note

RCPT TO:andMAIL FROM:are SMTP commands. For the preprocessor configuration aireeyeferred to as RCPT
and MAIL, respectively. Within the code, the preprocessdually maps RCPT and MAIL to the correct command
name.

2.1.10 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and gesvstateful inspection capability for both FTP and
Telnet data streams. FTP/Telnet will decode the streamtifgisng FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works ondlietit requests and server responses.

FTP/Telnet has the capability to handle stateless pramgssieaning it only looks for information on a packet-by-
packet basis.

The defaultis to run FTP/Telent in stateful inspection madeaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar bat of HTTP Inspect (Sde21.8). Users can configure
individual FTP servers and clients with a variety of optiowkich should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four arebconfiguration: Global, Telnet, FTP Client, and FTP

Server.

ANOTE

Some configuration options have an argumeryesf or no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or Adte presence of the option indicates the option
itself is on, while theyes/no argument applies to the alerting functionality associatél that option.

Global Configuration

The global configuration deals with configuration optionatttietermine the global functioning of FTP/Telnet. The
following example gives the generic global configuratiomfat:

Format
preprocessor ftp_telnet: global \
inspection_type stateful \

encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you'll getearor if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas dijcwation.

Configuration

1. inspection _type
This indicates whether to operate in stateful or statelesdem

54

2. encrypted _traffic <yes|no >
This option enables detection and alerting on encryptedefeind FTP command channels.

ANOTE

Wheninspection _type is in stateless mode, checks for encrypted traffic will ocouevery packet, wheregs
in stateful mode, a particular session will be noted as grted/and not inspected any further.

3. check _encrypted

Instructs the the preprocessor to continue to check an ptremhsession for a subsequent command to cease
encryption.

Example Global Configuration

preprocessor ftp_telnet: global inspection_type statefu | encrypted_traffic no

Telnet Configuration

The telnet configuration deals with configuration optioret tthetermine the functioning of the Telnet portion of the
preprocessor. The following example gives the generietatonfiguration format:

Format

preprocessor ftp_telnet_protocol: telnet \
ports { 23 } \
normalize \
ayt_attack thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and syesa instances will override previously set values.

Configuration

1. ports {<port > [<port >< ...>]}
This is how the user configures which ports to decode as tehfét. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 ivbe included.

2. normalize

This option tells the preprocessor to normalize the telradfit by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the teldetcode preprocessor. Rules written with 'raw’ content@mti
will ignore the normailzed buffer that is created when thagion is in use.

3. ayt _attack _thresh < number >
This option causes the preprocessor to alert when the nunfbewnsecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applicetide the mode is stateful.

4. detect _anomalies

In order to support certain options, Telnet supports subtiagon. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (sgbtietion end). However, certain implementa-

tions of Telnet servers will ignore the SB without a cooresing SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet proto¢béarontrol connection, it is also susceptible to

this behavior. Theletect _anomalies option enables alerting on Telnet SB without the correspun8E.

55

Example Telnet Configuration

preprocessor ftp_telnet_protocol: telnet ports { 23 } norm alize ayt attack thresh 6

FTP Server Configuration

There are two types of FTP server configurations: defaultanidP address.

Default This configuration supplies the default server configuratar any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usthg default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: ftp server default por ts { 21 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: ftp server 10.1.1.1 ports {21} ftp_cmds { XPWD XCWD }

FTP Server Configuration Options

1. ports {<port > [<port >< ...>]}
This is how the user configures which ports to decode as FTRm@omd channel traffic. Typically port 21 will
be included.

2. print _cmds
During initialization, this option causes the preprocessrint the configuration for each of the FTP commands
for this server.

3. ftp _emds {cmdcmd}
The preprocessor is configured to alert when it sees an FThemah that is not allowed by the server.

This option specifies a list of additional commands allowgdHis server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the use okt commands identified in RFC 775, as
well as any additional commands as needed.

For example:
ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

4. def _max_param _len <number >
This specifies the default maximum allowed parameter lefgytn FTP command. It can be used as a basic
buffer overflow detection.

5. alt _maxparam_len <number> {cmdcmd}

This specifies the maximum allowed parameter length for ffeeified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USBRmand — usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_ max_param_len 16 { USER }

56

6. chk_str fmt {cmdcmd}
This option causes a check for string format attacks in tleeifipd commands.

7. cmd.validity cmd < fmt >
This option specifies the valid format for parameters of @gigommand.
fmt must be enclosed ir>’s and may contain the following:

| Value | Description

int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char_chars Parameter must be a single character, oneloérs
date_datefmt Parameter follows format specified, where:

Number

C Character

(l optional format enclosed

| OR

{} choice of options

other | literal (ie, . +-)
string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
. One of choices enclosed within, separated by
I Optional value enclosed within

Examples of the cmdalidity option are shown below. These examples are theuttafhecks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rjit»>
cmd_validity PORT < host_port >

A cmd.validity line can be used to override these defaults andidraacheck for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing.

While not part of an established standard, certain FTP seageept MDTM commands that set the modification
time on a file. The most common among servers that do, acceptaf using YYYYMMDDHHmMmss[.uuul].
Some others accept a format using YYYYMMDDHHmmss[+—-]TZrf@t. The example above is for the first
case (time format as specified in http://www.ietf.org/int-drafts/draft-ietf-ftpext-mist-16.txt)

To check validity for a server that uses the TZ format, usediiewing:
cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-n[n]]] str ing >

8. telnet _cmds <yes|no>

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

57

9. data _chan

This option causes the rest of snort (rules, other prepemesyto ignore FTP data channel connections. Using
this option means tha&ttO INSPECTION other than TCP state will be performed on FTP data transfirs.
can be used to improve performance, especially with largerfinsfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client camfigions has two types: default, and by IP address.

Default This configuration supplies the default client configunatior any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usitige default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: ftp client default bou nce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: ftp client 10.1.1.1 bo unce yes max_resp_len 500

FTP Client Configuration Options

1. maxresp _len <number >

This specifies the maximum allowed response length to an BRPr@and accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yesjno >

This option turns on detection and alerting of FTP bounccitt. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not matbloghof the client.

3. bounce _to < CIDR,[port |portlow,porthi] >

When the bounce option is turned on, this allows the PORT canahio use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alértan be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:
e Allow bounces to 192.162.1.1 port 20020 — ie, the usBQRT 192,168,1,1,78,52
bounce to { 192.168.1.1,20020 }

e Allow bounces to 192.162.1.1 ports 20020 through 20040 thie,use ofPORT 192,168,1,1,78xx
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }
e Allow bouncesto 192.162.1.1 port 20020 and 192.168.1.220630.
bounce_to { 192.168.1.1,20020 192.168.1.2,20030}

4. telnet _cmds <yesjno >

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

58

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol: telnet \
normalize \
ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.
Set CWD to allow parameter length of 200
MODE has an additional mode of Z (compressed)
Check for string formats in USER & PASS commands
Check MDTM commands that set modification time on the file.
preprocessor ftp_telnet_protocol: ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >\
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_ cmds yes \
data_chan

preprocessor ftp_telnet_protocol: ftp client default \
max_resp_len 256 \
bounce yes \
telnet cmds yes

2.1.11 SSH

The SSH preprocessor detects the following exploits: GebCRC 32, Secure CRT, and the Protocol Mismatch
exploit.

Both Gobbles and CRC 32 attacks occur after the key exchamgkeare therefore encrypted. Both attacks involve
sending a large payload (20kb+) to the server immediatédy #fie authentication challenge. To detect the attacks, th
SSH preprocessor counts the number of bytes transmittée teetrver. If those bytes exceed a predefined limit within
a predefined number of packets, an alert is generated. Siobbl& only effects SSHv2 and CRC 32 only effects
SSHv1, the SSH version string exchange is used to distihghésattacks.

The Secure CRT and protocol mismatch exploits are obsex\adibre the key exchange.

Configuration

By default, all alerts are enabled and the preprocessokshesaffic on port 22.

The available configuration options are described below.

1. server _ports {<port > [<port >< ...>]}
This option specifies which ports the SSH preprocessor shinspect traffic to.

2. maxencrypted _packets < number >

Specifies the number of unanswered packets to allow befertra on Gobbles or CRC 32. In Gobbles or CRC
32, several large packets will be transmitted immediatifr she authentication challenge. marcryptedpackets
should be used in combination with makent bytes.

59

3. maxclient _bytes < number >

The maximum number of bytes allowed to be transferred acr@ssencryptedpackets packets before alerting
on Gobbles or CRC 32.

4. autodetect
Attempt to automatically detect SSH.

5. disable _gobbles
Disables checking for the Gobbles exploit.
6. disable _sshlcrc32
Disables checking for the CRC 32 exploit.
7. disable _srvoverflow
Disables checking for the Secure CRT exploit.
8. disable _protomismatch
Disables checking for the Protocol Mismatch exploit.

9. disable _badmsgdir

Disable alerts for traffic flowing the wrong direction. Fostance, if the presumed server generates client traffic,
or if a client generates server traffic.

10. disable _paysize
Disables alerts for invalid payload sizes.

11. disable _recognition
Disable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After mbgnt packets is reached, the preprocessor will stop pro-
cessing traffic for a given session. If Gobbles or CRC 32 fplssitive, try increasing the number of required client
bytes with maxclient bytes.

Examples/Default Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 byi#sin 20 encrypted packets for the Gobbles/CRC32
exploits.

preprocessor ssh: server ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20

2.1.12 DCE/RPC

The dcerpc preprocessor detects and decodes SMB and DCE/&RE It is primarily interested in DCE/RPC data,
and only decodes SMB to get at the DCE/RPC data carried byNtie|8yer.

Currently, the preprocessor only handles reassembly ghifemtation at both the SMB and DCE/RPC layer. Snort
rules can be evaded by using both types of fragmentatiom; tivéé preprocessor enabled the rules are given a buffer
with a reassembled SMB or DCE/RPC packet to examine.

At the SMB layer, only fragmentation using WriteAndX is cently reassembled. Other methods will be handled in
future versions of the preprocessor.

Autodetection of SMB is done by looking foixFFSMB” at the start of the SMB data, as well as checking the NetBIOS
header (which is always present for SMB) for the type "SMBs&&s'.

60

Autodetection of DCE/RPC is not as reliable. Currently, tybes are checked in the packet. Assuming that the data
is a DCE/RPC header, one byte is checked for DCE/RPC verS)an@ another for the type "DCE/RPC Request”. If
both match, the preprocessor proceeds with that assuntp@oit is looking at DCE/RPC data. If subsequent checks
are nonsensical, it ends processing.

Configuration

The proprocessor has several configuration options. Thegescribed below:

The configuration options are described below:
1. autodetect Ignore configured ports - examine all packets in attempt terd@ne SMB or DCE/RPC traffic.
Defaultis on

2. ports smb { <port > [<port> <.>] } decerpc { <port > [< port> <.>] } Ports thatthe prepro-
cessor monitors for SMB and DCE/RPC traffic. Default is natfaured (although default values would be 139
and 445 for SMB and 35 for DCE/RPC).

disable _smb_frag Do not attempt to reassemble SMB fragmentation. Defaulffiéot configured).
disable _dcerpc _frag Do not attempt to reassemble DCE/RPC fragmentation. Dafaaff (not configured).

max frag _size <number > Maximum reassembled fragment size, in bytes. Default 3§@&sh

S o

memcap <number > Maximum amount of memory available to the DCE/RPC prepremedn kilobytes. De-
fault 100000.

Alerts

There is currently only one alert, which is triggered whea gineprocessor has reached tiencaplimit for memory
allocation. The alert is gid 130, sid 1.

Summary

At the current time, there is not much to do with the dcerpppreessor other than turn it on and let it reassemble
fragmented DCE/RPC packets.

Configuration Examples

Do not reassemble SMB fragmentation.

preprocessor dcerpc: \
autodetect \
disable_smb_frag \
max_frag_size 4000

Specify specific ports, no autodetect. Do not reassemble B&Bnentation.

preprocessor dcerpc: \
ports smb { 139 445 } dcerpc { 135 } \
disable_dcerpc_frag \
memcap 50000

61

Default Configuration from snort.conf

Autodetect SMB and DCE/RPC traffic. Reassembly of SMB and [RPE fragmentation.

preprocessor dcerpc: \
autodetect \
max_frag_size 3000 \
memcap 100000

2.1.13 DNS

The DNS preprocessor decodes DNS Responses and can detttding exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks are DNS Response traffic over UDP and TCP and it resj@tream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessarkshteaffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port >< ...>]}
This option specifies the source ports that the DNS prepsocasiould inspect traffic.

2. enable _obsolete _types
Alert on Obsolete (per RFC 1035) Record Types

3. enable _experimental _types
Alert on Experimental (per RFC 1035) Record Types

4. enable _rdata _overflow
Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnetigisiiit checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operatica session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Cli&Data overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: server_ports { 53 } \
enable_rdata_overflow

2.2 Event Thresholding

You can use event thresholding to reduce the number of loglget$ for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newedlaf rules. Thresholding commands limit the number
of times a patrticular event is logged during a specified timerival. See Sectidn3.8 for more information.

62

2.3 Performance Profiling

Snort can provide statistics on rule and preprocessor paeoce. Each require only a simpienfig
snort.conf and Snort will print statistics on the worst (or all) perfagrs on exit.

2.3.1 Rule Profiling
Format

config profile _rules: print [all | <num>], sort <sort _option>

e <num>is the number of rules to print

e <sort _option> is one of:
checks
matches
nomatches
avg _ticks
avg _ticks _per _match
avg _ticks _per _nomatch
total _ticks

Examples
e Print all rules, sort by avdicks (default configuration if option is turned on)
config profile _rules

e Print the top 10 rules, based on highest average time
config profile _rules: print 10, sort avg _ticks

e Print all rules, sorted by number of checks
config profile _rules: print all, sort checks

e Printtop 100 rules, based on total time
config profile _rules: print 100, sort total _ticks

Output

Snort will print a table much like the following at exit.

Rule Profile Statistics (worst 4 rules)

Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/M atch Avg/Nonmatch
1 3197 1 7687 0 0 38502587 5008.8 0.0 5008.8
2 5997 1 63600 0 0 6305052 99.1 0.0 99.1
3 22718 1 59521 0 0 5889631 99.0 0.0 99.0
4 2580 1 29509 0 0 2660302 90.2 0.0 90.2

Figure 2.7: Rule Profiling Example Output

Configuration line used to print the above table:
config profile _rules: print 4, sort total _ticks

The columns represent:

63

option to

e Number (rank)

e SigID

e Generator ID

e Checks (number of times rule was evaludated after fastpoatt@tch within portgroup or any-any rules)
e Matches (number of times ALL rule options matched, will bgthfor rules that have no options)

e Alerts (number of alerts generated from this rule)

e CPU Ticks

e Avg Ticks per Check

e Avg Ticks per Match

e Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Tickgjumn is important because that is the total time spent
evaluating a given rule. But, if that rule is causing aléttmjakes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likelgntains PCRE. High Checks and low Avg/Check is
usually an any=any rule with few rule options and no content. Quick to cheiek few options may or may not match.
We are looking at moving some of these into code, especiatigd with low SIDs.

2.3.2 Preprocessor Profiling
Format

config profile _preprocs: print [all | <num>], sort <sort _option>

e <num>is the number of preprocessors to print

e <sort _option> is one of:
checks
avg _ticks
total _ticks

Examples
e Print all preprocessors, sort by atigks (default configuration if option is turned on)
config profile _preprocs

e Print the top 10 preprocessors, based on highest average tim
config profile _preprocs: print 10, sort avg _ticks

e Print all preprocessors, sorted by number of checks
config profile _preprocs; print all, sort checks

64

Preprocessor Profile Statistics (worst 3)

Num Preprocessor Layer Checks Exits Microsecs Avg/Check Pc t of Caller
1 eventq 0 2085703 2085703 417322297 200.1 75.8
2 detect 0 927064 927064 121532657 131.1 22.1

1 rule eval 1 26075024 26075024 111453838 4.3 91.7

2 mpse 1 379155 379155 6447327 17.0 53
3 s4 0 765281 765281 55753764 72.9 10.1

1 s4Flush 1 83519 83519 65398702 783.0 117.3

1 s4ProcessRebuilt 2 43638 43638 65123864 1492.4 99.6

2 s4BuildPacket 2 73351 73351 187102 2.6 0.3

2 s4StateAction 1 764662 764662 11589061 15.2 20.8

3 s4State 1 764662 764662 874695 11 1.6

4 s4GetSess 1 765281 765281 508631 0.7 0.9

5 s4Pktinsert 1 190331 190331 182737 1.0 0.3

6 s4NewSess 1 65657 65657 111846 1.7 0.2

7 s4Prune 1 59 59 613 10.4 0.0
total total 0 1018323 1018323 550830338 540.9 0.0

Figure 2.8: Preprocessor Profiling Example Output

Output

Snort will print a table much like the following at exit.
Configuration line used to print the above table:
config profile _rules: print 3, sort total _ticks

The columns represent:

e Number (rank) - The number is indented for each layer. Layerebrocessors are listed under their respective
caller (and sorted similarly).

e Preprocessor Name

e Layer - When printing a specific number of preprocessors @tasks info for a particular preprocessor is
printed for each layer O preprocessor stat.

e Checks (number of times preprocessor decided to look atkepgmorts matched, app layer header was correct,
etc)

e Exits (number of corresponding exits — just to verify codénistrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

e CPU Ticks
e Avg Ticks per Check

e Percent of caller - For non layer O preprocessors, i.e. submes within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and faitters, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indicatioh@f much relative time is spent within each subtask.

2.4 Output Modules

Output modules are new as of version 1.6. They allow Snorttmbch more flexible in the formatting and presentation
of output to its users. The output modules are run when the atdogging subsystems of Snort are called, after
the preprocessors and detection engine. The format of tieetilies in the rules file is very similar to that of the
preprocessors.

65

Multiple output plugins may be specified in the Snort configian file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in sequeimer an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /vaglwort by default or to a user directed directory (using-the
command line switch).

Output modules are loaded at runtime by specifying the digyword in the rules file:
output <name>: <options>

output alert_syslog: log_auth log_alert

Figure 2.9: Output Module Configuration Example

2.4.1 alertsyslog

This module sends alerts to the syslog facility (much like #h command line switch). This module also allows the
user to specify the logging facility and priority within tt&nort rules file, giving users greater flexibility in logging
alerts.

Available Keywords

Facilities
e log _auth
e log _authpriv
e log _daemon
e log _locald
e log _locall
e log _local2
e log _local3
e log _locald
e log _local5
e log _local6
e log _local7

e log _user

Priorities
e log _emerg
e log _alert
e log _crit
e log _err
e log _warning
e log _notice
e log _info

e log _debug

66

Options

log _cons

log _ndelay

log _perror

log _pid

Format

alert_syslog: <facility> <priority> <options>

ANOTE

As WIN32 does not run syslog servers locally by default, afmse and port can be passed as options. [The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: [host=<hostname[:<port>],] <facil ity> <priority> <options>

output alert_syslog: 10.1.1.1:514, <facility> <priority > <options>

Figure 2.10: Syslog Configuration Example

2.4.2 alertfast

This will print Snort alerts in a quick one-line format to aegjified output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packetérsaad the output file

Format
alert_fast: <output filename>

output alert_fast: alert.fast

Figure 2.11: Fast Alert Configuration

2.4.3 alertfull

This will print Snort alert messages with full packet headdihe alerts will be written in the default logging diregtor
(/varllog/snort) or in the logging directory specified a¢ ttommand line.

Inside the logging directory, a directory will be created & These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slawestRlown considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

alert_full: <output filename>

67

output alert_full: alert.full
Figure 2.12: Full Alert Configuration

2.4.4 alertunixsock

Sets up a UNIX domain socket and sends alert reports to ierBat programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. Thisriently an experimental interface.

Format

alert_unixsock

output alert_unixsock

Figure 2.13: UNIXSock Alert Configuration

2.4.5 logtcpdump
The logtcpdump module logs packets to a tcpdump-formatted files iBhiseful for performing post-process analysis
on collected traffic with the vast number of tools that ardlate for examining tcpdump-formatted files. This module

only takes a single argument: the name of the output file. l@ethe file name will have the UNIX timestamp in
seconds appended the file name. This is so that data fromase@ort runs can be kept distinct.

Format

log_tcpdump: <output filename>

output log_tcpdump: snort.log

Figure 2.14: Tcpdump Output Module Configuration Example

2.4.6 database
This module from Jed Pickel sends Snort data to a variety df 8abases. More information on installing and
configuring this module can be found on the [91]incidentwedp page. The arguments to this plugin are the name of

the database to be logged to and a parameter list. Pararastespecified with the format parameter = argument. see
Figure[ZIb for example usage.

Format

database: <log | alert>, <database type>, <parameter list>
The following parameters are available:

host - Host to connect to. If a non-zero-length string is specifiedP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.

port -Port numberto connect to at the server host, or socket fiterextension for UNIX-domain connections.

68

dbnane - Database name
user - Database username for authentication
passwor d - Password used if the database demands password autkientica

sensor_nane - Specify your own name for this Snort sensor. If you do notcffgea name, one will be generated
automatically

encodi ng - Because the packet payload and option data is binary, Ehaoeone simple and portable way to store it
in a database. Blobs are not used because they are not patabks databases. So i leave the encoding option
to you. You can choose from the following options. Each haswtn advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary
Searchability - very good
Human readability - not readable unless you are a true geek, requires postgzioge

base64 - Represent binary data as a base64 string.

Storage requirements - ~1.3x the size of the binary
Searchability - impossible without post processing
Human readability - not readable requires post processing

asci i - Represent binary data as an ASCII string. This is the ontjoapvhere you will actually lose data.
Non-ASCII Data is represented as a ‘.. If you choose thisamptthen data for IP and TCP options will
still be represented as hex because it does not make anyfeetisat data to be ASCII.
Storage requirements - slightly larger than the binary because some characteresraped (&;,>)
Searchability - very good for searching for a text string impossible if yoanvto search for binary
human readability - very good

det ai | - How much detailed data do you want to store? The options are:

ful | (default) - Log all details of a packet that caused an aladiiding IP/TCP options and the payload)

fast - Log only a minimum amount of data. You severely limit theguttal of some analysis applications
if you choose this option, but this is still the best choicedome applications. The following fields are
logged:timestamp , signature , source ip , destination ip , source port , destination port ,tep
flags , andprotocol)

Furthermore, there is a logging method and database typetls be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database loggingifuradity to the log facility within the program.

If you set the type to log, the plugin will be called on the lagput chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current veddithe plugin. These amassqgl , mysgl , postgresgl
oracle , andodbc . Set the type to match the database you are using.

ANOTE

The database output plugin does not have the ability to leaalékts that are generated by using tie
keyword. See sectidn 3.7.5 for more details.

output database: log, mysqgl, dbname=snort user=snort host =localhost password=xyz

Figure 2.15: Database Output Plugin Configuration

69

2.4.7 csv

The csv output plugin allows alert data to be written in a fatmasily importable to a database. The plugin requires
2 arguments: a full pathname to a file and the output fornatijstion.

The list of formatting options is below. If the formattingtagn is default, the output is in the order the formatting
option is listed.
e timestamp
e Sig _generator
e sig _id
e Sig _rev
e Msg
e proto
e SIC
e srcport
o dst
e dstport
e ethsrc
e ethdst
e ethlen
o tcpflags
e tcpseq
e fcpack
e tcplen
e tcpwindow
o il
o t0S
e id
e dgmlen
e iplen
e icmptype
e icmpcode
e icmpid

e icmpseq

Format

output alert_csv: <filename> <format>

70

output alert_csv: /var/log/alert.csv default

output alert_csv: /varllog/alert.csv timestamp, msg
Figure 2.16: CSV Output Configuration

2.4.8 unified

The unified output plugin is designed to be the fastest plessilethod of logging Snort events. The unified output
plugin logs events in binary format, allowing another pi@gs to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunifiedis a misnomer, as the unified output plugin creates two diffefiles, aralert file, and alog file.
The alert file contains the high-level details of an event (&%, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the @ased event ID). Both file types are written in a bimary
format described ispaunified.h

ANOTE

‘ Files have the file creation time (in Unix Epoch format) apgeshto each file when it is created.

Format
output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size Ii mit in MB>]

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

Figure 2.17: Unified Configuration Example

2.4.9 unified 2

The unified2 output plugin is a replacement for the unifiegpatiplugin. It has the same performance characteristics,
but a slightly different logging format. See sectlon 2 4B8umified logging for more information.

Unified2 can work in one of three modes, packet logging, &eding, or true unified logging. Packet logging includes
a capture of the entire packet and is specified vagh_unfied2 . Likewise, alert logging will only log events and is
specified withalert _unified2 . To include both logging styles in a single, unified file, siyngpecifyunified2

ANOTE

By default, unified 2 files have the file creation time (in Unipdeh format) appended to each file when it is
created.

Format

output alert_unified2: <base file name> [, <limit <file siz e limit in MB>] [, nostamp]

output log_unified2: <base file name> [, <limit <file size | imit in MB>] [, nostamp]

output unified2: <base file name> [, <limit <file size limit in MB>] [, nostamp]

71

output alert_unified2: snort.alert, limit 128, nostamp
output log_unified2: snort.log, limit 128, nostamp
output unified2: merged.log, limit 128, nostamp

Figure 2.18: Unified Configuration Example

2.4.10 alertprelude

ANOTE

support to use alefprelude is not built in by default. To use algntelude, snort must be built with the
—enable-prelude arguement passed to ./configure.

The alertprelude output pluginis used to log to a Prelude databasenére information on Prelude, segp://www.prelude-1ds.org

Format
output alert_prelude: profile=<name of prelude profile> \
[info=<priority number for info priority alerts>] \

[low=<priority number for low priority alerts>] \
[medium=<priority number for medium priority alerts>]

output alert_prelude: profile=snort info=4 low=3 medium= 2

Figure 2.19: alerprelude configuration example

2.4.11 log null
Sometimes it is useful to be able to create rules that wilt atecertain types of traffic but will not cause packet log

entries. In Snort 1.8.2, the lagull plugin was introduced. This is equivalent to using theemmand line option but
it is able to work within a ruletype.

Format

output log_null

output log_null # like using snort -n
ruletype info {
type alert

output alert_fast: info.alert
output log_null

Figure 2.20: Log Null Usage Example

72

http://www.prelude-ids.org/

2.4.12 alertaruba_action

ANOTE

Support to use alerrubaaction is not built in by default. To use aleatubaaction, snort must be built wit
the —enable-aruba arguement passed to ./configure.

Communicates with an Aruba Networks wireless mobility coliér to change the status of authenticated users. This
allows Snort to take action against users on the Aruba cthaitito control their network privilege levels.

For more information on Aruba Networks access control régeg/www.arubanetworks.com/
Format

output alert_aruba_action: <controller address> <secret type> <secret> <action>
The following parameters are required:

control |l er address- Aruba mobility controller address.
secrettype - Secret type, one of "shal”, "'md5” or "cleartext”.

secr et - Authentication secret configured on the Aruba mobility trolker with the "aaa xml-api client” configura-
tion command, represented as a shal or md5 hash, or a clqzatsword.

acti on - Action to apply to the source IP address of the traffic getirggaan alert.

bl ackl i st - Blacklist the station by disabling all radio communicatio
set r ol e: r ol ename - Change the users role to the specified rolename.

output alert_aruba_action: 10.3.9.6 cleartext foobar set role:quarantine_role

Figure 2.21: Aruba Action Alert Configuration

2.5 Dynamic Modules

Dynamically loadable modules were introduced with Snd8t Z.hey can be loaded via directivessimort.conf or
via command-line options.

ANOTE

‘ To use dynamic modules, Snort must be configured with theblerdynamicplugin flag.

2.5.1 Format

<directive> <parameters>

2.5.2 Directives

73

http://www.arubanetworks.com/

Table 2.10: Dynamic Directives

| Directive

Syntax

Description |

dynamicpreprocessor

dynamicpreprocessor
<shared library path
directory
libraries

[file

> |
<directory of shared

>]

Tells snort to load the dynamic prepr
cessor shared library (if file is useq
or all dynamic preprocessor sharg
libraries (if directory is used). Specif
'file’, followed by the full or relative
path to the shared library. Or, speci
'directory’, followed by the full or
relative path to a directory of preprg
cessor shared libraries. (Same effg
as --dynamic-preprocessor-lib or
--dynamic-preprocessor-lib-dir

options). See chaptdld 5 for more i
formation on dynamic preprocess
libraries.

)_

1)
2d

y

y

pCt

dynamicengine

dynamicengine | file <shared
library path > | directory
<directory of shared

libraries > |

Tells snort to load the dynamic engin
shared library (if file is used) or al
dynamic engine shared libraries (if d
rectory is used). Specify ‘file’, followed
by the full or relative path to the share
library. Or, specify 'directory’, followed
by the full or relative path to a director
of preprocessor shared libraries. (Saf
effect as --dynamic-engine-lib or

--dynamic-preprocessor-lib-dir

options). See chaptefl 5 for mo
information on dynamic engine librarie

dynamicdetection

dynamicdetection
<shared library path
directory
libraries

[file
> |
<directory of shared
>]

Tells snort to load the dynamic de

tection rules shared library (if file is

used) or all dynamic detection rulg

shared libraries (if directory is used).

Specify ‘file’, followed by the full or
relative path to the shared library. O
specify ‘'directory’, followed by the
full or relative path to a directory o
detection rules shared libraries. (Sai
effect as --dynamic-detection-lib

or --dynamic-detection-lib-dir
options). See chaptél 5 for more i
formation on dynamic detection rulg
libraries.

=

74

Chapter 3

Writing Snort Rules:
How to Write Snort Rules and Keep Your
Sanity

3.1 The Basics

Snort uses a simple, lightweight rules description languhgt is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rules.

Most Snort rules are written in a single line. This was regdiin versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslaghthe end of the line.

Snort rules are divided into two logical sections, the ruéader and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP eslsl's and netmasks, and the source and destination ports
information. The rule option section contains alert messand information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure[31 illustrates a sample Snort rule.

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a 5", msg:"mountd access";)
Figure 3.1: Sample Snort Rule

The text up to the first parenthesis is the rule header andettteos enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section dteccaptionkeywords

ANOTE

Note that the rule options section is not specifically reggiiby any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert ondqrop, for that matter).

All of the elements in that make up a rule must be true for thiécimted rule action to be taken. When taken together,
the elements can be considered to form a logieab statement. At the same time, the various rules in a Snors rule
library file can be considered to form a large logice statement.

75

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicatedhenrule should show up. The first item in a rule is the rule
action. The rule action tells Snort what to do when it finds elkgeaithat matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, anthdyic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, adap.

alert - generate an alert using the selected alert me#imatithen log the packet

log - log the packet

pass - ignore the packet

activate - alert and then turn on another dynamic rule

dynamic - remain idle until activated by an activate ruteen act as a log rule

drop - make iptables drop the packet and log the packet

N g k~ w bd e

reject - make iptables drop the packet, log it, and thed senRCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop - make iptables drop the packet but does not log it.

You can also define your own rule types and associate one ag mdput plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious

type log
output log_tcpdump: suspicious.log

This example will create a rule type that will log to sysloglanMySQL database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysqgl, user=snort dbname=snort host =localhost
}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protetbat Snort currently analyzes for suspicious behavior
— TCP, UDP, ICMP, and IP. In the future there may be more, sadhRP, IGRP, GRE, OSPF, RIP, IPX, etc.

76

3.2.3 IP Addresses

The next portion of the rule header deals with the IP addredgart information for a given rule. The keyword any
may be used to define any address. Snort does not have a nsrattarprovide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straigimeric IP address and a CIDIR[3] block. The CIDR
block indicates the netmask that should be applied to tlegsratidress and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C netwtir&,a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR comhinB®ip.168.1.0/24 would signify the block of addresses
from 192.168.1.1to 192.168.1.255. Any rule that used tesighation for, say, the destination address would match
on any address in that range. The CIDR designations give iceahort-hand way to designate large address spaces
with just a few characters.

In Figure[31, the source IP address was set to match for anputer talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addressesetfa¢ion operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP addFbssnegation operator is indicated with a !. For example,
an easy modification to the initial example is to make it ab@rany traffic that originates outside of the local net with
the negation operator as shown in Figlurd 3.2.

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

This rule’s IP addresses indicate any tcp packet with a sdir@ddress not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is dpgtby enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time beimg]P list may not include spaces between the addresses.
See Figur€3]3 for an example of an IP list in action.

alert tcp 1[192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5| "\
msg: "external mountd access";)

Figure 3.3: IP Address Lists

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, includingpanmts, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literalhy port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 fipx; letc. Port ranges are indicated with the range operator
.. The range operator may be applied in a number of ways todak#fferent meanings, such as in Figlird 3.4.

Port negation is indicated by using the negation operatdhke negation operator may be applied against any of the
other rule types (except any, which would translate to nboe; Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you dald something like the rule in FigufeB.5.

77

log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports rangiranirl to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or eqoad®00

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 4@@ing to ports greater than or equal to 500

Figure 3.4: Port Range Examples

log tcp any any -> 192.168.1.0/24 '6000:6010

Figure 3.5: Example of Port Negation

78

3.2.5 The Direction Operator

The direction operator> indicates the orientation, or direction, of the traffic ttfa rule applies to. The IP address
and port numbers on the left side of the direction operataoissidered to be the traffic coming from the source
host, and the address and port information on the right sidbeooperator is the destination host. There is also a
bidirectional operator, which is indicated with<a> symbol. This tells Snort to consider the address/port gairs
either the source or destination orientation. This is hdodyecording/analyzing both sides of a conversation, stch
telnet or POP3 sessions. An example of the bidirectionaladpebeing used to record both sides of a telnet session is
shown in Figur&316.

Also, note that there is ne:- operator. In Snort versions before 1.8.7, the directioarafor did not have proper
error checking and many people used an invalid token. Theorethe<- does not exist is so that rules always read
consistently.

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

3.2.6 Activate/Dynamic Rules

ANOTE

Activate and Dynamic rules are being phased out in favor afratsination of tagging{3.715) and flowbits

EE10).

Activate/dynamic rule pairs give Snort a powerful capailiyou can now have one rule activate another when it's
action is performed for a set number of packets. This is vesful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules ast jike alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, eyt have a different option field: activatég. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to addile when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled wherstctivate rule id goes off.

Put 'em together and they look like Figurel3.7.

activate tcp '$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|EBCOFFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)
dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

These rules tell Snort to alert when it detects an IMAP buffearflow and collect the next 50 packets headed for port
143 coming from outside $HOMBET headed to SHOMBET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be @néd within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in catigehose packets for later analysis.

79

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detectingiae, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using thizston (;) character. Rule option keywords are separated
from their arguments with a colon (;) character.

There are four major categories of rule options.

general These options provide information about the rule but do methany affect during detection
payload These options all look for data inside the packet payloadcamcbe inter-related
non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen aftelechas “fired.”

3.4 General Rule Options

3.4.1 msg
The msg rule option tells the logging and alerting enginatiessage to print along with a packet dump or to an alert.

Itis a simple text string that utilizes theas an escape character to indicate a discrete charactenigifattotherwise
confuse Snort’s rules parser (such as the semi-colon ; cteaja

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include referencesternal attack identification systems. The plugin cutyent
supports several specific systems as well as unique URLs.plingin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a lookratp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See SeEfion)3.4.4

Table 3.1: Supported Systems

| System | URL Prefix |
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids| (currently down) http://www.whitehats.com/info/ID|S
mcafee http://vil.nai.com/vil/dispVirus.asp?virus=
url http://
Format
reference: <id system>,<id>; [reference: <id system><id >]

80

http://www.snort.org/pub-bin/sigs-search.cgi/

alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio”; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \
flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \

reference:arachnids,|DS287; reference:bugtrag,1387; \
reference:cve,CAN-2000-1574;)

Figure 3.8: Reference Usage Examples

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Srggherates the event when a particular rule
fires. For example gid 1 is associated with the rules subsyated various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators inutoe $iee for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, itidefault to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined ioi&(that for some reason aren’t noted it etc/generators),

it is recommended that a value greater than 1,000,000 be &sedyeneral rule writing, it is not recommended that
thegid keyword be used. This option should be used withsihekeyword. (See sectidn3.3.4)

The file etc/gen-msg.map contains contains more informatiopreprocessor and decoder gids.

Format

gid: <generator id>;

Example

This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content:"BOB"; gid:1000001; sid 1 revil)

3.4.4 sid

Thesid keyword is used to uniquely identify Snort rules. This imf@tion allows output plugins to identify rules
easily. This option should be used with tleg keyword. (See sectidn’3.2.5)

e <100 Reserved for future use
e 100-1,000,000 Rules included with the Snort distribution
e >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messagesad file IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

81

Example

This example is a rule with the Snort Rule 1D of 1000983.

alert tcp any any -> any 80 (content,"BOB"; sid:1000983; rev 1)

3.45 rev

Therev keyword is used to uniquely identify revisions of Snort gildRevisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced widhtaed information. This option should be used with the
sid keyword. (See sectidn3.3.4)

Format

rev: <revision integer>;

Example
This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev 1)

3.4.6 classtype

Theclasstype keyword is used to categorize a rule as detecting an attatkstipart of a more general type of attack
class. Snort provides a default set of attack classes teatisad by the default set of rules it provides. Defining
classifications for rules provides a way to better orgartieedvent data Snort produces.

Format

classtype: <class name>;

Attack classifications defined by Snort reside in¢lassification.config file. The file uses the following syntax:
config classification: <class name>,<class description> ,<default priority>

These attack classifications are listed in TdbI& 3.2. Theyamently ordered with 3 default priorities. A priority &f
(high) is the most severe and 3 (low) is the least severe.

Table 3.2: Snort Default Classifications

| Classtype | Description | Priority |
attempted-admin Attempted Administrator Privilege Gain high
attempted-user Attempted User Privilege Gain high
kickass-porn SCORE! Get the lotion! high
policy-violation Potential Corporate Privacy Violation high
shellcode-detect Executable code was detected high
successful-admin Successful Administrator Privilege Gain high
successful-user Successful User Privilege Gain high
trojan-activity A Network Trojan was detected high
unsuccessful-user Unsuccessful User Privilege Gain high

82

web-application-attack Web Application Attack high
attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username apdmedium
password
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a non-standard protocol or eveniedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious usgrmedium
name was detected
system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-medium
cation
icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \
content:"expn root"; nocase; classtype:attempted-recon)

Figure 3.9: Example Classtype Rules

Warnings
The classtype option can only use classifications that have been definesar.conf by using theconfig

classification option. Snort provides a default set of classificationslassification.config that are used
by the rules it provides.

3.4.7 priority

The priority tag assigns a severity level to rules. classtype rule assigns a default priority (defined by the
config classification option) that may be overridden with a priority rule. For arample in conjunction with a
classification rule refer to Figufe=3.9. For use by itsel& Begurd 31D

83

Format

priority: <priority integer>;

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flag SA+ \
content: "/cgi-bin/phf"; priority:10;)

Figure 3.10: Example Priority Rule

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional information atihe rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snortatfidtad in Tabl€3]13. Keys other than those listed in the
table are effectively ignored by Snort and can be free-famith) a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

| Key | Description | Value Format|
engine Indicate a Shared Library Rule "shared”
soid Shared Library Rule Generator and SID gid|sid

The examples in FigufeZ3l1 show an stub rule from a shareahiloule. The first uses multiple metadata keywords,
the second a single metadata keyword, with keys separatedrbgnas.

Format

metadata; keyl valuel;
metadata; keyl valuel, key2 value2;

alert tcp any any -> any 80 (msg: "Shared Library Rule Example " metadata:engine shared; metadata:soid 3|12345;)
alert tcp any any -> any 80 (msg: "Shared Library Rule Example ", metadata:engine shared, soid 3|12345;)

Figure 3.11: Example Metadata Rule

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description

msg The msg keyword tells the logging and alerting engine thesangs to print with the packet
dump or alert.

reference The reference keyword allows rules to include referencexxternal attack identification
systems.

gid The gid keyword (generator id) is used to identify what pdrSoort generates the event
when a particular rule fires.

sid The sid keyword is used to uniquely identify Snort rules.

84

rev The rev keyword is used to uniquely identify revisions of Bmoles.

classtype The classtype keyword is used to categorize a rule as degeati attack that is part of a
more general type of attack class.

priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed additioriarmation about the rule
typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important featuresnufrsS It allows the user to set rules that search for
specific content in the packet payload and trigger respoasedon that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match fundsaralled and the (rather computationally expensive) test
is performed against the packet contents. If data exactlgimag the argument data string is contained anywhere
within the packet’s payload, the test is successful andghwimder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat comple&gn contain mixed text and binary data. The binary
data is generally enclosed within the pigedharacter and represented as bytecode. Bytecode représeary data
as hexadecimal numbers and is a good shorthand method foildeg complex binary data. Figuke-3]112 contains an
example of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one fTiés allows rules to be tailored for less false positives.

If the rule is preceded by!a the alert will be triggered on packets that do not contai¢bntent. This is useful when
writing rules that want to alert on packets that do not matckréain pattern

ANOTE

Also note that the following characters must be escapedérsicontent rule:
L

Format

content: ['] "<content string>";

Example

alert tcp any any -> any 139 (content"|5¢c 00|P]00|I|00|P|O O|E|00 5c|™)

Figure 3.12: Mixed Binary Bytecode and Text in a 'contentykerd

alert tcp any any -> any 80 (content:"GET";)

Figure 3.13: Negation Example

85

ANOTE

A ! modifier negates the results of the entire content searchjfies included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no "A” in éobytes, the
result will return a match. If there must be 50 bytes for adiatiatch, usésdataat as a pre-cursor to the
content.

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier keylsahange how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers

| Modifier | Section |
nocase B52
rawbytes B53
depth L.0.4
offset B53
distance B56
within B51
http_clientbody | B58
http_uri L.o.9

3.5.2 nocase

The nocase keyword allows the rule writer to specify that3hert should look for the specific pattern, ignoring case.
nocase modifies the previous 'content’ keyword in the rule.

Format

nocase,;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content"USER ro ot"; nocase;)

Figure 3.14: Content rule with nocase modifier

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packéd,dgnoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous corientl3.5itrmpt

format

rawbytes;

86

Example

This example tells the content pattern matcher to look atdtetraffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F 1]"; rawbytes;)

3.5.4 depth

The depth keyword allows the rule writer to specify how fapia packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look look for the specifipdttern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ‘conteny\kerd, there must be a contentin the rule before ‘depth’
is specified.

See Figur€3.15 for an example of a combined content, ofisetdepth search rule.
Format

depth: <number>;

3.5.5 offset

The offset keyword allows the rule writer to specify wherestart searching for a pattern within a packet. offset
modifies the previous 'content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the speedipattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous 'content’ key@gothere must be a content in the rule before 'offset’ is
specified.

See Figur€3.5 for an example of a combined content, ofisetdepth search rule.
Format
offset: <number>;

alert tcp any any -> any 80 (content; "cgi-bin/phf"; offset: 4; depth:20;)

Figure 3.15: Combined Content, Offset and Depth Rule. Siéfitst 4 bytes, and look for cgi-bin/phf in the next 20
bytes

3.5.6 distance

The distance keyword allows the rule writer to specify howifdo a packet Snort should ignore before starting to
search for the specified pattern relative to the end of theipus pattern match.

This can be thought of as exactly the same thing as depth @e®&3.5.F), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

Format

distance: <byte count>;

87

Example

The rule listed in FigurEZ316 maps to a regular expressidABCDE.{1}EFGH]/.

alert tcp any any -> any any (content:"ABC"; content: "DEF"; distance:1;)

Figure 3.16: distance usage example

3.5.7 within
The within keyword is a content modifier that makes sure that@st N bytes are between pattern matches using the

content keyword (See Sectibn315.1). It's designed to bd irseonjunction with the distance (Section315.6) rule
option.

The rule listed in FigurEZ3217 constrains the search to nqtag 10 bytes past the ABCDE match.

Format

within: <byte count>;

Examples

alert tcp any any -> any any (content"ABC"; content: "EFG"; within:10;)

Figure 3.17: within usage example

3.5.8 http.client_body

The httpclientbody keyword is a content modifier that restricts the seamtché NORMALIZED body of an HTTP
client request.

The rule listed in FigurEZ3:18 constrains the search for thttepn "EFG” to the NORMALIZED body of an HTTP
client request.

As this keyword is a modifier to the previous 'content’ keydidhere must be a content in the rule before 'htlignt body
is specified.

Format

http_client_body;

Examples

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_client_body;)

Figure 3.18: httpclient body usage example

ANOTE

‘ Thehttp _client _body modifier is not allowed to be used with trevbytes modifier for the same content

88

3.5.9 http_uri

The httpuri keyword is a content modifier that restricts the searcthietoNORMALIZED request URI field . Using a
content rule option followed by a httpri modifier is the same as using a uricontent by itself (E€eIB).

The rule listed in FigurEZ3.19 constrains the search for #iteepn "EFG” to the NORMALIZED URI.

As this keyword is a modifier to the previous 'content’ keyapthere must be a content in the rule before ’hitp
is specified.

Format

http_uri;

Examples

alert tcp any any -> any 80 (content."ABC"; content. "EFG"; h ttp_uri;)

Figure 3.19: httpuri usage example

ANOTE

‘ Thehttp _uri modifier is not allowed to be used with trevbytes modifier for the same content.

3.5.10 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZ&dest URI field. This means that
if you are writing rules that include things that are norreadl, such as %2f or directory traversals, these rules will no
alert. The reason is that the things you are looking for arenadized out of the URI buffer.

For example, the URI:

Iscripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

Iwinnt/system32/cmd.exe?/c+ver

Another example, the URI:
[cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaal..%252fp%68f?

will get normalized into:

[cgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context the URI will be normalized.
For example, if Snort normalizes directory traversals, dbinclude directory traversals.

You can write rules that look for the non-normalized conteyntising the content option. (See Secfion3.5.1)

For a description of the parameters to this function, seetméent rule options in Sectign 3.5.1.

This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ]1.8.

89

Format

uricontent:[!]<content string>;

ANOTE

‘ uricontent cannot be modified by @wbytes modifier.

3.5.11 urilen

Theurilen keyword in the Snort rule language specifies the exact letigghminimum length, the maximum length,
or range of URI lengths to match.

Format

urilen: int<>int;
urilen; [<,>] <int>;

The following example will match URIs that are 5 bytes long:

urilen: 5

The following example will match URIs that are shorter thamyfes:

urilen: < 5

The following example will match URIs that are greater thamytes and less than 10 bytes:
urilen: 5<>10

This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ]1.8.

3.5.12 isdataat

Verify that the payload has data at a specified locationpogplly looking for data relative to the end of the previous
content match.

Format

isdataat:<int>[relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,r elative; \
content:!"|0a|"; distance:0;)

This rule looks for the string PASS exists in the packet, thenifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline characteimf bytes of the end of the PASS string.

90

3.5.13 pcre

The pcre keyword allows rules to be written using perl coriigpfatregular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE ite¢fiifis//www.pcre.org

Format
pere:[']"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUBJ";

The post-re modifiers set compile time flags for the regularession.

Table 3.6: Perl compatible modifiers

i | caseinsensitive

include newlines in the dot metacharacter

m | By default, the string is treated as one big line of character
and $ match at the beginning and ending of the string. When
m is set, " and $ match immediately following or immediately
before any newline in the buffer, as well as the very start and
very end of the buffer.
X | whitespace data characters in the pattern are ignored £xcep
when escaped or inside a character class

n

Table 3.7: PCRE compatible modifiers

A | the pattern must match only at the start of the buffer (sanie|as
)
E | Set $ to match only at the end of the subject string. Without E,
$ also matches immediately before the final character if &
newline (but not before any other newlines).

G | Inverts the "greediness” of the quantifiers so that they arte(n
greedy by default, but become greedy if followed by "?”.

(7]

Table 3.8: Snort specific modifiers

R | Match relative to the end of the last pattern match. (Simaar
distance:0;)

Match the decoded URI buffers (Similaradcontent)
Match normalized HTTP request body (Similaut@ontent)
Do not use the decoded buffers (Similar to rawbytes)

| —lC

The modifiers R and B should not be used together.

Example

This example performs a case-insensitive search for trgBLAH in the payload.

alert ip any any -> any any (pcre:"/BLAH/")

91

http://www.pcre.org

\NOTE

Snort’s handling of multiple URIs with PCRE does not work apected. PCRE when used without a
uricontent only evaluates the first URI. In order to use pcre to inspecURIs, you must use either a
content or a uricontent.

3.5.14 bytetest

Test a byte field against a specific value (with operator).aDégpof testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read SeEfion 8.11.5
Format

byte test: <bytes to convert>, [/]<operator>, <value>, <o fiset> \
[relative] [,<endian>] [,<number type>, string];

| Option | Description
bytes _to _convert Number of bytes to pick up from the packet
operator Operation to perform to test the value:

e < -lessthan

> - greater than
e =-equal
e ! -not

e & - bitwise AND

e = bitwise OR
value Value to test the converted value against
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
endian Endian type of the number being read:

e big - Process data as big endian (default)

e little - Process data as little endian
string Data is stored in string format in packet
number type Type of number being read:

e hex - Converted string data is represented in hexadecimal
e dec - Converted string data is represented in decimal

e oct - Converted string data is represented in octal

Any of the operators can also inclutiéo check if the operator is not true. llfis specified without an operator, then
the operator is set to.

N\NOTE

Snort uses the C operators for each of these operators. & thgerator is used, then it would be the same as
usingif (data & value){ do_something()}

92

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content: "|00 00 00 07|"; distance: 4; within: 4; \
byte test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content; "|00 00 00 07|"; distance: 4; within: 4; \
byte test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!";)

alert udp any any -> any 1235\
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!"))

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!";)

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \

(byte_test: 8, =, Oxdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

Figure 3.20: Byte Test Usage Example

93

3.5.15 bytejump

Thebyte _jump keyword allows rules to be written for length encoded protsdrivially. By having an option that
reads the length of a portion of data, then skips that far &mdwn the packet, rules can be written that skip over
specific portions of length-encoded protocols and perfogtection in very specific locations.

Thebyte _jump option does this by reading some number of bytes, converi theheir numeric representation, move
that many bytes forward and set a pointer for later detecfitis pointer is known as the detect offset end pointer, or
doeptr.

For a more detailed explanation, please read SeEfion 8.11.5
Format
byte_jump: <bytes to_convert>, <offset> \

[relative] [,multiplier <multiplier value>] [,big] [,li ttle][,string]\
[,hex] [,dec] [,oct] [,align] [,from_beginning];

| Option | Description
bytes _to _convert Number of bytes to pick up from the packet
offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match
multiplier <value > | Multiply the number of calculated bytes byvalue > and skip forward that number gf
bytes.
big Process data as big endian (default)
little Process data as little endian
string Data is stored in string format in packet
hex Converted string data is represented in hexadecimal
dec Converted string data is represented in decimal
oct Converted string data is represented in octal
align Round the number of converted bytes up to the next 32-bit dayn
from _beginning Skip forward from the beginning of the packet payload indte&from the current positior
in the packet.
alert udp any any -> any 32770:34000 (content: "|[00 01 86 Bg|" i\

content: "[00 00 00 01|"; distance: 4; within: 4; \
byte jump: 4, 12, relative, align; \

byte test: 4, >, 900, 20, relative; \

msg: "statd format string buffer overflow";)

Figure 3.21: byte jump Usage Example

3.5.16 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt"; \

94

flow:to_server,established; content."PORT"; nocase; ft pbounce; pcre:;"/'PORT/smi";\
classtype:misc-attack; sid:3441; rev:1;)

3.5.17 asnl

The ASN.1 detection plugin decodes a packet or a portion afcket, and looks for various malicious encodings.

Multiple options can be used in an 'asnl’ option and the iegpliogic is boolean OR. So if any of the arguments
evaluate as true, the whole option evaluates as true.

The ASN.1 options provide programmatic detection capislias well as some more dynamic type detection. If an
option has an argument, the option and the argument arestegdy a space or a comma. The preferred usage is to
use a space between option and argument.

Format

asnl: option[argument][, option][argument]] . . .

| Option | Description |
bitstring _overflow Detects invalid bitstring encodings that are known to beatsty exploitable.
double _overflow Detects a double ASCII encoding that is larger than a stahlolaffer. This is known to be
an exploitable function in Microsoft, but it is unknown atgtime which services may bge
exploitable.

oversize _length <value > | Compares ASN.1 type lengths with the supplied argument. sihéax looks like, “over-
sizelength 500”. This means that if an ASN.1 type is greater th@®, Fhen this keyword
is evaluated as true. This keyword must have one argumemtwvgpecifies the length t
compare against.

absolute _offset <value > | This is the absolute offset from the beginning of the packetr example, if you wanted
to decode snmp packets, you would say “absobffset 0”. absolute _offset has one
argument, the offset value. Offset may be positive or negati

relative _offset <value > | Thisis the relative offset from the last content match oeligst/jump.relative _offset
has one argument, the offset number. So if you wanted to gsfi@tod-
ing and ASN.1 sequence right after the content “foo”, you Mowspecify
‘content:"foo"; asnl: bitstring_overflow, relative_off set 0° . Offset val-
ues may be positive or negative.

O

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asnl: oversize_length 10000, absolute offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content "foo"; \
asnl: bitstring_overflow, relative_offset 0;)

3.5.18 Payload Detection Quick Reference

Table 3.9: Payload detection rule option keywords

Keyword Description

content The content keyword allows the user to set rules that seanckgfecific content in the
packet payload and trigger response based on that data.

rawbytes The rawbytes keyword allows rules to look at the raw packéd,dgnoring any decoding
that was done by preprocessors.

95

depth The depth keyword allows the rule writer to specify how fatoim packet Snort should
search for the specified pattern.

offset The offset keyword allows the rule writer to specify wherestart searching for a patterm
within a packet.
distance The distance keyword allows the rule writer to specify howifdo a packet Snort shoulgd

[72)

ignore before starting to search for the specified pattdative to the end of the previou
pattern match.

within The within keyword is a content modifier that makes sure that@st N bytes are between
pattern matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language seardhesbrmalized request UR|I
field.

isdataat The isdataat keyword verifies that the payload has data aafigul location.

pcre The pcre keyword allows rules to be written using perl confpyaregular expressions.

byte _test The bytetest keyword tests a byte field against a specific value (wtrator).

byte _jump The bytejump keyword allows rules to read the length of a portion aigd#hen skip that
far forward in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragroéiaet field against a decimal value. To catch all the first
fragments of an IP session, you could use the fragbits keyand look for the More fragments option in conjunction
with a fragoffset of 0.

Format

fragoffset:[<|>]<number>;

alert ip any any -> any any \
(msg: "First Fragment"; fraghits; M; fragoffset: 0;)

Figure 3.22: Fragoffset Usage Example

3.6.2

The ttl keyword is used to check the IP time-to-live valueisTdption keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

96

Example

This example checks for a time-to-live value that is less tBa
ttl:<3;

This example checks for a time-to-live value that between®®

ttl:3-5;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specifigeva

Format

tos:[']<number>;

Example
This example looks for a tos value that is not 4

tos:!4;

3.6.4 id

The id keyword is used to check the IP ID field for a specific gal$ome tools (exploits, scanners and other odd
programs) set this field specifically for various purposes,example, the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example
This example looks for the IP ID of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option éspnt.

The following options may be checked:

rr - Record Route
eol - End of list

nop - No Op

97

ts - Time Stamp

sec - IP Security

esec- IP Extended Security
Isrr - Loose Source Routing
ssrr - Strict Source Routing
satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict andéosource routing which aren’t used in any widespread
internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|esec|Isrr|ssrr|satid|any> ;

Example
This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

Thefragbits keyword is used to check if fragmentation and reserved bésat in the IP header.

The following bits may be checked:

M - More Fragments
D - Don't Fragment
R - Reserved Bit

The following modifiers can be set to change the match caiteri

+ match on the specified bits, plus any others
* match if any of the specified bits are set

I match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;

98

Example

This example checks if the More Fragments bit and the Do regient bit are set.

fraghits;:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size.riiay be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 40Gbyte

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless ofdize of the payload.

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits agsqmnt.

The following bits may be checked:

F - FIN (LSB in TCP Flags byte)

S -SYN

R -RST

P - PSH

A - ACK

U - URG

1 - Reserved bit 1 (MSB in TCP Flags byte)
2 - Reserved bit 2

0 - No TCP Flags Set

The following modifiers can be set to change the match caiteri

+ - match on the specified bits, plus any others
* - match if any of the specified bits are set

I - match if the specified bits are not set

To handle writing rules for session initiation packets sashECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified.eAcauild check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the vabfdke reserved bits.

99

Format

flags:[![*|+]<FSRPAU120>[<FSRPAU120>];

Example
This example checks if just the SYN and the FIN bits are sepiigg reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

3.6.9 flow

The flow keyword is used in conjunction with TCP stream reasg (see Sectioi21.2). It allows rules to only apply
to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. Thiswak packets related to SHOMBET clients viewing web
pages to be distinguished from servers running the $HOWH.

The established keyword will replace thegs: A+ used in many places to show established TCP connections.

Options
| Option | Description
to _client Trigger on server responses from A to B
to _server Trigger on client requests from A to B
from _client Trigger on client requests from A to B
from _server Trigger on server responses from A to B
established Trigger only on established TCP connections
stateless Trigger regardless of the state of the stream processofulusee packets that are designed
to cause machines to crash)
no_stream Do not trigger on rebuilt stream packets (useful for dsizeé sineam4)
only _stream Only trigger on rebuilt stream packets

Format
flow: [(established|stateless)]

[,(to_client|to_server|from_client|/from_server)]
[,(no_stream|only_stream)];

alert tcp '$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected”; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp '$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffi ¢\
flow:stateless;)

Figure 3.23: Flow usage examples

3.6.10 flowbits

Theflowbits keyword is used in conjunction with conversation trackirapf the Flow preprocessor (see Sediion2.1.3).
It allows rules to track states across transport protocssisas. The flowbits option is most useful for TCP sessions,
as it allows rules to generically track the state of an ajgpién protocol.

100

There are seven keywords associated with flowbits. Most @fofptions need a user-defined name for the specific
state that is being checked. This string should be limitedrp alphanumeric string including periods, dashes, and
underscores.

| Option | Description |

set Sets the specified state for the current flow.

unset Unsets the specified state for the current flow.

toggle Sets the specified state if the state is unset, otherwiséathsestate if the state is set.

isset Checks if the specified state is set.

isnotset Checks if the specified state is not set.

noalert Cause the rule to not generate an alert, regardless of thefrée detection options.
Format
flowbits: [set|unset|toggle|isset|reset|noalert][,<S TATE_NAME>];

alert tcp any 143 -> any any (msg:"IMAP login";
content:"OK LOGIN"; flowbits:set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST ;
flowbits:isset,logged_in;)

Figure 3.24: Flowbits Usage Examples
3.6.11 seq
The seq keyword is used to check for a specific TCP sequencbarum

Format

seg:<number>;

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledgger.

Format

ack: <number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

101

3.6.13 window

The window keyword is used to check for a specific TCP wind@e si

Format

window:[']<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

3.6.14 itype

The itype keyword is used to check for a specific ICMP type @alu

Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.

itype:>30;

3.6.15 icode

The itype keyword is used to check for a specific ICMP codeezalu

Format

icode: [<|>]<number>[<><number>];

Example
This example looks for an ICMP code greater than 30.

code:>30;

3.6.16 icmpid

The itype keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs ugel&&tP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

102

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

3.6.17 icmpseq

The itype keyword is used to check for a specific ICMP sequeatee.

This is useful because some covert channel programs ugel&&tP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seq:<number>;

Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, varsiad procedure numbers in SUNRPC CALL requests.
Wildcards are valid for both version and procedure numbgnsging ™*’;

Format

rpc: <application number>, [<version number>|*], [<proce dure number>|*]>;

Example
The following example looks for an RPC portmap GETPORT regue

alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keyiwaldwer than looking for the RPC values by using
normal content matching.

3.6.19 ipproto

The ip.proto keyword allows checks against the IP protocol heaBer.a list of protocols that may be specified by
name, see /etc/protocols.

103

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ipésséime as the destination IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and testiDation IP is the same.

alert ip any any -> any any (sampeip;)

3.6.21 Non-Payload Detection Quick Reference

Table 3.10: Non-payload detection rule option keywords

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP fragroéfeét field against a decimal
value.

ttl The ttl keyword is used to check the IP time-to-live value.

tos The tos keyword is used to check the IP TOS field for a specifigeva

id The id keyword is used to check the IP ID field for a specific galu

ipopts The ipopts keyword is used to check if a specific IP option &spnt.

fragbits The fragbits keyword is used to check if fragmentation arsreed bits are set in the IP
header.

dsize The dsize keyword is used to test the packet payload size.

flags The flags keyword is used to check if specific TCP flag bits agsqnt.

flow The flow keyword allows rules to only apply to certain direcis of the traffic flow.

flowbits The flowbits keyword allows rules to track states acrosssipart protocol sessions.

seq The seq keyword is used to check for a specific TCP sequencbarum

ack The ack keyword is used to check for a specific TCP acknowledggber.

window The window keyword is used to check for a specific TCP wind@e si

itype The itype keyword is used to check for a specific ICMP type @alu

icode The icode keyword is used to check for a specific ICMP codeevalu

icmp _id The icmpid keyword is used to check for a specific ICMP ID value.

icmp _seq The icmpseq keyword is used to check for a specific ICMP sequence value

rpc The rpc keyword is used to check for a RPC application, varsand procedure numbers
in SUNRPC CALL requests.

ip _proto The ip_proto keyword allows checks against the IP protocol header.

sameip The sameip keyword allows rules to check if the source ipésséime as the destination IP.

104

3.7 Post-Detection Rule Options

3.7.1 logto
The logto keyword tells Snort to log all packets that trigtfes rule to a special output log file. This is especially

handy for combining data from things like NMAP activity, HPTCGI scans, etc. It should be noted that this option
does not work when Snort is in binary logging mode.

Format

logto:"filename”;

3.7.2 session

The session keyword is built to extract user data from TCRias. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions iy weseful.

There are two available argument keywords for the sessitenaption, printable or all. The printable keyword only
prints out data that the user would normally see or be ablge.t

The all keyword substitutes non-printable characters thi#lir hexadecimal equivalents.
Format

session: [printable|all];

Example
The following example logs all printable strings in a telpatket.

log tcp any any <> any 23 (session:printable;)

Warnings

Using the session keyword can slow Snort down considerablit, should not be used in heavy load situations. The
session keyword is best suited for post-processing birprgy) log files.

3.7.3 resp

The resp keyword is used attempt to close sessions whenraisdtggered. In Snort, this is called flexible response.

Flexible Response supports the following mechanisms fengiting to close sessions:

| Option | Description |
rst _snd Send TCP-RST packets to the sending socket
rst _rcv Send TCP-RST packets to the receiving socket
rst _all Send TCPRST packets in both directions

icmp _net Send a ICMPNET_UNREACH to the sender
icmp _host | Send a ICMPHOST.UNREACH to the sender
icmp _port | Send a ICMPPORT.UNREACH to the sender
icmp _all Send all above ICMP packets to the sender

105

These options can be combined to send multiple responskes target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mech anism>]];

Warnings

This functionality is not built in by default. Use the — —etefiexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. Itis quitg éaget Snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)

It is easy to be fooled into interfering with normal networaffic as well.

Example
The following example attempts to reset any TCP connectigpott 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all;)

3.7.4 react

This keyword implements an ability for users to react toficahat matches a Snort rule. The basic reaction is blocking
interesting sites users want to access: New York Timeshdt#sor something really important - napster and porn
sites. The React code allows Snort to actively close offegndonnections and send a visible notice to the browser.
The notice may include your own comment. The following argais (basic modifiers) are valid for this option:

e block - close connection and send the visible notice
The basic argument may be combined with the following argusmédditional modifiers):

e msg - include the msg option text into the blocking visibleic®

e proxy <portnr> - use the proxy port to send the visible notice

Multiple additional arguments are separated by a comma.rd@aet keyword should be placed as the last one in the
option list.

Format

react; block[, <react additional_modifier>];

alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg, proxy 8000;)

Figure 3.25: React Usage Example

106

Warnings

React functionality is not built in by default. This code isrently bundled under Flexible Response, so enabling
Flexible Response (—enable-flexresp) will also enable Reac

Be very careful when using react. Causing a network traffizegation loop is very easy to do with this functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the singlekpathat triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destinatfarst istagged Tagged traffic is logged to allow analysis of

response codes and post-attack tratfigjgedalerts will be sent to the same output plugins as the origiteat, but it

is the responsibility of the output plugin to properly hamtliese special alerts. Currently, the database outpuiplug

described in Sectidn Z.4.6, does not properly hataligedalerts.

Format

tag: <type>, <count>, <metric>, [direction];

type

e session - Log packets in the session that set off the rule

e host - Log packets from the host that caused the tag to activatss (alirection] modifier)
count

e <integer> - Count is specified as a number of units. Units are specifiier:metric> field.
metric

e packets - Tag the host/session fercount> packets
e seconds - Tag the host/session fercount> seconds
e bytes - Tag the host/session fercount> bytes

di recti on -only relevant if host type is used.

e Src - Tag packets containing the source IP address of the padedagénerated the initial event.
e dst - Tag packets containing the destination IP address of thlegb#hat generated the initial event.

Note, any packets that generate an alert will not be taggedeXxample, it may seem that the following rule will tag
the first 600 seconds of any packet involving 10.1.1.1.

alert tcp any any <> 10.1.1.1 any (tag:host,600,seconds,sr c;)

However, since the rule will fire on every packet involving1.Q.1, no packets will get tagged. Tfiewbitsoption
would be useful here.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses aimether tharpackets , atagged _packet _limit will

be used to limit the number of tagged packets regardless ethehtheseconds or bytes count has been reached.
The defaultagged _packet _limit value is 256 and can be modified by using a config option in ynartsonf file
(see Sectio 2.0.3 on how to use thgged _packet _limit config option). You can disable this packet limit for
a particular rule by adding packets metric to your tag option and setting its count to 0 (This candbne on a
global scale by setting thtagged _packet _limit option in snort.conf to 0). Doing this will ensure that paiskare
tagged for the full amount afeconds or bytes and will not be cut off by théagged _packet _limit . (Note that the
tagged _packet _limit was introduced to avoid DoS situations on high bandwidttssenfor tag rules with a high
seconds orbytes counts.)

107

alert tcp 10.1.1.4 any -> 10.1.1.1 any (content."TAGMYPACK ETS"; tag:host,0,packets,600,seconds,src;)

Example

This example logs the first 10 seconds ortdgged _packet _limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

Theactivates keyword allows the rule writer to specify a rule to add whemadgific network event occurs. See
Sectio3.2J6 for more information.

Format

activates: 1;

3.7.7 activatedby

Theactivated _by keyword allows the rule writer to dynamically enable a rulkem a specific activate rule is trig-
gered. See Sectién3.P.6 for more information.

Format

activated_by: 1;

3.7.8 count

Thecount keyword must be used in combination with dtivated _by keyword. It allows the rule writer to specify
how many packets to leave the rule enabled for after it ivated. See Sectidn3.2.6 for more information.

Format

activated_by: 1; count: 50;

3.7.9 Post-Detection Quick Reference

Table 3.11: Post-detection rule option keywords

Keyword Description

logto The logto keyword tells Snort to log all packets that trigties rule to a special output log
file.

session The session keyword is built to extract user data from TCRiSas.

resp The resp keyword is used attempt to close sessions whenrarsateggered.

react This keyword implements an ability for users to react toficahat matches a Snort rule by
closing connection and sending a notice.

tag The tag keyword allow rules to log more than just the singlekeathat triggered the rule

activates This keyword allows the rule writer to specify a rule to addemta specific network event
occurs.

108

D

activated _by This keyword allows the rule writer to dynamically enableuéerwhen a specific activat
rule is triggered.

count This keyword must be used in combination with tieévated _by keyword. It allows the
rule writer to specify how many packets to leave the rule ¢&thfor after it is activated.

3.8 Event Thresholding

Event thresholding can be used to reduce the number of loglgetd for noisy rules. This can be tuned to significantly
reduce false alarms, and it can also be used to write a newedlaf rules. Thresholding commands limit the number
of times a particular event is logged during a specified tinterval.

There are 3 types of thresholding:

o |imit

Alerts on the 1stn events during the time interval, then ignores events fordiseof the time interval.
o threshold

Alerts everymtimes we see this event during the time interval.

e hoth

Alerts once per time interval after seeingoccurrences of the event, then ignores any additional ewdrring
the time interval.

Thresholding commands can be included as part of a rule, wcga use standalone threshold commands that refer-
ence the generator and SID they are applied to. There is ratifunal difference between adding a threshold to a rule,
or using a separate threshold command applied to the sameThére is a logical difference. Some rules may only
make sense with a threshold. These should incorporate teghthid command into the rule. For instance, a rule for
detecting a too many login password attempts may requiretian 5 attempts. This can be done using the ‘limit’
type of threshold command. It makes sense that the thre$katiare is an integral part of this rule.

In order for rule thresholds to apply properly, these rulesttontain a SID.

Only one threshold may be applied to any given generator aDdo&ir. If more than one threshold is applied to a
generator and SID pair, Snort will terminate with an erroiilelneading the configuration information.

3.8.1 Standalone Options

This format supports 6 threshold options as described iteT&fiz—all are required.

Table 3.12: Standalone Options

Option | Arguments

gen_id <generator ID>

sig _id <Snort signature 1>

type limit , threshold , orboth

track by_src or by _dst

count <number of events

seconds | <time period over which count is accrued

109

3.8.2 Standalone Format

threshold gen_id <gen-id>, sig_id <sig-id>, \
type <limit|threshold|both>, \
track <by srclby_dst>, count <s>, seconds <m>

3.8.3 Rule Keyword Format

This format supports 4 threshold options as described iteT&fL3—all are required.

Table 3.13: Rule Keyword Options

| Option | Arguments

type limit , threshold , orboth

track by_src or by _dst

count <number of events

seconds | <time period over which count is accrued

3.8.4 Rule Keyword Format

threshold: type <limit|threshold|both>, track <by src|b y_dst>, \
count <n>, seconds <m>;

For either standalone or rule format, all tracking is by srbwydst ip, ports or anything else are not tracked.

Thresholding can also be used globally, this allows you &c#p a threshold for every rule. Standard thresholding
tests are applied first to an event, if they do not block a mdenfbeing logged, and then the global thresholding test is
applied—thresholds in a rule will override a global threlshd@lobal thresholds do not override what'’s in a signature
or a more specific stand-alone threshold.

The global threshold options are the same as the stand@&shtiid options with the exception of theg' _id ’ field.
Thesig _id field must be setto 0 to indicate that this threshold commapties to allsig _id values with the specified
gen_id . To apply the same threshold to glin_id ’'s at the same time, and with just one command specify a vdlue o
gen_id=0 .

The format for global threshold commands is as such:

threshold gen_id <gen-id>, sig_id O, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event frergen-id>.

or

threshold gen_id 0 , sig_id 0, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <n>, \
seconds <m>

This applies a threshold to every event from every gen-id.

110

3.8.5 Examples
Standalone Thresholds
Limit logging to 1 event per 60 seconds:
threshold gen_id 1, sig_id 1851, \

type limit, track by src, \

count 1, seconds 60
Limit logging to every 3rd event:
threshold gen_id 1, sig_id 1852, \

type threshold, track by src, \

count 3, seconds 60
Limit logging to just 1 event per 60 seconds, but only if weeed 30 events in 60 seconds:
threshold gen_id 1, sig_id 1853, \

type both, track by src, \
count 30, seconds 60

Rule Thresholds

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type li mit, track \

by src, count 1 , seconds 60 ; sid:1000852; rev:l;)

This rule logs every 10th event on this SID during a 60 secatetval. So if less than 10 events occur in 60 seconds,
nothing gets logged. Once an event is logged, a new timegbstéots for type=threshold.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type th reshold, \

track by dst, count 10 , seconds 60 ; sid:1000852; rev:1;)
This rule logs at most one event every 60 seconds if at leasté®ts on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type bo th , track \

by dst, count 10 , seconds 60 ; sid:1000852; rev:l;)

Global Thresholds
Limit to logging 1 event per 60 seconds per IP triggering eadh (rule genid is 1):

threshold gen_id 1, sig_id 0, type limit, track by src, coun t 1, seconds 60

111

Limit to logging 1 event per 60 seconds per IP, triggeringeauite for each event generator:
threshold gen_id 0, sig_id 0, type limit, track by src, coun t 1, seconds 60

Eventsin Snort are generated in the usual way, threshoiglimgndled as part of the output system. Read gen-msg.map
for details on gen ids.

Users can also configure a memcap for threshold with a “cdrdijgtion:

config threshold: memcap <bytes>

112

3.9 Event Suppression

Event suppression stops specified events from firing withembving the rule from the rule base. Suppression uses
a CIDR block notation to select specific networks and usarsdppression. Suppression tests are performed prior to
either standard or global thresholding tests.

Suppression commands are standalone commands that edfeemerators, SIDs, and IP addresses via a CIDR block.
This allows a rule to be completely suppressed, or suppiesken the causative traffic is going to or coming from a
specific IP or group of IP addresses.

You may apply multiple suppression commands to a SID. You atsy combine one threshold command and several
suppression commands to the same SID.

3.9.1 Format

The suppress command supports either 2 or 4 options, asiuedan Tabld3 4.

Table 3.14: Suppression Options

| Option | Argument | Required? |
gen_id | <generatorid required
sig -id | <Snort signature id required
track by _src or by _dst optional, requires ip
ip ip[/mask] optional, requires trach

suppress gen_id <gen-id>, sig_id <sig-id>, \
track <by srclby dst>, ip <ip|mask-bits>

3.9.2 Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

suppress gen_id 1, sig_id 1852, track by src, ip 10.1.1.54
Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by dst, ip 10.1.1.0/2 4

113

3.10 Snort Multi-Event Logging (Event Queue)

Snort supports logging multiple events per packet/strdeandre prioritized with different insertion methods, sash
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

3.10.1 Event Queue Configuration Options

There are three configuration options to the configuratioampater 'evengjueue’.

1. maxqueue

This determines the maximum size of the event queue. Forgleaimthe event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given pamk&iteam. You can’tlog more than the mewent
number that was specified.

The default value is 3.

3. order _events

This argument determines the way that the incoming evestsraered. We currently have two different meth-
ods:

e priority - The highest priority (1 being the highest) events are crddirst.

e content _length - Rules are ordered before decode or preprocessor aledsuéas that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rplestguch as pass, alert, log, etc.
The default value is conteténgth.

3.10.2 Event Queue Configuration Examples

The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length
Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t length
Use the default event queue values, but change event order:

config event_queue: order_events priority

Use the default event queue values but change the numbeggddicevents:

config event_queue: log 2

114

3.11 Writing Good Rules

There are some general concepts to keep in mind when dergl§piort rules to maximize efficiency and speed.

3.11.1 Content Matching

The 2.0 detection engine changes the way Snort works slipgthaving the first phase be a setwise pattern match.
The longer a content option is, the maneactthe match. Rules withowontent(or uriconten) slow the entire system
down.

While some detection options, suchmgeandbyte test perform detection in the payload section of the packey; the
do not use the setwise pattern matching engine. If at alliplessry and have at least ormntentoption if at all
possible.

3.11.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, insteadao$pecific exploit.

For example, look for a the vulnerable command with an argurtiet is too large, instead of shellcode that binds a
shell.

By writing rules for the vulnerability, the rule is less velrable to evasion when an attacker changes the exploit
slightly.

3.11.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper casersettFTP is a good example. In FTP, to send the
username, the client sends:

user username_here
A simple rule to look for FTP root login attempts could be:
alert tcp any any -> any any 21 (content"user root";)

While it mayseentrivial to write a rule that looks for the username root, a doole will handle all of the odd things
that the protocol might handle when accepting the user camdma

For example, each of the following are accepted by most FiRse

user root
user root
user root
user root
user<tab>root

To handle all of the cases that the FTP server might handieulle needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; co ntent:"root";
pcre:"/usens+root/i*;)

There are a few important things to note in this rule:

115

e The rule has dlowoption, verifying this is traffic going to the server on an &ished session.

e The rule has @ontentoption, looking forroot, which is the longest, most unique string in the attack. dpison
is added to allow Snort’s setwise pattern match detectigmerno give Snort a boost in speed.

e The rule has @creoption, looking for user, followed at least one space charguvhich includes tab), followed
by root, ignoring case.

3.11.4 Optimizing Rules
The content matching portion of the detection engine hasrsémn to handle a few evasion cases. Rules that are not
properly written can cause Snort to waste time duplicatimgcks.

The way the recursion works now is if a pattern matches, aadyfof the detection options after that pattern fail, then
look for the pattern again after where it was found the presitime. Repeat until the pattern is not found again or the
opt functions all succeed.

On first read, that may not sound like a smart idea, but it isledeFor example, take the following rule:
alert ip any any -> any any (content:"a"; content."b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Whout recursion, the payload “aab” would fail, even
though it is obvious that the payload “aab” has “a” immediafellowed by “b”, because the first "a” is not immedi-
ately followed by “b”".

While recursion is important for detection, the recursiomplementation is not very smart.

For example, the following rule options are not optimized:
content."|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks fa packet with a single byte of 0x13. However, because
of recursion, a packet with 1024 bytes of 0x13 could caus&16@ many pattern match attempts and 1023 too many
dsize checks. Why? The content 0x13 would be found in thelfitt, then the dsize option would fail, and because
of recursion, the content 0x13 would be found again stadiitey where the previous 0x13 was found, once it is found,
then check the dsize again, repeating until 0x13 is not fonride payload again.

Reordering the rule options so that discrete checks (sudsias) are moved to the begining of the rule speed up
Snort.

The optimized rule snipping would be:
dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as tisezd check is the first option checked and dsize is a
discrete check without recursion.

The following rule options are discrete and should gengtadl placed at the begining of any rule:

e dsize
o flags

o flow

fragbits

icmp _id

icmp _seq

icode

116

e id

e ipopts
e ip _proto
e itype

e seq

e session
o t0S

o ttl

e ack

e window
e resp

e sameip

3.11.5 Testing Numerical Values

The rule optiondbytetestandbytejumpwere written to support writing rules for protocols that bdength encoded
data. RPC was the protocol that spawned the requiremeritdsettwo rule options, as RPC uses simple length based
encoding for passing data.

In order to understangthy byte test and bytgump are useful, let's go through an exploit attempt agaimsisadmind
service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88ccocevween.
00 00 00 Oa 00 00 00 01 OO OO 00 01 00 00 00 20cccc.e.

40 28 3a 10 00 00 00 Oa 4d 45 54 41 53 50 4c 4f @(......metasplo
49 54 00 00 00 00 00 OO OO OO 00 00 00 00 00 00 it.....ce..
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df ... @(:...e.
00 00 00 00 00 00 00 OO OO OO 0O 00 00 00 00 00coooveeee
00 00 00 00 00 00 00 06 OO 00 00 00 00 00 00 00ccovwee.
00 00 00 00 00 00 00 04 00 OO 00 00 00 00 00 04 ...

7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 04 ...

7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 11 ...

00 00 00 1e 00 00 00 OO OO 00 0O 00 00 00 00 00ccovweee.
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f ... ;metasplo
49 54 00 00 00 00 00 OO OO OO 00 00 00 00 00 00 it.....ce..
00 00 00 00 00 00 00 OO OO OO 0O 00 00 00 00 00cooveeee
00 00 00 00 00 00 00 OO OO OO 0O 00 00 00 00 00cooveeee
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00 ... system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f ...[.l.I./

2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1le ../bin/sh.......
<snip>

Let’s break this up, describe each of the fields, and figurdnowtto write a rule to catch this exploit.

There are a few things to note with RPC:

e Numbers are written as uint32s, taking four bytes. The nurB@bavould show up as 0x0000001a.

117

e Strings are written as a uint32 specifying the length of theg, the string, and then null bytes to pad the length
of the string to end on a 4 byte boundary. The string “bob” wiahow up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each req uest
00 00 00 00 - rpc type (call = 0, response = 1)

00 00 00 02 - pc version (2)

00 01 87 88 - pc program (0x00018788 = 100232 = sadmind)

00 00 00 Oa - rpc program version (0x0000000a = 10)

00 00 00 01 - pc procedure (0x00000001 = 1)

00 00 00 01 - credential flavor (1 = auth\ unix)

00 00 00 20 - length of auth\ unix data (0x20 = 32

the next 32 bytes are the auth\ unix data

40 28 3a 10 - unix timestamp (0x40283al0 = 1076378128 = feb 10 0 1:55:28 2004 gmt)
00 00 00 Oa - length of the client machine name (0x0a = 10)

4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)

00 00 00 00 - gid of requesting user (0)

00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth\ null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed toduneck of sadmind.

However, we know the vulnerability is that sadmind truses tiid coming from the client. sadmind runs any request
where the client’s uid is O as root. As such, we have decodedgmof the request to write our rule.

First, we need to make sure that our packet is an RPC call.
content:"|00 00 00 00|"; offset:4; depth:4;
Then, we need to make sure that our packet is a call to sadmind.
content:"|00 01 87 88|"; offset:12; depth:4;
Then, we need to make sure that our packet is a call to the guoed,, the vulnerable procedure.
content:"|00 00 00 01| offset:16; depth:4;
Then, we need to make sure that our packet has awnithcredentials.
content:"|00 00 00 01|"; offset:20; depth:4;

We don't care about the hostname, but we want to skip overdtcieck a number value after the hosthname. This is
where bytetest is useful. Starting at the length of the hostname, tkeewdla have is:

00 00 00 Oa 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 OO 0O 00 00 00 OO 0O 00 00 00 00 0O
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump thatynetes forward, making sure to account for the
padding that RPC requires on strings. If we do that, we areatow

118

00 00 00 00 OO 0O 00 00 00 OO 0O 00 00 00 00 0O
00 00 00 00

which happens to be the exact location of the uid, the valuearg to check.

In english, we want to read 4 bytes, 36 bytes from the beg@afrthe packet, and turn those 4 bytes into an integer
and jump that many bytes forward, aligning on the 4 byte bamyndio do that in a Snort rule, we use:

byte_jump:4,36,align;
then we want to look for the uid of 0.
content:"|00 00 00 00|"; within:4;
Now that we have all the detection capabilities for our rid€s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01| offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each otteewe should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01]"; offset:16; depth:8;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow mreading the client’s hostname, instead of reading the
length of the hostname and jumping that many bytes forwaedwauld check the length of the hosthame to make
sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into tle>aturn it into a number, and then make sure it is not
too large (let’s say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;
Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:16; depth:8;
byte_test:4,>,200,36;

119

Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On Linux, a modified version of libpcap is available that iemlents a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap iempentation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his webainttp:/public.lanl.gov/cpw/

Instead of the normal mechanism of copying the packets frermed memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets intoeaiesthbuffer that Snortis able to read directly. This change
speeds up Snort by limiting the number of times the packebded before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, emglitie ring buffer is done via setting the enviornment
variable PCAPFRAMES PCAP FRAMESIs the size of the ring buffer. According to Phil, the maximgine is
32768, as this appears to be the maximum number of iovecstinelkcan handle. By usingCAP FRAMES=max
libpcap will automatically use the most frames possible.Edmernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

120

http://public.lanl.gov/cpw/

Chapter 5

Dynamic Modules

Preprocessors, detection capabilities, and rules can ealebeloped as dynamically loadable module to snort. When
enabled via the-enable-dynamicpluginonfigure option, the dynamic API presents a means for l@pdymamic
libraries and allowing the module to utilize certain fulcts within the main snort code.

The remainder of this chapter will highlight the data stawes and API functions used in developing preprocessors,
detection engines, and rules as a dynamic plugin to snort.

5.1 Data Structures

A number of data structures are central to the API. The dedmif each is defined in the following sections.

5.1.1 DynamicPluginMeta

The DynamicPluginMetatructure defines the type of dynamic module (preprocessies, or detection engine), the
version information, and path to the shared library. A sHdiferary can implement all three types, but typically is
limited to a single functionality such as a preprocessas defined irsf _dynamic _meta.h as:

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{ .
int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;
} DynamicPluginMeta;

5.1.2 DynamicPreprocessorData

The DynamicPreprocessorDatstructure defines the interface the preprocessor usesat@attwith snort itself. This
inclues functions to register the preprocessor’s confitmaarsing, restart, exit, and processing functionsidhides
function to log messages, errors, fatal errors, and delmggimifo. It also includes information for setting alerts,
handling Inline drops, access to the StreamAPI, and it pleviaccess to the normalized http and alternate data

121

buffers. This data structure should be initialized when pheprocessor shared library is loaded. It is defined in
sf _dynamic _preprocessor.h as:

typedef struct _DynamicPreprocessorData
{
int version;
char *altBuffer;
unsigned int altBufferLen;
Urilnfo *uriBuffersf]MAX_URIINFOS];
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
DebugMsgFunc debugMsg;

PreprocRegisterFunc registerPreproc;
AddPreprocFunc addPreproc;
AddPreprocRestart addPreprocRestart;
AddPreprocExit addPreprocExit;
AddPreprocConfCheck addPreprocConfCheck;
RegisterPreprocRuleOpt preprocOptRegister;
AddPreprocProfileFunc addPreprocProfileFunc;
ProfilingFunc profilingPreprocsFunc;

void *totalPerfStats;

AlertQueueAdd alertAdd;
ThresholdCheckFunc thresholdCheck;

InlineFunc inlineMode;
InlineDropFunc inlineDrop;

DetectFunc detect;
DisableDetectFunc disableDetect;
DisableDetectFunc disableAllDetect;

SetPreprocBitFunc setPreprocBit;

StreamAPI *streamAPI;
SearchAPI *searchAPI;

char **config_file;

int *config_line;
printfappendfunc printfappend;
TokenSplitFunc tokenSplit;
TokenFreeFunc tokenFree;

GetRulelnfoByNameFunc getRulelnfoByName;
GetRulelnfoByldFunc getRulelnfoByld;
} DynamicPreprocessorData;

5.1.3 DynamicEngineData

The DynamicEngineDatatructure defines the interface a detection engine usegdmat with snort itself. This
includes functions for logging messages, errors, fatairerrand debugging info as well as a means to register and
check flowbits. It also includes a location to store rulebstfor dynamic rules that are loaded, and it provides access
to the normalized http and alternate data buffers. It is @efinsf _dynamic _engine.h as:

122

typedef struct _DynamicEngineData
{
int version;
char *altBuffer;
Urilnfo *uriBuffersf]MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowhitCheck;
DetectAsnl asnlDetect;
LogMsg logMsg;
LogMsg errMsg;
LogMsg fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;
} DynamicEngineData;

5.1.4 SFSnortPacket

The SFSnortPackestructure mirrors the snort Packet structure and providesss to all of the data contained in a
given packet.

It and the data structures it incorporates are definefl isnort _packeth as follows. Additional data structures may
be defined to reference other protocol fields.

#define IP_RESBIT 0x8000
#define IP_DONTFRAG 0x4000
#define IP_MOREFRAGS 0x2000

typedef struct _IPV4Header

{
u_int8_t version_headerlength;
u_int8_t type_service;
u_intl6_t data_length;
u_intl6 t identifier;
u_intl6 t offset;
u_int8_t time_to_live;
u_int8_t proto;
u_intl6 t checksum;
struct in_addr source;
struct in_addr destination;

} IPV4Header;

#define MAX_IP_OPTIONS 40
[* ip option codes */

#define IPOPTION_EOL 0x00
#define IPOPTION_NOP 0x01
#define IPOPTION_RR 0x07
#define IPOPTION_RTRALT 0x14
#define IPOPTION_TS Ox44
#define IPOPTION_SECURITY 0x82
#define IPOPTION_LSRR 0x83
#define IPOPTION_LSRR_E 0x84
#define IPOPTION_SATID 0x88
#define IPOPTION_SSRR 0x89

typedef struct _IPOptions

123

u_int8_t option_code;

u_int8_t length;

u_int8_t *option_data;
} IPOptions;

typedef struct _TCPHeader

{
u_intl6 t source_port;
u_int16 t destination_port;
u_int32_t sequence;
u_int32_t acknowledgement;
u_int8_t offset reserved;
u_int8 t flags;
u_intl6 t window;
u_intl6 t checksum;
u_intl6 t urgent_pointer;

} TCPHeader;

#define TCPHEADER_FIN 0x01

#define TCPHEADER_SYN 0x02

#define TCPHEADER_RST 0x04

#define TCPHEADER_PUSH 0x08

#define TCPHEADER_ACK 0x10

#define TCPHEADER_URG 0x20

#define TCPHEADER_RES2 0x40

#define TCPHEADER_RES1 0x80

#define TCPHEADER_NORESERVED (TCPHEADER_FIN|TCPHEADERYN|TCPHEADER_RST \
|TCPHEADER_PUSH|TCPHEADER_ACK|TCPHEADER_URG)

#define MAX_TCP_OPTIONS 40

[* tcp option codes */

#define TCPOPT_EOL 0x00

#define TCPOPT_NOP 0x01

#define TCPOPT_MSS 0x02

#define TCPOPT_WSCALE 0x03 f* window scale factor (rfc1072) ¥
#define TCPOPT_SACKOK 0x04 * selective ack ok (rfc1072) */
#define TCPOPT_SACK 0x05 [* selective ack (rfc1072) */
#define TCPOPT_ECHO 0x06 ¥ echo (rfc1072) */

#define TCPOPT_ECHOREPLY 0x07 [* echo (rfc1072) */

#define TCPOPT_TIMESTAMP 0x08 [* timestamps (rfc1323) */

#define TCPOPT_CC 0x11 [* TITCP CC options (rfc1644) */
#define TCPOPT_CCNEW 0x12 [* TITCP CC options (rfc1644) */
#define TCPOPT_CCECHO 0x13 [* TITCP CC options (rfc1644) */

typedef IPOptions TCPOptions;

typedef struct _UDPHeader

{
u_intl6_t source_port;
u_intl6_t destination_port;
u_intl6 t data_length;
u_intl6 t checksum;

} UDPHeader;

typedef struct _ICMPSequencelD

{
u_intl6 t id;

124

u_intl6 t seq;
} ICMPSequencelD;

typedef struct _ICMPHeader

{
u_int8_t type;
u_int8_t code;
u_intl6 t checksum;
union
{
I* type 12 */
u_int8 t parameter_problem_ptr;
I* type 5 *
struct in_addr gateway addr;
I* type 8, 0 */
ICMPSequencelD echo;
I* type 13, 14 *
ICMPSequencelD timestamp;
* type 15, 16 */
ICMPSequencelD info;
int voidInfo;
* type 3/code=4 (Path MTU, RFC 1191) */
struct path_mtu
{
u_int16_t voidinfo;
u_intl6 t next mtu;
} path_mtu;
I* type 9 *
struct router_advertisement
{
u_int8_t number_addrs;
u_int8_t entry_size;
u_intl6 t lifetime;
} router_advertisement;
} icmp_header_union;
#define icmp_parameter_ptr icmp_header_union.paramete
#define icmp_gateway addr icmp_header_union.gateway w
#define icmp_echo_id icmp_header_union.echo.id
#define icmp_echo_seq icmp_header_union.echo.seq
#define icmp_timestamp_id icmp_header_union.timestamp
#define icmp_timestamp_seq icmp_header_union.timestam
#define icmp_info_id icmp_header_union.info.id
#define icmp_info_seq icmp_header_union.info.seq
#define icmp_void icmp_header_union.void
#define icmp_nextmtu icmp_header_union.path_mtu.nextm
#define icmp_ra_num_addrs icmp_header_union.router_ad
#define icmp_ra_entry _size icmp_header_union.router_a
#define icmp_ra_lifetime icmp_header_union.router_adv

125

r_problem_ptr
addr

p.seq

tu
vertisement.number_addrs
dvertisement.entry_size
ertisement.lifetime

union

[* timestamp */
struct timestamp

{
u_int32_t orig;
u_int32_t receive;
u_int32_t transmit;
} timestamp;

[* IP header for unreach */
struct ipv4_header

{
IPV4Header *ip;

[* options and then 64 bits of data */
} ipv4_header;

¥ Router Advertisement */
struct router_address

{
u_int32_t addr;
u_int32_t preference;
} router_address;

I* type 17, 18 */
u_int32_t mask;

char data[1];

} icmp_data_union;

#define
#define
#define
#define
#define
#define
#define

icmp_orig_timestamp icmp_data_union.timestamp .orig
icmp_recv_timestamp icmp_data_union.timestamp .receive
icmp_xmit_timestamp icmp_data_union.timestamp transmit
icmp_ipheader icmp_data_union.ip_header

icmp_ra_addr0 icmp_data_union.router_address

icmp_mask icmp_data_union.mask

icmp_data icmp_data_union.data

} ICMPHeader;

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

ICMP_ECHO_REPLY 0 ¥ Echo Reply *
ICMP_DEST UNREACHABLE 3 [* Destination Unreachab le *
ICMP_SOURCE_QUENCH 4 [* Source Quench *
ICMP_REDIRECT 5 [* Redirect (change route) */
ICMP_ECHO_REQUEST 8 [* Echo Request */
ICMP_ROUTER_ADVERTISEMENT 9 [* Router Advertisem ent */
ICMP_ROUTER_SOLICITATION 10 [* Router Solicitati on *
ICMP_TIME_EXCEEDED 11 /* Time Exceeded */
ICMP_PARAMETER_PROBLEM 12 [* Parameter Problem *
ICMP_TIMESTAMP_REQUEST 13 [* Timestamp Request *
ICMP_TIMESTAMP_REPLY 14 f* Timestamp Reply */
ICMP_INFO_REQUEST 15 [* Information Request *
ICMP_INFO_REPLY 16 I* Information Reply */
ICMP_ADDRESS REQUEST 17 [* Address Mask Request *
ICMP_ADDRESS_REPLY 18 /* Address Mask Reply */
CHECKSUM_INVALID_IP 0x01

CHECKSUM_INVALID_TCP 0x02
CHECKSUM_INVALID_UDP 0x04

126

#define CHECKSUM_INVALID_ICMP 0x08
#define CHECKSUM_INVALID_IGMP 0x10

typedef struct _SFSnortPacket

{
struct pcap_pkthdr *pcap_header;
u_int8_t *pkt_data;

void *fddi_header;
void *fddi_saps;
void *ddi_sna;
void *fddi_iparp;
void *fddi_other;

void *tokenring_header;
void *tokenring_header_lic;
void *tokenring_header_mr;

void *sll_header;

void *pflog_header;
void *old_pflog_header;

void *ether_header;
void *vlan_tag_header;

void *ether_header llc;
void *ether_header_other;

void *wifi_header;

void *ether_arp_header;

void *ether_eapol_header; /* 802.1x */
void *eapol_headear;

u_int8_t *eapol_type;

void *eapol_key;

void *ppp_over_ether_header;

IPV4Header *ip4_header, *orig_ip4_header;
u_int32_t ip4_options_length;

void *ip4_options_data;

TCPHeader *tcp_header, *orig_tcp_header;
u_int32_t tcp_options_length;

void *tcp_options_data;

UDPHeader *udp_header, *orig_udp_header;
ICMPHeader *icmp_header, *orig_icmp_header;

u_int8_t *payload;
u_intl6 t payload_size;
u_intl6_t normalized payload_size;

u_intl6_t actual ip_length;

127

u_int8_t ip_fragmented;
u_intl6 t ip_fragment offset;
u_int8_t ip_more_fragments;
u_int8_t ip_dont_fragment;
u_int8_t ip_reserved;

u_intl6 t src_port;
u_intl16 t dst port;
u_intl6 t orig_src_port;
u_intl6 t orig_dst port;
u_int32_t pcap_cap_len;

u_int8_t num_uris;

void *stream_session_ptr;

void *fragmentation_tracking_ptr;
void *flow_ptr;

void *stream_ptr;

IPOptions ip_options[MAX_IP_OPTIONS];
u_int32_t num_ip_options;
u_int8_t ip_last option_invalid_flag;

TCPOptions tcp_options]MAX_TCP_OPTIONS];
u_int32_t num_tcp_options;
u_int8_t tcp_last option_invalid_flag;

u_int8_t checksums_invalid;

u_int32_t flags;
#define FLAG_REBUILT_FRAG 0x00000001
#define FLAG_REBUILT_STREAM 0x00000002
#define FLAG_STREAM_UNEST_UNI 0x00000004
#define FLAG_STREAM_UNEST_BI 0x00000008

#define FLAG_STREAM_EST 0x00000010
#define FLAG_FROM_SERVER 0x00000040
#define FLAG_FROM_CLIENT 0x00000080
#define FLAG_HTTP_DECODE 0x00000100
#define FLAG_STREAM_INSERT ~ 0x00000400
#define FLAG_ALT_DECODE 0x00000800

u_int32_t number_bytes to_check;

void *preprocessor_bit_mask;
} SFSnortPacket;

5.1.5 Dynamic Rules

A dynamic rule should use any of the following data strucsufenhe following structures are definedsin_snort _plugin _api.h .

Rule

The Rulestructure defines the basic outline of a rule and containsdinge set of information that is seen in a text
rule. That includes protocol, address and port informagiod rule information (classification, generator and sigreat
IDs, revision, priority, classification, and a list of reéeces). It also includes a list of rule options and an optiona
evaluation function.

128

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule

{
IPInfo ip;
Rulelnformation info;
RuleOption **options; /* NULL terminated array of RuleOpti on union */
ruleEvalFunc evalFunc;
char initialized; [* Rule Initialized, used internally */
u_int32_t numOptions; /* Rule option count, used internall y *
char noAlert; [* Flag with no alert, used internally */
void *ruleData; [* Hash table for dynamic data pointers */
} Rule;

The rule evaluation function is defined as
int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacketstauct

Rulelnformation

The Rulelnformationstructure defines the meta data for a rule and includes gemdEa, signature ID, revision,
classification, priority, message text, and a list of refiess.

int (*ruleEvalFunc)(void *);
truct _Rulelnformation
{
u_int32_t geniD;
u_int32_t siglD;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */
} Rulelnformation;

RuleReference

TheRuleReferencstructure defines a single rule reference, including theegy:miame and rereference identifier.

typedef struct _RuleReference

{

char *systemName;
char *refldentifier;
} RuleReference;

129

IPInfo

ThelPInfo structure defines the initial matching criteria for a rulelamcludes the protocol, src address and port, des-
tination address and port, and direction. Some of the stdreldngs and variables are predefined - any, HQNIET,
HTTP_SERVERS, HTTBPORTS, etc.

typedef struct _IPInfo

{
u_int8_t protocol;
char * src_addr;
char * src_port; /* 0 for non TCP/UDP */
char direction; * non-zero is bi-directional */
char * dst_addr;
char * dst_port; /¥ 0 for non TCP/UDP */
} IPInfo;
#define ANY_NET "any"
#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "SEXTERNAL_NET"
#define ANY_PORT “any"
#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"

#define SMTP_SERVERS "$SMTP_SERVERS"

RuleOption

The RuleOptionstructure defines a single rule option as an option type arefesience to the data specific to that
option. Each option has a flags field that contains specifis filagthat option as well as a "Not” flag. The "Not” flag
is used to negate the results of evaluating that option.

#define OPTION_TYPE_CONTENT 0x01
#define OPTION_TYPE_PCRE 0x02
#define OPTION_TYPE_FLOWBIT 0x03
#define OPTION_TYPE_FLOWFLAGS 0x04
#define OPTION_TYPE_ASN1 0x05
#define OPTION_TYPE_CURSOR 0x06

#define OPTION_TYPE_HDR_CHECK 0x07
#define OPTION_TYPE_BYTE_TEST 0x08
#define OPTION_TYPE_BYTE JUMP 0x09
#define OPTION_TYPE_BYTE_EXTRACT 0x10
#define OPTION_TYPE_SET_CURSOR 0x11
#define OPTION_TYPE_LOOP 0x12

typedef struct _RuleOption
{
int optionType;
union
{
void *ptr;
Contentinfo *content;
Cursorinfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *hyte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;

130

AsnlContext *asni,
HdrOptCheck *hdrData;
Loopinfo *loop;
} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initializédua time, such as the compiled PCRE information, Boyer-
Moore content information, the integer ID for a flowbit, etc.

The option types and related structures are listed below.

e OptionType: Content & Structure&€ontentinfo

The Contentinfostructure defines an option for a content search. It incltidepattern, depth and offset, and
flags (one of which must specify the buffer — raw, URI or norized — to search). Additional flags include
nocase, relative, unicode, and a designation that thisobig to be used for snorts fast pattern evaluation. The
most unique content, that which distinguishes this rule pessible match to a packet, should be marked for
fast pattern evaluation. In the dynamic detection engimeiged with Snort, if nadContentinfostructure in a
given rules uses that flag, the one with the longest contagthewill be used.

typedef struct _Contentinfo

{
u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; [* must include a CONTENT BUF X *
void *hoyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} Contentlinfo;

#define CONTENT_NOCASE 0x01
#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04
#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10

#define CONTENT_END_BUFFER 0x20
#define CONTENT_BUF_NORMALIZED 0x100
#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

e OptionType: PCRE & Structure? CREInfo

The PCRElInfostructure defines an option for a PCRE search. It includeR@RE expression, pciftags such
as caseless, as defined in PCRE.h, and flags to specify ttez. buff

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED

131

PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY
*/

typedef struct _PCREInfo

{

char *expr;

void *compiled_expr;

void *compiled_extra;

u_int32_t compile_flags;

u_int32_t flags; /* must include a CONTENT BUF X *
} PCREInfo;

OptionType: Flowbit & StructureFlowBitsInfo

TheFlowBitsInfostructure defines a flowbits option. It includes the name effliwbit and the operation (set,
unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo

{
char *flowBitsName;
u_int8 t operation;
u_int32_t id;

u_int32_t flags;
} FlowBitsInfo;

OptionType: Flow Flags & Structuré&lowFlags

The FlowFlagsstructure defines a flow option. It includes the flags, whiokcty the direction (fromserver,
to_server), established session, etc.

#define FLOW_ESTABLISHED 0x10

#define FLOW_IGNORE_REASSEMBLED 0x1000

#define FLOW_ONLY_REASSMBLED 0x2000

#define FLOW_FR_SERVER 0x40

#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80

#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags

{
u_int32_t flags;
} FlowFlags;

OptionType: ASN.1 & StructureAsn1Context

The Asnl1Contexstructure defines the information for an ASN1 option. It roierthe ASN1 rule option and
also includes a flags field.

#define ASN1_ABS_OFFSET 1

132

#define ASN1_REL_OFFSET 2

typedef struct _AsnlContext
{
int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;
} AsnlContext;

OptionType: Cursor Check & Structur€ursorinfo

The Cursorinfostructure defines an option for a cursor evaluation. Thearussthe current position within the
evaluation buffer, as related to content and PCRE searakesell as byte tests and byte jumps. It includes an
offset and flags that specify the buffer. This can be usedribbere is sufficient data to continue evaluation,
similar to the isdataat rule option.

typedef struct _Cursorinfo

{
int32_t offset;

u_int32_t flags; I* specify one of CONTENT BUF X *
} Cursorlnfo;

OptionType: Protocol Header & StructutddrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header foeaifsp value. It incldues the
header field, the operation (j,¢,,=,etc), a value, a masktrégthat part of the header field, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID */

#define IP_HDR_PROTO 0x0002 /* IP Protocol */

#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r*

#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option XX i ncluded */
#define IP_HDR TTL 0x0006 /* IP Time to live */

#define IP_HDR_TOS 0x0007 /* IP Type of Service */

#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value *

#define TCP_HDR_SEQ 0x0020 /* TCP Seq Value *

#define TCP_HDR_FLAGS 0x0030 /* Flags set in TCP Header */

#define TCP_HDR_OPTIONS 0x0040 /* TCP Options -- is option x x included */
#define TCP_HDR_WIN 0x0050 /* TCP Window */

#define TCP_HDR_OPTCHECK_MASK 0x00f0

#define ICMP_HDR_CODE 0x1000 /* ICMP Header Code */
#define ICMP_HDR_TYPE 0x2000 /* ICMP Header Type */
#define ICMP_HDR_ID 0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E CHO_REPLY *
#define ICMP_HDR_SEQ 0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY *

#define ICMP_HDR_OPTCHECK_MASK 0xf000

typedef struct _HdrOptCheck

{
u_intl6 t hdrField; /* Field to check */

u_int32_t op; [* Type of comparison */

133

u_int32_t value; [* Value to compare value against */
u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;

} HdrOptCheck;

e OptionType: Byte Test & Structur@yteData

The ByteDatastructure defines the information for both ByteTest and Byiep operations. It includes the
number of bytes, an operation (for ByteTest, j,¢,=etchlae; an offset, multiplier, and flags. The flags must
specify the buffer.

#define CHECK_EQ 0
#define CHECK_NEQ 1
#define CHECK_LT 2
#define CHECK_GT 3
#define CHECK_LTE 4
#define CHECK_GTE 5
#define CHECK_AND 6
#define CHECK_XOR 7
#define CHECK_ALL 8
#define CHECK_ATLEASTONE 9

#define CHECK_NONE 10
typedef struct _ByteData
{
u_int32_t bytes; /¥ Number of bytes to extract */
u_int32_t op; [* Type of byte comparison, for checkValue */
u_int32_t value; [* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; f* must include a CONTENT BUF X */
} ByteData;

e OptionType: Byte Jump & Structur®@yteData
SeeByte Tesabove.

e OptionType: Set Cursor & Structur€ursorinfo
SeeCursor Checlabove.

e OptionType: Loop & Structured:ooplinfo,ByteExtract,DynamicElement

TheLooplInfostructure defines the information for a set of options thattarbe evaluated repeatedly. The loop
option acts like a FOR loop and includes start, end, and inerg values as well as the comparison operation for
termination. It includes a cursor adjust that happens thin@ach iteration of the loop, a reference to a Rulelnfo
structure that defines the RuleOptions are to be evaluatedgh each iteration. One of those options may be a
ByteExtract.

typedef struct _Loopinfo

{
DynamicElement *start; [* Starting value of FOR loop (i=sta) *
DynamicElement *end; ¥ Ending value of FOR loop (i OP end) *
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; [* Type of comparison for loop termination */
Cursorinfo *cursorAdjust; /* How to move cursor each iterat ion of loop */
struct _Rule *subRule; [* Pointer to SubRule & options to eva luate within
* the loop */
u_int8_t initialized; * Loop initialized properly (safeg uard) */
u_int32_t flags; ¥ can be used to negate loop results, speci fies
} Looplnfo;

134

TheByteExtracstructure defines the information to use when extractingdfdr a DynamicElement used a in
Loop evaltion. It includes the number of bytes, an offsetltiplier, flags specifying the buffer, and a reference
to the DynamicElement.

typedef struct _ByteExtract

{
u_int32_t bytes; /* Number of bytes to extract */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; f* must include a CONTENT BUF X */
char *refld; f* To match up with a DynamicElement refld */
void *memoryLocation; /* Location to store the data extract ed *

} ByteExtract;

The DynamicElemenstructure is used to define the values for a looping evaloatlbincludes whether the
element is static (an integer) or dynamic (extracted fronufeb in the packet) and the value. For a dynamic
element, the value is filled by a related ByteExtract optloat ts part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT REF 2

typedef struct _DynamicElement

{

char dynamicType; I* type of this field - static or reference *
char *refld; * reference ID (NULL if static) */
union
{
void *voidPtr; * Holder */
int32_t staticlnt; [* Value of static */
int32_t *dynamicint; /* Pointer to value of dynamic */
} data;

} DynamicElement;

5.2 Required Functions

Each dynamic module must define a set of functions and datetstip work within this framework.

5.2.1 Preprocessors

Each dynamic preprocessor library must define the folloiimgtions. These are defined in the fife.dynamic _preproc _lib.c

The metadata and setup function for the preprocessor sheul@finedf _preproc _info.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializePreprocessor(DynamicPreprocessorData *)

This function initializes the data structure for use by thepgrocessor into a library global variablelpd and
invokes the setup function.

5.2.2 Detection Engine

Each dynamic detection engine library must define the fahgvunctions.

135

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializeEngineLib(DynamicEngineData *)
This function initializes the data structure for use by thgiae.

The sample code provided with Snort predefines those fumstamd defines the following APIs to be used by a
dynamic rules library.

¢ int RegisterRules(Rule **)

This is the function to iterate through each rule in the ligitjalize it to setup content searches, PCRE evalution
data, and register flowbits.

e int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the lisd avrite a rule-stop to be used by snort to control the
action of the rule (alert, log, drop, etc).

e int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does nothitgsyown Rule Evaluation Function. This uses the
individual functions outlined below for each of the rule iopts and handles repetitive content issues.

Each of the functions below returns RULMATCH if the option matches based on the current criteriagou
position, etc).

int contentMatch(void *p, Contentinfo* content;jnt8_t **cursor)

This function evaluates a single content for a given paaktetcking for the existence of that content as
delimited by ContentInfo and cursor. Cursor position is afgd and returned in *cursor.

With a text rule, the with option corresponds to depth, areddistance option corresponds to offset.
int checkFlow(void *p, FlowFlags *flowflags)
This function evaluates the flow for a given packet.

int extractValue(void *p, ByteExtract *byteExtractjnt8_t *cursor)

This function extracts the bytes from a given packet, asiipddy ByteExtract and delimited by cursor.
Value extracted is stored in ByteExtract memoryLocatiorapater.

int processFlowbits(void *p, FlowBitsInfo *flowbits)

This function evaluates the flowbits for a given packet, acg@d by FlowBitsInfo. It will interact with
flowbits used by text-based rules.

int setCursor(void *p, CursorInfo *cursorinfo,_int8_t **cursor)

This function adjusts the cursor as delimited by Cursorlifiew cursor position is returned in *cursor.
It handles bounds checking for the specified buffer and nstRULENOMATCH if the cursor is moved
out of bounds.

It is also used by contentMatch, byteJump, and pcreMatchljiustthe cursor position after a successful
match.

int checkCursor(void *p, Cursorinfo *cursorinfo, mt8_t *cursor)

This function validates that the cursor is within boundshaf specified buffer.
int checkValue(void *p, ByteData *byteDatajnt32 t value, uint8_t *cursor)
This function compares thealueto the value stored in ByteData.

int byteTest(void *p, ByteData *byteData,int8_t *cursor)

This is a wrapper for extractValue() followed by checkVdlue

int byteJump(void *p, ByteData *byteData,int8_t **cursor)

This is a wrapper for extractValue() followed by setCuryor(

int pcreMatch(void *p, PCREInfo *pcre,.int8_t **cursor)

This function evaluates a single pcre for a given packetcking for the existence of the expression as
delimited by PCREInfo and cursor. Cursor position is updaed returned in *cursor.

136

— int detectAsnl(void *p, Asn1Context *asnlint8_t *cursor)
This function evaluates an ASN.1 check for a given packedgetismited by Asn1Context and cursor.

— int checkHdrOpt(void *p, HdrOptCheck *optData)
This function evaluates the given packet’s protocol hesdes specified by HdrOptCheck.

— int loopEval(void *p, LoopInfo *loop, Lint8_t **cursor)
This function iterates through the SubRule of Looplinfo, atindited by Loopinfo and cursor. Cursor
position is updated and returned in *cursor.

— int preprocOptionEval(void *p, PreprocessorOption *prepOpt, wint8_t **cursor)
This function evaluates the preprocessor defined optiospagcifed by PreprocessorOption. Cursor po-
sition is updated and returned in *cursor.

— void setTempCursor(int8_t **temp_cursor, wint8_t **cursor)
This function is used to handled repetitive contents to sdfva cursor position temporarily to be reset at
later point.

— void revertTempCursor(int8_t **temp_cursor, wint8_t **cursor)
This function is used to revert to a previously saved temgyorarsor position.

ANOTE

If you decide to write you own rule evaluation function, jgatts that occur more than once may result in false
negatives. Take extra care to handle this situation anegisdar the matched pattern again if subsequent fule
options fail to match. This should be done for both contedtRERE options.

5.2.3 Rules

Each dynamic rules library must define the following funoBoExamples are defined in the fifeort _dynamic _detection
The metadata and setup function for the preprocessor sheul@finedfsnort _dynamic _detection _lib.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

¢ int EngineVersion(DynamicPluginMeta *)
This function defines the version requirements for the goading detection engine library.

e int DumpSkeletonRules()
This functions writes out the rule-stubs for rules that asded.

e int InitializeDetection()
This function registers each rule in the rules library. loshl set up fast pattern-matcher content, register
flowbits, etc.

The sample code provided with Snort predefines those fumctod uses the following data within the dynamic rules
library.

e Rule *rules|]
A NULL terminated list of Rule structures that this librargfthes.

5.3 Examples

This section provides a simple example of a dynamic premsmreand a dynamic rule.

137

_lib.c

5.3.1 Preprocessor Example

The following is an example of a simple preprocessor. Thepprcessor always alerts on a Packet if the TCP port
matches the one configured.

This assumes the the filskdynamicpreproclib.c andsf.dynamicpreproclib.h are used.

This is the metadata for this preprocessor, definext preprocinfo.h.

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is definedsppexample.and is compiled together witbf.dynamicpreproclib.c into
lib_sfdynamicpreprocessaexample.so.

Define the Setup function to register the initializationdtian.

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void Examplelnit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example"”, Examplelnit) ;

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););

The initialization function to parse the keywords frenort.conf

u_intl6_t portToCheck;
void Examplelnit(unsigned char *args)
{
char *arg;
char *argEnd;
unsigned long port;
_dpd.logMsg("Example dynamic preprocessor configuratio n\n");

arg = strtok(args, " \t\n\r");

if('strcasecmp(“port”, arg))

{
arg = strtok(NULL, "\t\n\r");
if (‘arg)
{
_dpd.fatalMsg("ExamplePreproc: Missing port\n");
}

138

port = strtoul(arg, &argEnd, 10);
if (port < 0 || port > 65535)

_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);
}
portToCheck = port;

_dpd.logMsg(" Port: %d\n", portToCheck);

}
else
{
_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar Q);
}
I* Register the preprocessor function, Transport layer, ID 10000 */

_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if theeefilort matches.

#define SRC_PORT_MATCH 1
#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"
#define DST_PORT_MATCH 2
#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"
void ExampleProcess(void *pkt, void *context)
{
SFSnortPacket *p = (SFSnortPacket *)pkt;
if (Ip->ip4_header || p->ip4_header->proto != IPPROTO_TC P || 'p->tcp_header)
{
¥ Not for me, return *
return;

}

if (p->src_port == portToCheck)
{

[* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);
return;

}

if (p->dst_port == portToCheck)

{
[* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);
return;

5.3.2 Rules

The following is an example of a simple rule, take from therent rule set, SID 109. It is implemented to work with
the detection engine provided with snort.

139

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR nethus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, definedietectionlib_meta.h

¥ Version for this rule library */

#define DETECTION_LIB_MAJOR_VERSION 1

#define DETECTION_LIB_MINOR_VERSION 0

#define DETECTION_LIB_BUILD_VERSION 1

#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

[* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGI"

The definition of each data structure for this rule isid109.c

Declaration of the data structures.

e Flow option
Define tha-lowFlagsstructure and its correspondiRyileOption Per the text version, flow is froreerver,established.

static FlowFlags sid109flow =

{

FLOW_ESTABLISHED|FLOW_TO_CLIENT
|3
static RuleOption sid109optionl =
{

OPTION_TYPE_FLOWFLAGS,

{

&sid109flow

}

Y

e Content Option

Define theContentinfostructure and its correspondifuleOption Per the text version, content is "NetBus”,
no depth or offset, case sensitive, and non-relative. 8eamche normalized buffer by defaulNOTE: This
content will be used for the fast pattern matcher since liéddngest content option for this rule and no contents
have a flag ofCONTENTFASTPATTERN

static Contentinfo sid109content =

{
“NetBus", [* pattern to search for */
0, * depth */
0, I* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, * holder for boyer/moore info */
NULL, * holder for byte representation of "NetBus" */

140

0, * holder for length of byte representation */

0 [* holder for increment length */
3
static RuleOption sid109option2 =
{

OPTION_TYPE_CONTENT,

{

&sid109content

}

3

Rule and Meta Data
Define the references.

static RuleReference sid109ref arachnids =

{
"arachnids", * Type */
401" * value */
3
static RuleReference *sid109refs]] =
{
&sid109ref_arachnids,
NULL
3

The list of rule options. Rule options are evaluated in thdeospecified.

RuleOption *sid109options[] =

{
&sid109optionl,
&sid109option2,
NULL

|3

The rule itself, with the protocl header, meta data (sidssifecation, message, etc).

Rule sid109 =
{
I* protocol header, akin to => tcp any any -> any any */
{
IPPROTO_TCP, [* proto */
HOME_NET, * source IP */
"12345:12346", ¥ source port(s) */
0, [* Direction */
EXTERNAL_NET, [* destination IP *
ANY_PORT, [* destination port */
}1
[* metadata */
{
3, ¥ genid -- use 3 to distinguish a C rule *
109, I* sigid *
5, [* revision */
"misc-activity", * classification */
0, [* priority */

141

"BACKDOOR nethus active", [* message */

sid109refs I[* ptr to references */
13
sid109options, [* ptr to rule options */
NULL, ¥ Use internal eval func */
0, [* Holder, not yet initialized, used internally */
0, [* Holder, option count, used internally */
0, [* Holder, no alert, used internally for flowbits */
NULL /¥ Holder, rule data, used internally */

e The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetectigarates through each Rule in the list and initializes
the content, flowbits, pcre, etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules] =

{
&sid109,
&sid637,
NULL

3

142

Chapter 6

Snort Development

Currently, this chapter is here as a place holder. It will eday contain references on how to create new detection
plugins and preprocessors. End users don’t really need tedufng this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort developmentapkeuse thelEAD branch of cvs. We've had problems
in the past of people submitting patches only to the staldadir (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes iat@BLE. Features go intelEAD.

6.1 Submitting Patches

Patches to Snort should be sent to shert-devel@lists.sourceforge.net mailing list. Patches should done
with the commandiff -nu snort-orig snort-new

6.2 Snort Data Flow

First, traffic is acquired from the network link via libpcapackets are passed through a series of decoder routines that
first fill out the packet structure for link level protocolsthare further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of pregsarse Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. Thetidet&ngine checks each packet against the various
options listed in the Snort rules files. Each of the keywortlans is a plugin. This allows this to be easily extensible.

6.2.1 Preprocessors

For example, a TCP analysis preprocessor could simplyrétttine packet does not have a TCP header. It can do this
by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packdiags available that can be used to mark a packet as “reassé’habllogged. Check
out src/decode.h for the list of pktconstants.

143

6.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it toeawitem and change a few things. Later, we’ll document
what these few things are.

6.2.3 Output Plugins

Generally, new output plugins should go into the barnyamjgmt rather than the Snort project. We are currently
cleaning house on the available output options.

6.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Marc Norton
Steve Sturges
Adam Keeton

Todd Wease
Snort Rules Maintainer Brian Caswell
Snort Rules Team Nigel Houghton

Alex Kirk

Judy Novak

Matt Watchinski
Win32 Maintainer Snort Team
RPM Maintainers JP Vossen

Daniel Wittenberg

Inline Developers Victor Julien
Rob McMillen
William Metcalf

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Roman D.

Michael Davis
Chris Green

Jed Haile

Jeremy Hewlett
Glenn Mansfield Keeni
Chad Kreimendahl
Andrew Mullican
Jeff Nathan
Andreas Ostling
Chris Reid

Daniel Roelker
Dragos Ruiu
Fyodor Yarochkin
Phil Wood

144

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/pe@/p49-06
[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

145

	Snort Overview
	Getting Started
	Sniffer Mode
	Packet Logger Mode
	Network Intrusion Detection System Mode
	NIDS Mode Output Options
	Understanding Standard Alert Output
	High Performance Configuration
	Changing Alert Order

	Inline Mode
	Snort Inline Rule Application Order
	New STREAM4 Options for Use with Snort Inline
	Replacing Packets with Snort Inline
	Installing Snort Inline
	Running Snort Inline
	Using the Honeynet Snort Inline Toolkit
	Troubleshooting Snort Inline

	Miscellaneous
	Running in Daemon Mode
	Obfuscating IP Address Printouts
	Specifying Multiple-Instance Identifiers

	More Information

	Configuring Snort
	Includes
	Variables
	Config

	Preprocessors
	Frag3
	Stream4
	Flow
	Stream5
	sfPortscan
	RPC Decode
	Performance Monitor
	HTTP Inspect
	SMTP Preprocessor
	FTP/Telnet Preprocessor
	SSH
	DCE/RPC
	DNS

	Event Thresholding
	Performance Profiling
	Rule Profiling
	Preprocessor Profiling

	Output Modules
	alert_syslog
	alert_fast
	alert_full
	alert_unixsock
	log_tcpdump
	database
	csv
	unified
	unified 2
	alert_prelude
	log null
	alert_aruba_action

	Dynamic Modules
	Format
	Directives

	Writing Snort Rules: How to Write Snort Rules and Keep Your Sanity
	The Basics
	Rules Headers
	Rule Actions
	Protocols
	IP Addresses
	Port Numbers
	The Direction Operator
	Activate/Dynamic Rules

	Rule Options
	General Rule Options
	msg
	reference
	gid
	sid
	rev
	classtype
	priority
	metadata
	General Rule Quick Reference

	Payload Detection Rule Options
	content
	nocase
	rawbytes
	depth
	offset
	distance
	within
	http_client_body
	http_uri
	uricontent
	urilen
	isdataat
	pcre
	byte_test
	byte_jump
	ftpbounce
	asn1
	Payload Detection Quick Reference

	Non-Payload Detection Rule Options
	fragoffset
	ttl
	tos
	id
	ipopts
	fragbits
	dsize
	flags
	flow
	flowbits
	seq
	ack
	window
	itype
	icode
	icmp_id
	icmp_seq
	rpc
	ip_proto
	sameip
	Non-Payload Detection Quick Reference

	Post-Detection Rule Options
	logto
	session
	resp
	react
	tag
	activates
	activated_by
	count
	Post-Detection Quick Reference

	Event Thresholding
	Standalone Options
	Standalone Format
	Rule Keyword Format
	Rule Keyword Format
	Examples

	Event Suppression
	Format
	Examples

	Snort Multi-Event Logging (Event Queue)
	Event Queue Configuration Options
	Event Queue Configuration Examples

	Writing Good Rules
	Content Matching
	Catch the Vulnerability, Not the Exploit
	Catch the Oddities of the Protocol in the Rule
	Optimizing Rules
	Testing Numerical Values

	Making Snort Faster
	MMAPed pcap

	Dynamic Modules
	Data Structures
	DynamicPluginMeta
	DynamicPreprocessorData
	DynamicEngineData
	SFSnortPacket
	Dynamic Rules

	Required Functions
	Preprocessors
	Detection Engine
	Rules

	Examples
	Preprocessor Example
	Rules

	Snort Development
	Submitting Patches
	Snort Data Flow
	Preprocessors
	Detection Plugins
	Output Plugins

	The Snort Team

