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Sections

The SWIG documentation is being updated to reflect new SWIG features and enhancements. However, this update process is not
quite finished−−there is a lot of old SWIG−1.1 documentation and it is taking some time to update all of it. Please pardon our dust
(or volunteer to help!).
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Documentation that has not yet been updated

This documentation has not been completely updated from SWIG−1.1, but most of the topics still apply to the current release.
Make sure you read the SWIG Basics chapter before reading any of these chapters. Also, SWIG−1.3.10 features extensive
changes to the implementation of typemaps. Make sure you read the Typemaps chapter above if you are using this feature.

Advanced topics (see Modules for updated information).• 
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1 Preface
Introduction• 
Special Introduction for Version 1.3• 
SWIG Versions• 
SWIG resources• 
Prerequisites• 
Organization of this manual• 
How to avoid reading the manual• 
Backwards Compatibility• 
Credits• 
Bug reports• 

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to
C and C++ programs. Originally developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Los
Alamos National Laboratory for building user interfaces to simulation codes running on the Connection Machine 5
supercomputer. In this environment, scientists needed to work with huge amounts of simulation data, complex hardware, and a
constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for
solving these types of problems. SWIG simplifies development by largely automating the task of scripting language
integration−−allowing developers and users to focus on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used
in a wide variety of applications−−in fact almost anything where C/C++ programming is involved.

1.2 Special Introduction for Version 1.3

Since SWIG was released in 1996, its user base and applicability has continued to grow. Although its rate of development has
varied, an active development effort has continued to make improvements to the system. Today, nearly a dozen developers are
working to create SWIG−2.0−−−a system that aims to provide wrapping support for nearly all of the ANSI C++ standard and
approximately ten target languages including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP, Python, Ruby, and Tcl.

1.3 SWIG Versions

For several years, the most stable version of SWIG has been release 1.1p5. Starting with version 1.3, a new version numbering
scheme has been adopted. Odd version numbers (1.3, 1.5, etc.) represent development versions of SWIG. Even version numbers
(1.4, 1.6, etc.) represent stable releases. Currently, developers are working to create a stable SWIG−2.0 release. Don't let the
development status of SWIG−1.3 scare you−−−it is much more stable (and capable) than SWIG−1.1p5.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and
implementation tricks.

You can also subscribe to the SWIG mailing list by visiting the page

http://www.swig.org/mail.html
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The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and
future work.

CVS access to the latest version of SWIG is also available. More information about this can be obtained at:

http://www.swig.org/cvs.html

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as
Tcl, Python, and Perl. A detailed knowledge of these scripting languages is not required although some familiarity won't hurt. No
prior experience with building C extensions to these languages is required−−−after all, this is what SWIG does automatically.
However, you should be reasonably familiar with the use of compilers, linkers, and makefiles since making scripting language
extensions is somewhat more complicated than writing a normal C program.

Recent SWIG releases have become significantly more capable in their C++ handling−−especially support for advanced features
like namespaces, overloaded operators, and templates. Whenever possible, this manual tries to cover the technicalities of this
interface. However, this isn't meant to be a tutorial on C++ programming. For many of the gory details, you will almost certainly
want to consult a good C++ reference. If you don't program in C++, you may just want to skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining
chapters are devoted to specific SWIG language modules and are self contained. Thus, if you are using SWIG to build Python
interfaces, you can probably skip to that chapter and find almost everything you need to know. Caveat: we are currently working
on a documentation rewrite and many of the older language module chapters are still somewhat out of date.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction" which contains a few simple examples. These examples contain about
95% of everything you need to know to use SWIG. After that, simply use the language−specific chapters as a reference. The
SWIG distribution also comes with a large directory of examples that illustrate different topics.

1.8 Backwards Compatibility

If you are a previous user of SWIG, don't expect recent versions of SWIG to provide backwards compatibility. In fact, backwards
compatibility issues may arise even between successive 1.3.x releases. Although these incompatibilities are regrettable,
SWIG−1.3 is an active development project. The primary goal of this effort is to make SWIG better−−−a process that would
simply be impossible if the developers are constantly bogged down with backwards compatibility issues.

On a positive note, a few incompatibilities are a small price to pay for the large number of new features that have been
added−−−namespaces, templates, smart pointers, overloaded methods, operators, and more.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION
preprocessor symbol which holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as
0x010311 (corresponding to SWIG−1.3.11). This can be used in an interface file to define different typemaps, take advantage of
different features etc:

#if SWIG_VERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined
SWIG_VERSION since SWIG−1.3.11.
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1.9 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people. Most recent SWIG
development has been supported by Matthias Köppe, William Fulton, Lyle Johnson, Richard Palmer, Thien−Thi Nguyen, Jason
Stewart, Loic Dachary, Masaki Fukushima, Luigi Ballabio, Sam Liddicott, Art Yerkes, Marcelo Matus, Harco de Hilster, and
John Lenz.

Historically, the following people contributed to early versions of SWIG. Peter Lomdahl, Brad Holian, Shujia Zhou, Niels Jensen,
and Tim Germann at Los Alamos National Laboratory were the first users. Patrick Tullmann at the University of Utah suggested
the idea of automatic documentation generation. John Schmidt and Kurtis Bleeker at the University of Utah tested out the early
versions. Chris Johnson supported SWIG's developed at the University of Utah. John Buckman, Larry Virden, and Tom Schwaller
provided valuable input on the first releases and improving the portability of SWIG. David Fletcher and Gary Holt have provided
a great deal of input on improving SWIG's Perl5 implementation. Kevin Butler contributed the first Windows NT port.

1.10 Bug reports

Although every attempt has been made to make SWIG bug−free, we are also trying to make feature improvements that may
introduce bugs. To report a bug, either send mail to the SWIG developer list at the swig−dev mailing list or report a bug at the
SWIG bug tracker. In your report, be as specific as possible, including (if applicable), error messages, tracebacks (if a core dump
occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG generated wrapper code.
We can only fix bugs if we know about them.
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2 Introduction
What is SWIG?• 
Why use SWIG?• 
A SWIG example

SWIG interface file♦ 
The swig command♦ 
Building a Perl5 module♦ 
Building a Python module♦ 
Shortcuts♦ 

• 

Supported C/C++ language features• 
Non−intrusive interface building• 
Incorporating SWIG into a build system• 
Hands off code generation• 
SWIG and freedom• 

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a
nutshell, SWIG is a compiler that takes C declarations and creates the wrappers needed to access those declarations from other
languages including including Perl, Python, Tcl, Ruby, Guile, and Java. SWIG normally requires no modifications to existing
code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG include:

Building interpreted interfaces to existing C programs.• 
Rapid prototyping and application development.• 
Interactive debugging.• 
Reengineering or refactoring of legacy software into a scripting language components.• 
Making a graphical user interface (using Tk for example).• 
Testing of C libraries and programs (using scripts).• 
Building high performance C modules for scripting languages.• 
Making C programming more enjoyable (or tolerable depending on your point of view).• 
Impressing your friends.• 
Obtaining vast sums of research funding (although obviously not applicable to the author).• 

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software
without having to get a degree in software engineering. Because of this, the use of SWIG tends to be somewhat informal and
ad−hoc (e.g., SWIG does not require users to provide formal interface specifications as you would find in a dedicated IDL
compiler). Although this style of development isn't appropriate for every project, it is particularly well suited to software
development in the small; especially the research and development work that is commonly found in scientific and engineering
projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other
programming languages. However, why would anyone want to do that? To answer that question, it is useful to list a few strengths
of C/C++ programming:

Excellent support for writing programming libraries.• 
High performance (number crunching, data processing, graphics, etc.).• 
Systems programming and systems integration.• 
Large user community and software base.• 

Next, let's list a few problems with C/C++ programming
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Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other
libraries).

• 

Testing is time consuming (the compile/debug cycle).• 
Not easy to reconfigure or customize without recompilation.• 
Modularization can be tricky.• 
Security concerns (buffer overflow for instance).• 

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming
languages for different tasks. For instance, writing a graphical user interface may be significantly easier in a scripting language
like Python or Tcl (consider the reasons why millions of programmers have used languages like Visual Basic if you need more
proof). An interactive interpreter might also serve as a useful debugging and testing tool. Other languages like Java might greatly
simplify the task of writing distributed computing software. The key point is that different programming languages offer different
strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by
combining languages together, you can utilize the best features of each language and greatly simplify certain aspects of software
development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C
programming model which usually results in programs that resemble this:

A collection of functions and variables that do something useful.• 
A main() program that starts everything.• 
A horrible collection of hacks that form some kind of user interface (but which no−one really wants to touch).• 

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less
code, better flexibility, and increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C
program and using the high−level language interface, but not the tedious and complex chore of making the two languages talk to
each other. At the same time, SWIG recognizes that all applications are different. Therefore, it provides a wide variety of
customization features that let you change almost every aspect of the language bindings. This is the main reason why SWIG has
such a large user manual ;−).

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */

double  My_variable  = 3.0;

/* Compute factorial of n */
int  fact(int n) {
        if (n <= 1) return 1;
        else return n*fact(n−1);
}

/* Compute n mod m */
int my_mod(int n, int m) {
        return(n % m);
}

Suppose that you wanted to access these functions and the global variable My_variable from Tcl. You start by making a
SWIG interface file as shown below (by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

/* File : example.i */
%module example
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%{
/* Put headers and other declarations here */
%}

extern double My_variable;
extern int    fact(int);
extern int    my_mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The %module directive defines the name of the
module that will be created by SWIG. The %{,%} block provides a location for inserting additional code such as C header files or
additional C declarations.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig −tcl example.i
unix > gcc −c −fpic example.c example_wrap.c −I/usr/local/include
unix > gcc −shared example.o example_wrap.o −o example.so
unix > tclsh
% load ./example.so
% fact 4
24
% my_mod 23 7
2
% expr $My_variable + 4.5
7.5
%

The swig command produced a new file called example_wrap.c that should be compiled along with the example.c file.
Most operating systems and scripting languages now support dynamic loading of modules. In our example, our Tcl module has
been compiled into a shared library that can be loaded into Tcl. When loaded, Tcl can now access the functions and variables
declared in the SWIG interface. A look at the file example_wrap.c reveals a hideous mess. However, you almost never need
to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig −perl5 example.i
unix > gcc −c example.c example_wrap.c \
        −I/usr/local/lib/perl5/sun4−solaris/5.003/CORE
unix > ld −G example.o example_wrap.o −o example.so             # This is for Solaris
unix > perl5.003
use example;
print example::fact(4), "\n";
print example::my_mod(23,7), "\n";
print $example::My_variable + 4.5, "\n";
<ctrl−d>
24
2
7.5
unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig −python example.i
unix > gcc −c −fpic example.c example_wrap.c −I/usr/local/include/python2.0
unix > gcc −shared example.o example_wrap.o −o _example.so
unix > python
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Python 2.0 (#6, Feb 21 2001, 13:29:45)
[GCC egcs−2.91.66 19990314/Linux (egcs−1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.     
>>> import example
>>> example.fact(4)
24
>>> example.my_mod(23,7)
2
>>> example.cvar.My_variable + 4.5
7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do
without it. For example, you could also build a Perl5 module by just running SWIG on the C header file and specifying a module
name as follows

unix > swig −perl5 −module example example.h
unix > gcc −c example.c example_wrap.c \
        −I/usr/local/lib/perl5/sun4−solaris/5.003/CORE
unix > ld −G example.o example_wrap.o −o example.so
unix > perl5.003
use example;
print example::fact(4), "\n";
print example::my_mod(23,7), "\n";
print $example::My_variable + 4.5, "\n";
<ctrl−d>
24
2
7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples
have been shown, SWIG is quite capable in supporting most of C++. Some of the major features include:

Full C99 preprocessing.• 
All ANSI C and C++ datatypes.• 
Functions, variables, and constants.• 
Classes.• 
Single and multiple inheritance.• 
Overloaded functions and methods.• 
Overloaded operators.• 
C++ templates (including member templates, specialization, and partial specialization).• 
Namespaces.• 
Variable length arguments.• 
C++ smart pointers.• 

Currently, the only major C++ feature not supported is nested classes−−a limitation that will be removed in a future release.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools.
SWIG not only parses C++, it implements the full C++ type system and it is able to understand C++ semantics. SWIG generates
its wrappers with full knowledge of this information. As a result, you will find SWIG to be just as capable of dealing with nasty
corner cases as it is in wrapping simple C++ code. In fact, SWIG is able handle C++ code that stresses the very limits of many
C++ compilers.
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2.5 Non−intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely
easy to use with existing packages and promotes software reuse and modularity. By making the C/C++ code independent of the
high level interface, you can change the interface and reuse the code in other applications. It is also possible to support different
types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external
tools/compilers. SWIG is most commonly invoked from within a Makefile, but is also known to be invoked from from popular
IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake/ Libtool) to configure SWIG use in your project, the SWIG Autoconf
macros can be used. The primary macro is ac_pkg_swig, see
http://www.gnu.org/software/ac−archive/htmldoc/ac_pkg_swig.html. The ac_python_devel macro is also helpful for
generating Python extensions. See the Autoconf Macro Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross−platform, open−source build manager with
built in support for SWIG. CMake can detect the SWIG executable and many of the target language libraries for linking against.
CMake knows how to build shared libraries and loadable modules on many different operating systems. This allows easy cross
platform SWIG development. It also can generate the custom commands necessary for driving SWIG from IDE's and makefiles.
All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a python
wrapper for the SWIG interface file, example.i:

# This is a CMake example for Python

FIND_PACKAGE(SWIG REQUIRED)
INCLUDE(${SWIG_USE_FILE})

FIND_PACKAGE(PythonLibs)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_PATH})

INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})

SET(CMAKE_SWIG_FLAGS "")

SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES CPLUSPLUS ON)
SET_SOURCE_FILES_PROPERTIES(example.i PROPERTIES SWIG_FLAGS "−includeall")
SWIG_ADD_MODULE(example python example.i example.cxx)
SWIG_LINK_LIBRARIES(example ${PYTHON_LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke
SWIG and compile the generated C++ files into _example.so (UNIX) or _example.dll (Windows).

2.7 Hands off code generation

SWIG is designed to produce working code that needs no hand−modification (in fact, if you look at the output, you probably
won't want to modify it). You should think of your target language interface being defined entirely by the input to SWIG, not the
resulting output file. While this approach may limit flexibility for hard−core hackers, it allows others to forget about the low−level
implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written with
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a certain "philosophy" about programming−−−namely that programmers are smart and that tools should just stay out of their way.
Because of that, you will find that SWIG is extremely permissive in what it lets you get away with. In fact, you can use SWIG to
go well beyond "shooting yourself in the foot" if dangerous programming is your goal. On the other hand, this kind of freedoom
may be exactly what is needed to work with complicated and unusual C/C++ applications.

Ironically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At it's core,
SWIG tries to distill even the most advanced C++ code down to a small well−defined set of interface building techniques based
on ANSI C programming. Because of this, you will find that SWIG interfaces can be easily compiled by virtually every C/C++
compiler and that they can be used on any platform. Again, this is an important part of staying out of the programmer's
way−−−−the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on non−portable
or unreliable programming features.
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3 Getting started on Windows
Installation on Windows

Windows Executable♦ 
• 

SWIG Windows Examples
Instructions for using the Examples with Visual Studio

Python◊ 
TCL◊ 
Perl◊ 
Java◊ 
Ruby◊ 
C#◊ 

♦ 

Instructions for using the Examples with other compilers♦ 

• 

SWIG on Cygwin and MinGW
Building swig.exe on Windows

Building swig.exe using MinGW and MSYS◊ 
Building swig.exe using Cygwin◊ 
Building swig.exe alternatives◊ 

♦ 

Running the examples on Windows using Cygwin♦ 

• 

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as
building the SWIG executable. Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps
are:

Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs
downloading for the Windows platform.

• 

Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual
C++.

• 

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie
Windows 95/98/ME/NT/2000/XP. If you want to build your own swig.exe have a look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has
a few Visual C++ project files (.dsp files). These were produced by Visual C++ 6, although they should also work in Visual C++
5. Later versions of Visual Studio should also be able to open and convert these project files. The C# examples come with .NET
2003 solution (.sln) and project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in a
custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).

3.2.1 Instructions for using the Examples with Visual Studio

Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages require
some environment variables to be set before running Visual C++. Note that Visual C++ must be re−started to pick up any changes
in environment variables. Open up an example .dsp file, Visual C++ will create a workspace for you (.dsw file). Ensure the
Release build is selected then do a Rebuild All from the Build menu. The required environment variables are displayed with their
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current values.

The list of required environment variables for each module language is also listed below. They are usually set from the Control
Panel and System properties, but this depends on which flavour of Windows you are running. If you don't want to use
environment variables then change all occurences of the environment variables in the .dsp files with hard coded values. If you are
interested in how the project files are set up there is explanatory information in some of the language module's documentation.

3.2.1.1 Python

PYTHON_INCLUDE : Set this to the directory that contains python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON_INCLUDE: d:\python21\include
PYTHON_LIB: d:\python21\libs\python21.lib

3.2.1.2 TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB : Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: d:\tcl\include
TCL_LIB: d:\tcl\lib\tcl83.lib

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB : Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_INCLUDE: D:\nsPerl5.004_04\lib\CORE
PERL5_LIB: D:\nsPerl5.004_04\lib\CORE\perl.lib

3.2.1.4 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:
JAVA_INCLUDE: d:\jdk1.3\include
JAVA_BIN: d:\jdk1.3\bin

3.2.1.5 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:
RUBY_INCLUDE: D:\ruby\lib\ruby\1.6\i586−mswin32
RUBY_LIB: D:\ruby\lib\mswin32−ruby16.lib
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3.2.1.6 C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solution
file in Visual Studio .NET 2003 and do a Rebuild All from the Build menu. The accompanying C# and C++ project file are
automatically used by the solution file.

3.2.2 Instructions for using the Examples with other compilers

If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a
section in each of the language modules detailing what needs setting up using Visual C++ which may be of some guidance.
Alternatively you may want to use Cygwin as described in the following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free
with gcc, an ANSI C/C++ compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows

If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not
necessary to use the supplied swig.exe. This information is provided for those that want to modify the SWIG source code in a
Windows environment. Normally this is not needed, so most people will want to ignore this section.

3.3.1.1 Building swig.exe using MinGW and MSYS

Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.• 
Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW
command prompt.

• 

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, the SWIG will then require the Cygwin DLL when executing. Follow
the Unix instructions in the README file in the SWIG root directory. Note that the Cygwin environment will also allow one to
regenerate the autotool generated files which are supplied with the release distribution. These files are generated using the
autogen.sh script and will only need regenerating in circumstances such as changing the build system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can
be added to a Visual C++ project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test−suite work as successfully on Cygwin as on any other Unix operating system. The modules which are
known to work are Python, Tcl, Perl, Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root
directory to build the examples.
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4 Scripting Languages
The two language view of the world• 
How does a scripting language talk to C?

Wrapper functions♦ 
Variable linking♦ 
Constants♦ 
Structures and classes♦ 
Proxy classes♦ 

• 

Building scripting language extensions
Shared libraries and dynamic loading♦ 
Linking with shared libraries♦ 
Static linking♦ 

• 

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting
language interpreters access C and C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality
of the C/C++ program is accessed through special scripting language "commands." If you have ever tried to write your own
simple command interpreter, you might view the scripting language approach to be a highly advanced implementation of that.
Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar model−−the interpreter executes user
commands and scripts. However, most of the underlying functionality is written in a low−level language like C or Fortran.

The two−language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be
used for maximal performance and complicated systems programming tasks. Scripting languages can be used for rapid
prototyping, interactive debugging, scripting, and access to high−level data structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a
mechanism for executing commands and accessing variables. Normally, this is used to implement the builtin features of the
language. However, by extending the interpreter, it is usually possible to add new commands and variables. To do this, most
languages define a special API for adding new commands. Furthermore, a special foreign function interface defines how these
new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special
"wrapper" function that serves as the glue between the interpreter and the underlying C function. Then you need to give the
interpreter information about the wrapper by providing details about the name of the function, arguments, and so forth. The next
few sections illustrate the process.
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4.2.1 Wrapper functions

Suppose you have an ordinary C function like this :

int fact(int n) {
        if (n <= 1) return 1;
        else return n*fact(n−1);
}

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the
glue between the scripting language and the underlying C function. A wrapper function must do three things :

Gather function arguments and make sure they are valid.• 
Call the C function.• 
Convert the return value into a form recognized by the scripting language.• 

As an example, the Tcl wrapper function for the fact() function above example might look like the following :

int wrap_fact(ClientData clientData, Tcl_Interp *interp,
                int argc, char *argv[]) {
        int result;
        int arg0;
        if (argc != 2) {
                interp−>result = "wrong # args";
                return TCL_ERROR;
        }
        arg0 = atoi(argv[1]);
        result = fact(arg0);
        sprintf(interp−>result,"%d", result);
        return TCL_OK;
}

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually
done in an initialization function called by the language when the module is loaded. For example, adding the above function to the
Tcl interpreter requires code like the following :

int Wrap_Init(Tcl_Interp *interp) {
        Tcl_CreateCommand(interp, "fact", wrap_fact, (ClientData) NULL,
                                (Tcl_CmdDeleteProc *) NULL);
        return TCL_OK;
}

When executed, Tcl will now have a new command called "fact" that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python.
Both require special wrappers to be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpeter. For
example, suppose you had the following variable:

double Foo = 3.5;

It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3;   # Evaluation
$Foo = $a + 2.0;   # Assignment
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To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the value
of a variable is read, a "get" function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is called.

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluating a
variable such as $Foo might implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function
to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED   0xff0000
#define BLUE  0x0000ff
#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as $RED, $BLUE, and $GREEN.
Virtually all scripting languages provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and classes
present a different problem. This is because the implementation of structures is largely related to the problem of data
representation and layout. Furthermore, certain language features are difficult to map to an interpreter. For instance, what does
C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the
underlying representation of a structure. For example,

struct Vector {
        Vector();
        ~Vector();
        double x,y,z;
};

can be transformed into the following set of functions :

Vector *new_Vector();
void delete_Vector(Vector *v);
double Vector_x_get(Vector *v);
double Vector_y_get(Vector *v);
double Vector_y_get(Vector *v);
void Vector_x_set(Vector *v, double x);
void Vector_y_set(Vector *v, double y);
void Vector_z_set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

% set v [new_Vector]
% Vector_x_set $v 3.5
% Vector_y_get $v
% delete_Vector $v
% ...

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know
anything about the actual representation of a Vector.

SWIG−1.3 Documentation

4.2.3 Constants 16



4.2.5 Proxy classes

In certain cases, it is possible to use the low−level accessor functions to create a proxy class, also known as a shadow class. A
proxy class is a special kind of object that gets created in a scripting language to access a C/C++ class (or struct) in a way that
looks like the original structure (that is, it proxies the real C++ class). For example, if you have the following C definition :

class Vector {
public:
        Vector();
        ~Vector();
        double x,y,z;
};

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For example,
in Python, you might want to do this:

>>> v = Vector()
>>> v.x = 3
>>> v.y = 4
>>> v.z = −13
>>> ...
>>> del v

Similarly, in Perl5 you may want the interface to work like this:

$v = new Vector;
$v−>{x} = 3;
$v−>{y} = 4;
$v−>{z} = −13;

Finally, in Tcl :

Vector v
v configure −x 3 −y 4 −z 13

When proxy classes are used, two objects are at really work−−one in the scripting language, and an underlying C/C++ object.
Operations affect both objects equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ object.

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itself.
There are two primary approaches for doing this. The preferred technique is to build a dynamically loadable extension in the form
a shared library. Alternatively, you can recompile the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the
procedure for a few common machines is shown below:

# Build a shared library for Solaris
gcc −c example.c example_wrap.c −I/usr/local/include
ld −G example.o example_wrap.o −o example.so

# Build a shared library for Linux
agcc −fpic −c example.c example_wrap.c −I/usr/local/include
gcc −shared example.o example_wrap.o −o example.so

# Build a shared library for Irix
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gcc −c example.c example_wrap.c −I/usr/local/include
ld −shared example.o example_wrap.o −o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). This
will import your module and allow you to start using it. For example:

% load ./example.so
% fact 4
24
%

When working with C++ codes, the process of building shared libraries may be more complicated−−primarily due to the fact that
C++ modules may need additional code in order to operate correctly. On many machines, you can build a shared C++ module by
following the above procedures, but changing the link line to the following :

c++ −shared example.o example_wrap.o −o example.so

4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your
machine. In order for the extension to work, it needs to be able to find all of these libraries at run−time. Otherwise, you may get
an error such as the following :

>>> import graph
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "/home/sci/data1/beazley/graph/graph.py", line 2, in ?
    import graphc
ImportError:  1101:/home/sci/data1/beazley/bin/python: rld: Fatal Error: cannot 
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "libgraph.so" that
the system was unable to locate. To fix this problem, there are a few approaches you can take.

Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done
with a special linker flag such as −R, −rpath, etc. This is not implemented in a standard manner so read the man pages
for your linker to find out more about how to set the search path for shared libraries.

• 

Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operation on
non−Unix platforms.

• 

Set the UNIX environment variable LD_LIBRARY_PATH to the directory where shared libraries are located before
running Python. Although this is an easy solution, it is not recommended. Consider setting the path using linker options
instead.

• 

4.3.3 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a short
main program that adds your customized commands to the language and starts the interpreter. You then link your program with a
library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extensions.
In fact, there are very few practical reasons for doing this−−consider using shared libraries instead.
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5 SWIG Basics
Running SWIG

Input format♦ 
SWIG Output♦ 
Comments♦ 
C Preprocessor♦ 
SWIG Directives♦ 
Parser Limitations♦ 

• 

Wrapping Simple C Declarations
Basic Type Handling♦ 
Global Variables♦ 
Constants♦ 
A brief word aboutconst♦ 
A cautionary tale ofchar *♦ 

• 

Pointers and complex objects
Simple pointers♦ 
Run time pointer type checking♦ 
Derived types, structs, and classes♦ 
Undefined datatypes♦ 
Typedef♦ 

• 

Other Practicalities
Passing structures by value♦ 
Return by value♦ 
Linking to structure variables♦ 
Linking to char *♦ 
Arrays♦ 
Creating read−only variables♦ 
Renaming and ignoring declarations♦ 
Default/optional arguments♦ 
Pointers to functions and callbacks♦ 

• 

Structures and unions
Typedef and structures♦ 
Character strings and structures♦ 
Array members♦ 
Structure data members♦ 
C constructors and destructors♦ 
Adding member functions to C structures♦ 
Nested structures♦ 
Other things to note about structure wrapping♦ 

• 

Code Insertion
The output of SWIG♦ 
Code insertion blocks♦ 
Inlined code blocks♦ 
Initialization blocks♦ 

• 

An Interface Building Strategy
Preparing a C program for SWIG♦ 
The SWIG interface file♦ 
Why use separate interface files?♦ 
Getting the right header files♦ 
What to do with main()♦ 

• 

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C
declarations. C++ support is described in the next chapter. However, C++ programmers should still read this chapter to understand
the basics. Specific details about each target language are described in later chapters.
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5.1 Running SWIG

To run SWIG, use the swig command with one or more of the following options and a filename like this:

swig [ options ] filename

−chicken              Generate CHICKEN wrappers
−csharp               Generate C# wrappers
−guile                Generate Guile wrappers
−java                 Generate Java wrappers
−mzscheme             Generate Mzscheme wrappers
−ocaml                Generate Ocaml wrappers
−perl                 Generate Perl wrappers
−php                  Generate PHP wrappers
−pike                 Generate Pike wrappers
−python               Generate Python wrappers
−ruby                 Generate Ruby wrappers
−sexp                 Generate Lisp S−Expressions wrappers
−tcl                  Generate Tcl wrappers
−xml                  Generate XML wrappers
−c++                  Enable C++ parsing
−Dsymbol              Define a preprocessor symbol
−Fstandard            Display error/warning messages in commonly used format
−Fmicrosoft           Display error/warning messages in Microsoft format
−help                 Display all options
−Idir                 Add a directory to the file include path
−lfile                Include a SWIG library file.
−module name          Set the name of the SWIG module
−o outfile            Name of output file
−outdir dir           Set language specific files output directory
−swiglib              Show location of SWIG library
−version              Show SWIG version number

This is a subset of commandline options. Additional options are also defined for each target language. A full list can be obtained
by typing swig −help or swig −lang −help.

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a
special SWIG interface file which is usually denoted with a special .i or .swg suffix. In certain cases, SWIG can be used
directly on raw header files or source files. However, this is not the most typical case and there are several reasons why you might
not want to do this (described later).

The most common format of a SWIG interface is as follows:

%module mymodule 
%{
#include "myheader.h"
%}
// Now list ANSI C/C++ declarations
int foo;
int bar(int x);
...

The name of the module is supplied using the special %module directive (or the −module command line option). This directive
must appear at the beginning of the file and is used to name the resulting extension module (in addition, this name often defines a
namespace in the target language). If the module name is supplied on the command line, it overrides the name specified with the
%module directive.

Everything in the %{ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is
almost always used to include header files and other declarations that are required to make the generated wrapper code compile. It

SWIG−1.3 Documentation

5.1 Running SWIG 20



is important to emphasize that just because you include a declaration in a SWIG input file, that declaration does not automatically
appear in the generated wrapper code−−−therefore you need to make sure you include the proper header files in the %{ ... %}
section. It should be noted that the text enclosed in %{ ... %} is not parsed or interpreted by SWIG. The %{...%} syntax and
semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc or
bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may
generate some additional files depending on the target language. By default, an input file with the name file.i is transformed
into a file file_wrap.c or file_wrap.cxx (depending on whether or not the −c++ option has been used). The name of the
output file can be changed using the −o option. In certain cases, file suffixes are used by the compiler to determine the source
language (C, C++, etc.). Therefore, you have to use the −o option to change the suffix of the SWIG−generated wrapper file if you
want something different than the default. For example:

$ swig −c++ −python −o example_wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct a extension module for the target
scripting language. SWIG is not a stub compiler nor is it usually necessary to edit the output file (and if you look at the output,
you probably won't want to). To build the final extension module, the SWIG output file is compiled and linked with the rest of
your C/C++ program to create a shared library.

Many target languages will also generate proxy class files in the target language. The default output directory for these language
specific files is the same directory as the generated C/C++ file. This can can be modified using the −outdir option. For
example:

$ swig −c++ −python −outdir pyfiles −o cppfiles/example_wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example_wrap.cpp
pyfiles/example.py

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to
generate documentation files. However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor features
are supported including file inclusion, conditional compilation and macros. However, #include statements are ignored unless
the −includeall command line option has been supplied. The reason for disabling includes is that SWIG is sometimes used to
process raw C header files. In this case, you usually only want the extension module to include functions in the supplied header
file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a %{...%} block. In addition, the preprocessor
includes a number of macro handling enhancements that make it more powerful than the normal C preprocessor. These extensions
are described in the "Preprocessor" chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal C
declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.
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Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG
directives can be included in C header files using conditional compilation like this:

/* header.h  −−− Some header file */

/* SWIG directives −− only seen if SWIG is running */ 
#ifdef SWIG
%module foo
#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.

5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of these
limitations pertain to very complicated type declarations and certain advanced C++ features. Specifically, the following features
are not currently supported:

Non−conventional type declarations. For example, SWIG does not support declarations such as the following (even
though this is legal C):

/* Non−conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo);    // A global variable

/* Extra declarator grouping in parameters */
void bar(Spam (Grok)(Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming
books. However, if you're feeling particularly obfuscated, you can certainly break SWIG (although why would you want
to?).

• 

Running SWIG on C++ source files (what would appear in a .C or .cxx file) is not recommended. Even though SWIG
can parse C++ class declarations, it ignores declarations that are decoupled from their original class definition (the
declarations are parsed, but a lot of warning messages may be generated). For example:

/* Not supported by SWIG */
int foo::bar(int) {
    ... whatever ...
}

• 

Certain advanced features of C++ such as nested classes are not yet supported. Please see the section on using SWIG
with C++ for more information.

• 

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
... some bad declarations ...
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with
incomplete specifications and to be very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces even
when there are missing class declarations or opaque datatypes). Unfortunately, this approach makes it extremely difficult to
implement certain parts of a C/C++ parser as most compilers use type information to assist in the parsing of more complex
declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a
separate typedef−name terminal symbol as described on p. 234 of K&R).

SWIG−1.3 Documentation

5.1.6 Parser Limitations 22



5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be used
in a C program. For example, consider the following interface file:

%module example

extern double sin(double x);
extern int strcmp(const char *, const char *);
extern int Foo;
#define STATUS 50
#define VERSION "1.1"

In this file, there are two functions sin() and strcmp(), a global variable Foo, and two constants STATUS and VERSION.
When SWIG creates an extension module, these declarations are accessible as scripting language functions, variables, and
constants respectively. For example, in Tcl:

% sin 3
5.2335956
% strcmp Dave Mike
−1
% puts $Foo
42
% puts $STATUS
50
% puts $VERSION
1.1

Or in Python:

>>> example.sin(3)
5.2335956
>>> example.strcmp('Dave','Mike')
−1
>>> print example.cvar.Foo
42
>>> print example.STATUS
50
>>> print example.VERSION
1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle
differences between languages, run−time environments, and semantics, it is not always possible to do so. The next few sections
describes various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally,
scripting languages provide a more limited set of primitive types than C. Therefore, this conversion process involves a certain
amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or long datatype in C. The following
list shows all of the C datatypes that SWIG will convert to and from integers in the target language:

int
short
long
unsigned
signed
unsigned short
unsigned long

SWIG−1.3 Documentation

5.2 Wrapping Simple C Declarations 23



unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16 bit
short in C may be promoted to a 32 bit integer. When integers are converted in the other direction, the value is cast back into the
original C type. If the value is too large to fit, it is silently truncated.

unsigned char and signed char are special cases that are handled as small 8−bit integers. Normally, the char datatype
is mapped as a one−character ASCII string.

The bool datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32−bit integers so mapping a 64−bit
long integer may lead to truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as large
negative numbers). As a rule of thumb, the int datatype and all variations of char and short datatypes are safe to use. For
unsigned int and long datatypes, you will need to carefully check the correct operation of your program after it has been
wrapped with SWIG.

Although the SWIG parser supports the long long datatype, not all language modules support it. This is because long long
usually exceeds the integer precision available in the target language. In certain modules such as Tcl and Perl5, long long
integers are encoded as strings. This allows the full range of these numbers to be represented. However, it does not allow long
long values to be used in arithmetic expressions. It should also be noted that although long long is part of the ISO C99
standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports long long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost always a
C double. The rarely used datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language it
shows up as a tiny string containing the character value. When converting the value back into C, SWIG takes a character string
from the scripting language and strips off the first character as the char value. Thus if the value "foo" is assigned to a char
datatype, it gets the value `f'.

The char * datatype is handled as a NULL−terminated ASCII string. SWIG maps this into a 8−bit character string in the target
scripting language. SWIG converts character strings in the target language to NULL terminated strings before passing them into
C/C++. The default handling of these strings does not allow them to have embedded NULL bytes. Therefore, the char *
datatype is not generally suitable for passing binary data. However, it is possible to change this behavior by defining a SWIG
typemap. See the chapter on Typemaps for details about this.

At this time, SWIG does not provide any special support for Unicode or wide−character strings (the C wchar_t type). This is a
delicate topic that is poorly understood by many programmers and not implemented in a consistent manner across languages. For
those scripting languages that provide Unicode support, Unicode strings are often available in an 8−bit representation such as
UTF−8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are
wrapping uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal
representation (e.g., UCS−2 vs. UCS−4). You may need to write some special conversion functions.

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

%module example
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double foo;

results in a scripting language variable like this:

# Tcl
set foo [3.5]                   ;# Set foo to 3.5
puts $foo                       ;# Print the value of foo

# Python
cvar.foo = 3.5                  # Set foo to 3.5
print cvar.foo                  # Print value of foo

# Perl
$foo = 3.5;                     # Set foo to 3.5
print $foo,"\n";                # Print value of foo

# Ruby
Module.foo = 3.5               # Set foo to 3.5
print Module.foo, "\n"         # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every
attempt to make global variables work like scripting language variables, it is not always possible to do so. For instance, in Python,
all global variables must be accessed through a special variable object known as cvar (shown above). In Ruby, variables are
accessed as attributes of the module. Other languages may convert variables to a pair of accessor functions. For example, the Java
module generates a pair of functions double get_foo() and set_foo(double val) that are used to manipulate the
value.

Finally, if a global variable has been declared as const, it only supports read−only access. Note: this behavior is new to
SWIG−1.3. Earlier versions of SWIG incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #define, enumerations, or a special %constant directive. The following interface file shows a
few valid constant declarations :

#define I_CONST       5               // An integer constant
#define PI            3.14159         // A Floating point constant
#define S_CONST       "hello world"   // A string constant
#define NEWLINE       '\n'            // Character constant

enum boolean {NO=0, YES=1};
enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
             SEP, OCT, NOV, DEC};
%constant double BLAH = 42.37;
#define F_CONST (double) 5            // A floating pointer constant with cast
#define PI_4 PI/4
#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to
be floating point. In addition, SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to
actually be created. This restriction is necessary because #define is also used to define preprocessor macros that are definitely
not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will not
create constants for macros unless the value can be completely determined by the preprocessor. For instance, in the above
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example, the declaration

#define PI_4  PI/4

defines a constant because PI was already defined as a constant and the value is known.

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output file and
lets the C compiler perform the final evaluation (SWIG does perform a limited form of type−checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header file
or in the %{,%} block). SWIG only translates the enumeration into code needed to add the constants to a scripting language. It
needs the original enumeration declaration in order to get the correct enum values as assigned by the C compiler.

The %constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not
usually not needed for simple values, it is more useful when working with pointers and other more complex datatypes. Typically,
%constant is only used when you want to add constants to the scripting language interface that are not defined in the original
header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations−−especially when it is
mixed with pointers and other type modifiers. In fact, previous versions of SWIG handled const incorrectly−−a situation that
SWIG−1.3.7 and newer releases have fixed.

Starting with SWIG−1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a
declaration happens to be declared as const, it is wrapped as a read−only variable. To tell if a variable is const or not, you
need to look at the right−most occurrence of the const qualifier (that appears before the variable name). If the right−most
const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is not.

Here are some examples of const declarations.

const char a;           // A constant character
char const b;           // A constant character (the same)
char *const c;          // A constant pointer to a character
const char *const d;    // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e;          // A pointer to a constant character.  The pointer
                        // may be modified.

In this case, the pointer e can change−−−it's only the value being pointed to that is read−only.

Compatibility Note: One reason for changing SWIG to handle const declarations as read−only variables is that there are many
situations where the value of a const variable might change. For example, a library might export a symbol as const in its
public API to discourage modification, but still allow the value to change through some other kind of internal mechanism.
Furthermore, programmers often overlook the fact that with a constant declaration like char *const, the underlying data being
pointed to can be modified−−it's only the pointer itself that is constant. In an embedded system, a const declaration might refer
to a read−only memory address such as the location of a memory−mapped I/O device port (where the value changes, but writing
to the port is not supported by the hardware). Rather than trying to build a bunch of special cases into the const qualifier, the
new interpretation of const as "read−only" is simple and exactly matches the actual semantics of const in C/C++. If you really
want to create a constant as in older versions of SWIG, use the %constant directive instead. For example:

%constant double PI = 3.14159;

or

#ifdef SWIG
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#define const %constant
#endif
const double foo = 3.4;
const double bar = 23.4;
const int    spam = 42;
#ifdef SWIG
#undef const
#endif
...

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed
from a scripting language to a C char *, the pointer usually points to string data stored inside the interpreter. It is almost always
a really bad idea to modify this data. Furthermore, some languages may explicitly disallow it. For instance, in Python, strings are
supposed be immutable. If you violate this, you will probably receive a vast amount of wrath when you unleash your module on
the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like
this:

char *strcat(char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your
application to crash with a segmentation fault or other memory related problem. This is because s refers to some internal data in
the target language−−−data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read−only input values. However, it must be noted that you could
change the behavior of SWIG using typemaps.

5.3 Pointers and complex objects

Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these datatypes.

5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double ***
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simply
encodes the pointer itself into a representation that contains the actual value of the pointer and a type−tag. Thus, the SWIG
representation of the above pointers (in Tcl), might look like this:

_10081012_p_int
_1008e124_ppp_double
_f8ac_pp_char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to other C
functions as needed. For all practical purposes, the scripting language interface works in exactly the same way as you would use
the pointer in a C program. The only difference is that there is no mechanism for dereferencing the pointer since this would
require the target language to understand the memory layout of the underlying object.
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The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown look
like hexadecimal addresses, the numbers used may differ from the actual machine address (e.g., on little−endian machines, the
digits may appear in reverse order). Furthermore, SWIG does not normally map pointers into high−level objects such as
associative arrays or lists (for example, converting an int * into an list of integers). There are several reasons why SWIG does
not do this:

There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, an
int * may indeed be an array of integers, but if it contains ten million elements, converting it into a list object is
probably a bad idea.

• 

The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an
array at all−−perhaps it is an output value!

• 

By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to error.• 

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile−time type
checking in the C/C++ compiler. To prevent errors, a type signature is encoded into all pointer values and is used to perform
run−time type checking. This type−checking process is an integral part of SWIG and can not be disabled or modified without
using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive a
pointer. Although this has the potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to denote a
missing/empty value. Therefore, SWIG leaves NULL pointer checking up to the application.

5.3.3 Derived types, structs, and classes

For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :

Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs make
heavy use of pointers and SWIG can use the type−checked pointer mechanism already present for handling pointers to basic
datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

%module fileio
FILE *fopen(char *, char *);
int fclose(FILE *);
unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc(int nbytes);
void free(void *);

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you
wrapped this module into Python, you can use the functions just like you expect :

# Copy a file 
def filecopy(source,target):
        f1 = fopen(source,"r")
        f2 = fopen(target,"w")
        buffer = malloc(8192)
        nbytes = fread(buffer,8192,1,f1)
        while (nbytes > 0):
                fwrite(buffer,8192,1,f2)
                nbytes = fread(buffer,8192,1,f1)
        free(buffer)

SWIG−1.3 Documentation

5.3.2 Run time pointer type checking 28



In this case f1, f2, and buffer are all opaque objects containing C pointers. It doesn't matter what value they contain−−our
program works just fine without this knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose the
following function appeared in a SWIG input file:

void matrix_multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its
generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Matrix has been previously defined in the interface file or not. This
allows SWIG to generate interfaces from only partial or limited information. In some cases, you may not care what a Matrix
really is as long as you can pass an opaque reference to one around in the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type
names. However, all unspecified types are internally handled as pointers to structures or classes! For example, consider the
following declaration:

void foo(size_t num);

If size_t is undeclared, SWIG generates wrappers that expect to receive a type of size_t * (this mapping is described
shortly). As a result, the scripting interface might behave strangely. For example:

foo(40);
TypeError: expected a _p_size_t.

The only way to fix this problem is to make sure you properly declare type names using typedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:

typedef unsigned int size_t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either
need to be defined in an included header file or placed in the declarations section like this:

%{
/* Include in the generated wrapper file */
typedef unsigned int size_t;
%}
/* Tell SWIG about it */
typedef unsigned int size_t;

or

%inline %{
typedef unsigned int size_t;
%}

In certain cases, you might be able to include other header files to collect type information. For example:

%module example
%import "sys/types.h"
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In this case, you might run SWIG as follows:

$ swig −I/usr/include −includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a
variety of non−standard C coding extensions (e.g., such as special directives to GCC). Unless you exactly specify the right include
directories and preprocessor symbols, this may not work correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run−time type checking. For instance, if you use the above
typedef and had the following function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int * or size_t *.

5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C
programs use idioms that are somewhat more difficult to map to a scripting language interface. This section describes some of
these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:

double dot_product(Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot_product(Vector *a, Vector *b) {
    Vector x = *a;
    Vector y = *b;
    return dot_product(x,y);
}

In the target language, the dot_product() function now accepts pointers to Vectors instead of Vectors. For the most part, this
transformation is transparent so you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product(Vector v1, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap_cross_product(Vector *v1, Vector *v2) {
        Vector x = *v1;
        Vector y = *v2;
        Vector *result;
        result = (Vector *) malloc(sizeof(Vector));
        *(result) = cross(x,y);
        return result;
}

or if SWIG was run with the −c++ option:

Vector *wrap_cross(Vector *v1, Vector *v2) {
        Vector x = *v1;
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        Vector y = *v2;
        Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
        return result;
}

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when it is
no longer in use. Clearly, this will leak memory if you are unaware of the implicit memory allocation and don't take steps to free
the result. That said, it should be noted that some language modules can now automatically track newly created objects and
reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code
fragments don't work correctly if Vector doesn't define a default constructor. The section on SWIG and C++ has more
information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example, a
global variable like this

Vector unit_i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit_i_get() {
        return &unit_i;
}
void unit_i_set(Vector *value) {
        unit_i = *value;
}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting language.
It would be an extremely bad idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy
constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc() or new to allocate memory for the new value.
Specifically, if you have a variable like this

char *foo;

SWIG generates the following code:

/* C mode */
void foo_set(char *value) {
   if (foo) free(foo);
   foo = (char *) malloc(strlen(value)+1);
   strcpy(foo,value);
}

/* C++ mode.  When −c++ option is used */
void foo_set(char *value) {
   if (foo) delete [] foo;
   foo = new char[strlen(value)+1];
   strcpy(foo,value);
}

If this is not the behavior that you want, consider making the variable read−only using the %immutable directive. Alternatively,
you might write a short assist−function to set the value exactly like you want. For example:
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%inline %{
  void set_foo(char *value) {
       strncpy(foo,value, 50);
   }
%}

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not
work like a variable). For example, in Python you will have to write:

>>> set_foo("Hello World")

A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection fault.
This is due to the fact that SWIG is trying to release the old value using free or delete when the string literal value currently
assigned to the variable wasn't allocated using malloc() or new. To fix this behavior, you can either mark the variable as
read−only, write a typemap (as described in Chapter 6), or write a special set function as shown. Another alternative is to declare
the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However,
the default behavior does not release the previous contents (resulting in a possible memory leak). In fact, you may get a warning
message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory

The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call free() on such a pointer. On the other hand, it is legal to change the pointer to point to
some other value. When setting a variable of this type, SWIG allocates a new string (using malloc or new) and changes the pointer
to point to the new value. However, repeated modifications of the value will result in a memory leak since the old value is not
released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object or
list in the target language. Thus, the following declarations :

int foobar(int a[40]);
void grok(char *argv[]);
void transpose(double a[20][20]);

are processed as if they were really declared like this:

int foobar(int *a);
void grok(char **argv);
void transpose(double (*a)[20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points a suitably allocated
region of memory.

Multi−dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10];         // Maps to int *

SWIG−1.3 Documentation

5.4.5 Arrays 32



int [10][20];     // Maps to int (*)[20]
int [10][20][30]; // Maps to int (*)[20][30]

It is important to note that in the C type system, a multidimensional array a[][] is NOT equivalent to a single pointer *a or a
double pointer such as **a. Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the
starting memory location of the array. The reader is strongly advised to dust off their C book and re−read the section on arrays
before using them with SWIG.

Array variables are supported, but are read−only by default. For example:

int   a[100][200];

In this case, reading the variable 'a' returns a pointer of type int (*)[200] that points to the first element of the array
&a[0][0]. Trying to modify 'a' results in an error. This is because SWIG does not know how to copy data from the target
language into the array. To work around this limitation, you may want to write a few simple assist functions like this:

%inline %{
void a_set(int i, int j, int val) {
   a[i][j] = val;
}
int a_get(int i, int j) {
   return a[i][j];
}
%}

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For
example:

// Some array helpers
%inline %{
  /* Create any sort of [size] array */
  int *int_array(int size) {
     return (int *) malloc(size*sizeof(int));
  }
  /* Create a two−dimension array [size][10] */
  int (*int_array_10(int size))[10] {
     return (int (*)[10]) malloc(size*10*sizeof(int));
  }
%}

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. For
example, if you have a declaration like this,

char pathname[256];

SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname_get() {
   return pathname;
}
void pathname_set(char *value) {
   strncpy(pathname,value,256);
}

In the target language, the value can be set like a normal variable.

5.4.6 Creating read−only variables

A read−only variable can be created by using the %immutable directive as shown :

// File : interface.i
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int     a;                      // Can read/write
%immutable;
int     b,c,d                   // Read only variables
%mutable;
double  x,y                     // read/write

The %immutable directive enables read−only mode until it is explicitly disabled using the %mutable directive. As an
alternative to turning read−only mode off and on like this, individual declarations can also be tagged as immutable. For example:

%immutable x;               // Make x read−only
...
double x;                   // Read−only (from earlier %immutable directive)
double y;                   // Read−write
...

Read−only variables are also created when declarations are declared as const. For example:

const int foo;               /* Read only variable */
char * const version="1.0";  /* Read only variable */

Compatibility note: Read−only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may
generate a conflict with a keyword or already existing function in the scripting language. To resolve a name conflict, you can use
the %rename directive as shown :

// interface.i

%rename(my_print) print;
extern void print(char *);

%rename(foo) a_really_long_and_annoying_name;
extern int a_really_long_and_annoying_name;

SWIG still calls the correct C function, but in this case the function print() will really be called "my_print()" in the target
language.

The placement of the %rename directive is arbitrary as long as it appears before the declarations to be renamed. A common
technique is to write code for wrapping a header file like this:

// interface.i

%rename(my_print) print;
%rename(foo) a_really_long_and_annoying_name;

%include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class
and structure names, member functions, and member data. For example, if you had two−dozen C++ classes, all with a member
function named `print' (which is a keyword in Python), you could rename them all to `output' by specifying :

%rename(output) print; // Rename all `print' functions to `output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language.
However, if you are careful about namespaces and your use of modules, you can usually avoid these problems.
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Closely related to %rename is the %ignore directive. %ignore instructs SWIG to ignore declarations that match a given
identifier. For example:

%ignore print;         // Ignore all declarations named print
%ignore _HAVE_FOO_H;   // Ignore an include guard constant
...
%include "foo.h"       // Grab a header file
...

One use of %ignore is to selectively remove certain declarations from a header file without having to add conditional
compilation to the header. However, it should be stressed that this only works for simple declarations. If you need to remove a
whole section of problematic code, the SWIG preprocessor should be used instead.

More powerful variants of %rename and %ignore directives can be used to help wrap C++ overloaded functions and methods
or C++ methods which use default arguments. This is described in the Ambiguity resolution and renaming section in the C++
chapter.

Compatibility note: Older versions of SWIG provided a special %name directive for renaming declarations. For example:

%name(output) extern void print(char *);

This directive is still supported, but it is deprecated and should probably be avoided. The %rename directive is more powerful
and better supports wrapping of raw header file information.

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE);

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this
function could be used in Tcl as follows :

% plot −3.4 7.5                                 # Use default value
% plot −3.4 7.5 10                              # set color to 10 instead

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with both
C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When
default arguments are used in C code, the default values are emitted into the wrappers and the function is invoked with a full set of
arguments. This is different to when wrapping C++ where an overloaded wrapper method is generated for each defaulted
argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions−−possibly to serve as callbacks.
SWIG provides full support for function pointers provided that the callback functions are defined in C and not in the target
language. For example, consider a function like this:

int binary_op(int a, int b, int (*op)(int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For
instance, in Python:

>>> def add(x,y):
...     return x+y
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...
>>> binary_op(3,4,add)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_f_int_int__int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However,
existing C functions can be used as arguments provided you install them as constants. One way to do this is to use the
%constant directive like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%constant int add(int,int);
%constant int sub(int,int);
%constant int mul(int,int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them
as follows:

>>> binary_op(3,4,add)
7
>>> binary_op(3,4,mul)
12
>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accesible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: object is not callable: '_ff020efc_p_f_int_int__int'
>>>

If you want to make a function available as both a callback function and a function, you can use the %callback and
%nocallback directives like this:

/* Function with a callback */
int binary_op(int a, int b, int (*op)(int,int));

/* Some callback functions */
%callback("%s_cb")
int add(int,int);
int sub(int,int);
int mul(int,int);
%nocallback

The argument to %callback is a printf−style format string that specifies the naming convention for the callback constants (%s
gets replaced by the function name). The callback mode remains in effect until it is explicitly disabled using %nocallback.
When you do this, the interface now works as follows:

>>> binary_op(3,4,add_cb)
7
>>> binary_op(3,4,mul_cb)
12
>>> add(3,4)
7
>>> mul(3,4)
12
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Notice that when the function is used as a callback, special names such as add_cb is used instead. To call the function normally,
just use the original function name such as add().

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the
following variation installs the callbacks as all upper−case constants such as ADD, SUB, and MUL:

/* Some callback functions */
%callback("%(upper)s")
int add(int,int);
int sub(int,int);
int mul(int,int);
%nocallback

A format string of "%(lower)s" converts all characters to lower−case. A string of "%(title)s" capitalizes the first
character and converts the rest to lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in
the target language, this can be accomplished with the use of typemaps and other advanced SWIG features. This is described in a
later chapter.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle
C++ are described in the next section.

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need
structure definitions to build an interface, providing definitions make it possible to access structure members. The accessor
functions generated by SWIG simply take a pointer to an object and allow access to an individual member. For example, the
declaration :

struct Vector {
        double x,y,z;
}

gets transformed into the following set of accessor functions :

double Vector_x_get(struct Vector *obj) {
        return obj−>x;
}
double Vector_y_get(struct Vector *obj) { 
        return obj−>y;
}
double Vector_z_get(struct Vector *obj) { 
        return obj−>z;
}
void Vector_x_set(struct Vector *obj, double value) {
        obj−>x = value;
}
void Vector_y_set(struct Vector *obj, double value) {
        obj−>y = value;
}
void Vector_z_set(struct Vector *obj, double value) {
        obj−>z = value;
}

In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new_Vector() {
    return (Vector *) calloc(1,sizeof(struct Vector));
}
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void delete_Vector(struct Vector *obj) {
    free(obj);
}

Using these low−level accessor functions, an object can be minimally manipulated from the target language using code like this:

v = new_Vector()
Vector_x_set(v,2)
Vector_y_set(v,10)
Vector_z_set(v,−5)
...
delete_Vector(v)

However, most of SWIG's language modules also provide a high−level interface that is more convenient. Keep reading.

5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
        double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is `Vector' and creates accessor functions like before. The only
difference is that the use of typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector_x_get(Vector *obj) {
        return obj−>x;
}

If two different names are used like this :

typedef struct vector_struct {
        double x,y,z;
} Vector;

the name Vector is used instead of vector_struct since this is more typical C programming style. If declarations defined
later in the interface use the type struct vector_struct, SWIG knows that this is the same as Vector and it generates the
appropriate type−checking code.

5.5.2 Character strings and structures

Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamically
allocated using malloc() and that they are NULL−terminated ASCII strings. When such a member is modified, the previously
contents will be released, and the new contents allocated. For example :

%module mymodule
...
struct Foo {
        char *name;
        ...
}

This results in the following accessor functions :

char *Foo_name_get(Foo *obj) {
        return Foo−>name;
}
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char *Foo_name_set(Foo *obj, char *c) {
        if (obj−>name) free(obj−>name);
        obj−>name = (char *) malloc(strlen(c)+1);
        strcpy(obj−>name,c);
        return obj−>name;
}

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See the
typemaps chapter for further details.

Note: If the −c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members

Arrays may appear as the members of structures, but they will be read−only. SWIG will write an accessor function that returns the
pointer to the first element of the array, but will not write a function to change the contents of the array itself. When this situation
is detected, SWIG may generate a warning message such as the following :

interface.i:116. Warning. Array member will be read−only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning
message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
   int x;
} Foo;

typedef struct Bar {
   int y;
   Foo f;           /* struct member */
} Bar;

When a structure member is wrapped, it is always handled as a pointer. For example:

Foo *Bar_f_get(Bar *b) {
   return &b−>f;
}
void Bar_f_set(Bar *b, Foo *value) {
   b−>f = *value;
}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data
member. For example, suppose you wanted to modify the value of f.x of a Bar object like this:

Bar *b;
b−>f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following
code:

Bar *b;
Foo_x_set(Bar_f_get(b),37);

In this code, if the Bar_f_get() function were to return a Foo instead of a Foo *, then the resulting modification would be
applied to a copy of f and not the data member f itself. Clearly that's not what you want!
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It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. For
instance, if you had a structure like this,

struct Foo {
   WORD   w;
};

and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get(Foo *f) {
    return f−>w;
}
void Foo_w_set(FOO *f, WORD value) {
    f−>w = value;
}

Compatibility Note: SWIG−1.3.11 and earlier releases transformed all non−primitive member datatypes to pointers. Starting in
SWIG−1.3.12, this transformation only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break
existing code. However, if you need to tell SWIG that an undeclared datatype is really a struct, simply use a forward struct
declaration such as "struct Foo;".

5.5.5 C constructors and destructors

When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do
anything, SWIG will automatically generate functions for creating and destroying objects using malloc() and free(). Note:
the use of malloc() only applies when SWIG is used on C code (i.e., when the −c++ option is not supplied on the command
line). C++ is handled differently.

If you don't want SWIG to generate constructors and destructors, you can use the %nodefault directive or the −no_default
command line option. For example:

swig −no_default example.i 

or

%module foo
...
%nodefault;        // Don't create default constructors/destructors
... declarations ...
%makedefault;      // Reenable default constructors/destructors

If you need more precise control, %nodefault can selectively target individual structure definitions. For example:

%nodefault Foo;          // No default constructor/destructors for Foo
...
struct Foo {             // No default generated.
};

struct Bar {             // Default constructor/destructor generated.
};

Compatibility note: Prior to SWIG−1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned
them on using −make_default. However, it appears that most users want to have constructor and destructor functions so it has
now been enabled as the default behavior.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint,
object oriented programming really just boils down to the process of attaching functions to structures. These functions normally
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operate on an instance of the structure (or object). Although there is a natural mapping of C++ to such a scheme, there is no direct
mechanism for utilizing it with C code. However, SWIG provides a special %extend directive that makes it possible to attach
methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the following
declaration :

/* file : vector.h */
...
typedef struct {
        double x,y,z;
} Vector;

You can make a Vector look alot like a class by writing a SWIG interface like this:

// file : vector.i
%module mymodule
%{
#include "vector.h"
%}

%include vector.h            // Just grab original C header file
%extend Vector {             // Attach these functions to struct Vector
        Vector(double x, double y, double z) {
                Vector *v;
                v = (Vector *) malloc(sizeof(Vector));
                v−>x = x;
                v−>y = y;
                v−>z = z;
                return v;
        }
        ~Vector() {
                free(self);
        }
        double magnitude() {
                return sqrt(self−>x*self−>x+self−>y*self−>y+self−>z*self−>z);
        }
        void print() {
                printf("Vector [%g, %g, %g]\n", self−>x,self−>y,self−>z);
        }
};

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3,4,0)                 # Create a new vector
>>> print v.magnitude()                # Print magnitude
5.0
>>> v.print()                  # Print it out
[ 3, 4, 0 ]
>>> del v                      # Destroy it

The %extend directive can also be used inside the definition of the Vector structure. For example:

// file : vector.i
%module mymodule
%{
#include "vector.h"
%}

typedef struct {
        double x,y,z;
        %extend {
                Vector(double x, double y, double z) { ... }
                ~Vector() { ... }
                ...
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        }
} Vector;

Finally, %extend can be used to access externally written functions provided they follow the naming convention used in this
example :

/* File : vector.c */
/* Vector methods */
#include "vector.h"
Vector *new_Vector(double x, double y, double z) {
        Vector *v;
        v = (Vector *) malloc(sizeof(Vector));
        v−>x = x;
        v−>y = y;
        v−>z = z;
        return v;
}
void delete_Vector(Vector *v) {
        free(v);
}

double Vector_magnitude(Vector *v) {
        return sqrt(v−>x*v−>x+v−>y*v−>y+v−>z*v−>z);
}

// File : vector.i
// Interface file
%module mymodule
%{
#include "vector.h"
%}

typedef struct {
        double x,y,z;
        %extend {
                Vector(int,int,int); // This calls new_Vector()
               ~Vector();            // This calls delete_Vector()
                double magnitude();  // This will call Vector_magnitude()
                ...
        }
} Vector;

A little known feature of the %extend directive is that it can also be used to add synthesized attributes or to modify the behavior
of existing data attributes. For example, suppose you wanted to make magnitude a read−only attribute of Vector instead of a
method. To do this, you might write some code like this:

// Add a new attribute to Vector
%extend Vector {
    const double magnitude;
}
// Now supply the implementation of the Vector_magnitude_get function
%{
const double Vector_magnitude_get(Vector *v) {
  return (const double) return sqrt(v−>x*v−>x+v−>y*v−>y+v−>z*v−>z);
}
%}

Now, for all practial purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with problematic data members. For example, consider this interface:

struct Person {
   char name[50];
   ...
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}

By default, the name attribute is read−only because SWIG does not normally know how to modify arrays. However, you can
rewrite the interface as follows to change this:

struct Person {
    %extend {
       char *name;
    }
...
}

// Specific implementation of set/get functions
%{
char *Person_name_get(Person *p) {
   return p−>name;
}
void Person_name_set(Person *p, char *val) {
   strncpy(p−>name,val,50);
}
%}

Finally, it should be stressed that even though %extend can be used to add new data members, these new members can not
require the allocation of additional storage in the object (e.g., their values must be entirely synthesized from existing attributes of
the structure).

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

typedef struct Object {
        int objtype;
        union {
                int     ivalue;
                double  dvalue;
                char    *strvalue;
                void    *ptrvalue;
        } intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the
following:

typedef union {
        int             ivalue;
        double          dvalue;
        char            *strvalue;
        void            *ptrvalue;
} Object_intRep;

typedef struct Object {
        int objType;
        Object_intRep intRep;
} Object;

SWIG will then create an Object_intRep structure for use inside the interface file. Accessor functions will be created for both
structures. In this case, functions like this would be created :
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Object_intRep *Object_intRep_get(Object *o) {
        return (Object_intRep *) &o−>intRep;
}
int Object_intRep_ivalue_get(Object_intRep *o) {
        return o−>ivalue;
}
int Object_intRep_ivalue_set(Object_intRep *o, int value) {
        return (o−>ivalue = value);
}
double Object_intRep_dvalue_get(Object_intRep *o) {
        return o−>dvalue;
}
... etc ...

Although this process is a little hairy, it works like you would expect in the target scripting language−−especially when proxy
classes are used. For instance, in Perl:

# Perl5 script for accessing nested member
$o = CreateObject();                    # Create an object somehow
$o−>{intRep}−>{ivalue} = 7              # Change value of o.intRep.ivalue

If you have a lot nested structure declarations, it is advisable to double−check them after running SWIG. Although, there is a good
chance that they will work, you may have to modify the interface file in certain cases.

5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a .i file exactly matches that used in the underlying C code (except in the
case of nested structures). For this reason, there are no problems omitting problematic members or simply omitting the structure
definition altogether. If you are happy passing pointers around, this can be done without ever giving SWIG a structure definition.

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though structure
access has been described in terms of high−level accessor functions such as this,

double Vector_x_get(Vector *v) {
   return v−>x;
}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector_x_get()
actually exists in the generated wrapper file. For example, when creating a Tcl module, the following function is generated
instead:

static int
_wrap_Vector_x_get(ClientData clientData, Tcl_Interp *interp, 
                   int objc, Tcl_Obj *CONST objv[]) {
    struct Vector *arg1 ;
    double result ;

    if (SWIG_GetArgs(interp, objc, objv,"p:Vector_x_get self ",&arg0,
                     SWIGTYPE_p_Vector) == TCL_ERROR)
         return TCL_ERROR;
    result = (double ) (arg1−>x);
    Tcl_SetObjResult(interp,Tcl_NewDoubleObj((double) result));
    return TCL_OK;
}

The only exception to this rule are methods defined with %extend. In this case, the added code is contained in a separate
function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may
never use the low−level interface described here, most of SWIG's language modules use it in some way or another.
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5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may want to
include additional C code to perform initialization or other operations. There are four common ways to insert code, but it's useful
to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into four sections corresponding to runtime code, headers, wrapper functions,
and module initialization code (in that order).

Runtime code.
This code is internal to SWIG and is used to include type−checking and other support functions that are used by the rest
of the module.

• 

Header section.
This is user−defined support code that has been included by the %{ ... %} directive. Usually this consists of header
files and other helper functions.

• 

Wrapper code.
These are the wrappers generated automatically by SWIG.

• 

Module initialization.
The function generated by SWIG to initialize the module upon loading.

• 

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the following code insertion directives:

%runtime %{
   ... code in runtime section ...
%}

%header %{
   ... code in header section ...
%}

%wrapper %{
   ... code in wrapper section ...
%}

%init %{
   ... code in init section ...
%}

The bare %{ ... %} directive is a shortcut that is the same as %header %{ ... %}.

Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most SWIG input files
have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a
SWIG file as needed.

%module mymodule
%{
#include "my_header.h"
%}
... Declare functions here
%{

void some_extra_function() {
  ...
}
%}
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A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of
building an interface, but which are generally not visible to the normal C program. For example :

%{
/* Create a new vector */
static Vector *new_Vector() {
        return (Vector *) malloc(sizeof(Vector));
}

%}
// Now wrap it 
Vector *new_Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follows
:

%inline %{
/* Create a new vector */
Vector *new_Vector() {
        return (Vector *) malloc(sizeof(Vector));
}
%}

The %inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then
parsed by both the SWIG preprocessor and parser. Thus, the above example creates a new command new_Vector using only
one declaration. Since the code inside an %inline %{ ... %} block is given to both the C compiler and SWIG, it is illegal to
include any SWIG directives inside a %{ ... %} block.

5.6.4 Initialization blocks

When code is included in the %init section, it is copied directly into the module initialization function. For example, if you
needed to perform some extra initialization on module loading, you could write this:

%init %{
        init_variables();
%}

5.7 An Interface Building Strategy

This section describes the general approach for building interface with SWIG. The specifics related to a particular scripting
language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the results
might not be what you expect−−−in fact, they might be awful. Here's a series of steps you can follow to make an interface for a C
program :

Identify the functions that you want to wrap. It's probably not necessary to access every single function in a C
program−−thus, a little forethought can dramatically simplify the resulting scripting language interface. C header files
are particularly good source for finding things to wrap.

• 

Create a new interface file to describe the scripting language interface to your program.• 
Copy the appropriate declarations into the interface file or use SWIG's %include directive to process an entire C
source/header file.

• 

Make sure everything in the interface file uses ANSI C/C++syntax.• 
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Make sure all necessary `typedef' declarations and type−information is available in the interface file.• 
If your program has a main() function, you may need to rename it (read on).• 
Run SWIG and compile.• 

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is to
simply copy the offending code into a separate interface file and edit it. However, the SWIG developers have worked very hard to
improve the SWIG parser−−you should report parsing errors to the swig−dev mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
%module mymodule
%{
#include "header.h"
%}
extern int foo(double);
extern double bar(int, int);
extern void dump(FILE *f);

Of course, in this case, our header file is pretty simple so we could have made an interface file like this as well:

/* File : interface.i */
%module mymodule
%include header.h

Naturally, your mileage may vary.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special .i file defining the interface to a package.
There are several reasons why you might want to do this:

It is rarely necessary to access every single function in a large package. Many C functions might have little or no use in a
scripted environment. Therfore, why wrap them?

• 

Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructed.• 
Interface files can provide more structure and organization.• 
SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work
around these problems.

• 

Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to the
interface file and immediately see what is available without having to dig it out of header files.

• 
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5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure you
include certain header files by using a %{,%} block like this:

%module graphics
%{
#include <GL/gl.h>
#include <GL/glu.h>
%}

// Put rest of declarations here
...

5.7.5 What to do with main()

If your program defines a main() function, you may need to get rid of it or rename it in order to use a scripting language. Most
scripting languages define their own main() procedure that is called instead. main() also makes no sense when working with
dynamic loading. There are a few approaches to solving the main() conflict :

Get rid of main() entirely.• 
Rename main() to something else. You can do this by compiling your C program with an option like
−Dmain=oldmain.

• 

Use conditional compilation to only include main() when not using a scripting language.• 

Getting rid of main() may cause potential initialization problems of a program. To handle this problem, you may consider
writing a special function called program_init() that initializes your program upon startup. This function could then be
called either from the scripting language as the first operation, or when the SWIG generated module is loaded.

As a general note, many C programs only use the main() function to parse command line options and to set parameters.
However, by using a scripting language, you are probably trying to create a program that is more interactive. In many cases, the
old main() program can be completely replaced by a Perl, Python, or Tcl script.

Note: If some cases, you might be inclined to create a scripting language wrapper for main(). If you do this, the compilation
will probably work and your module might even load correctly. The only trouble is that when you call your main() wrapper,
you will find that it actually invokes the main() of the scripting language interpreter itself! This behavior is a side effect of the
symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.
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6 SWIG and C++
Comments on C++ Wrapping• 
Approach• 
Supported C++ features• 
Command line options and compilation• 
Simple C++ wrapping

Constructors and destructors♦ 
Default constructors♦ 
When constructor wrappers aren't created♦ 
Copy constructors♦ 
Member functions♦ 
Static members♦ 
Member data♦ 

• 

Default arguments• 
Protection• 
Enums and constants• 
Friends• 
References and pointers• 
Pass and return by value• 
Inheritance• 
A brief discussion of multiple inheritance, pointers, and type checking• 
Renaming• 
Wrapping Overloaded Functions and Methods

Dispatch function generation♦ 
Ambiguity in Overloading♦ 
Ambiguity resolution and renaming♦ 
Comments on overloading♦ 

• 

Wrapping overloaded operators• 
Class extension• 
Templates• 
Namespaces• 
Exception specifiers• 
Pointers to Members• 
Smart pointers and operator−>()• 
Using declarations and inheritance• 
Partial class definitions• 
A brief rant about const−correctness• 
Proxy classes

Construction of proxy classes♦ 
Resource management in proxies♦ 
Language specific details♦ 

• 

Where to go for more information• 

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to see
how SWIG wraps ANSI C. Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this
chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only
provides support for a subset of C++ features. Fortunately, this is now a rather large subset.

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic ) way to map many of its advanced
features into other languages. As a simple example, consider the problem of wrapping C++ multiple inheritance to a target
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language with no such support. Similarly, the use of overloaded operators and overloaded functions can be problematic when no
such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the
world of SWIG, you are really trying to create binary−level software components for use in other languages. In order for this to
work, a "component" has to contain real executable instructions and there has to be some kind of binary linking mechanism for
accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and templates for much of its
functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components
and libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper.
To further complicate matters, these libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly
basic operations (e.g., pointer dereferencing, procedure call, etc.) can be changed in dramatic and sometimes non−obvious ways.
Although this "magic" may present few problems in a C++−only universe, it greatly complicates the problem of crossing language
boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedural
ANSI−C style wrappers. These wrappers take care of basic type conversion, type checking, error handling, and other low−level
details of the C++ binding. These wrappers are also sufficient to bind C++ into any target language that supports built−in
procedures. In some sense, you might view this layer of wrapping as providing a C library interface to C++. Optionally, SWIG
can also generate proxy classes that provide a natural OO interface to the underlying code. These proxies are built on top of the
low−level procedural wrappers and are typically written in the target language itself. For instance, in Python, a real Python class is
used to provide a wrapper around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non−intrusive approach to C++ wrapping. SWIG
does not encapsulate C++ classes inside special C++ adaptor or proxy classes, it does not rely upon templates, nor does it use C++
inheritance when generating wrappers. The last thing that most C++ programs need is even more compiler magic. Therefore,
SWIG tries to maintain a very strict and clean separation between the implementation of your C++ application and the resulting
wrapper code. You might say that SWIG has been written to follow the principle of least surprise−−it does not play sneaky tricks
with the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this
approach might not provide the most seamless integration with C++, it is safe, simple, portable, and debuggable.

Most of this chapter focuses on the low−level procedural interface to C++ that is used as the foundation for all language modules.
Keep in mind that most target languages also provide a high−level OO interface via proxy classes. A few general details about
proxies can be found at the end of this chapter. However, more detailed coverage can be found in the documentation for each
target language.

6.3 Supported C++ features

SWIG's currently supports the following C++ features :

Classes.• 
Constructors and destructors• 
Virtual functions• 
Public inheritance (including multiple inheritance)• 
Static functions• 
Function and method overloading.• 
Operator overloading for many standard operators• 
References• 
Templates (including specialization and member templates).• 
Pointers to members• 
Namespaces• 

The following C++ features are not currently supported :
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Nested classes• 
Overloaded versions of certain operators (new, delete, etc.)• 

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no
promises. Also, submitting a bug report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the `−c++' option. This changes the way a number of critical
features such as memory management are handled. It also enables the recognition of C++ keywords. Without the −c++ flag,
SWIG will either issue a warning or a large number of syntax errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

$ swig −c++ −tcl example.i
$ c++ −c example_wrap.cxx 
$ c++ example_wrap.o $(OBJS) −o example.so

Unfortunately, the process varies slightly on each machine. Make sure you refer to the documentation on each target language for
further details. The SWIG Wiki also has further details.

6.5 Simple C++ wrapping

The following code shows a SWIG interface file for a simple C++ class.

%module list
%{
#include "list.h"
%}

// Very simple C++ example for linked list

class List {
public:
  List();
  ~List();
  int  search(char *value);
  void insert(char *);
  void remove(char *);
  char *get(int n);
  int  length;
static void print(List *l);
};

To generate wrappers for this class, SWIG first reduces the class to a collection of low−level C−style accessor functions. The next
few sections describe this process. Later parts of the chapter decribe a higher level interface based on proxy classes.

6.5.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new_List(void) {
        return new List;
}
void delete_List(List *l) {
        delete l;
}
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6.5.2 Default constructors

If a C++ class does not define any public constructors or destructors, SWIG will automatically create a default constructor or
destructor. However, there are a few rules that define this behavior:

A default constructor is not created if a class already defines a constructor with arguments.• 
Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract
class, but don't provide definitions for all of the pure methods.

• 

A default constructor is not created unless all bases classes support a default constructor.• 
Default constructors and destructors are not created if a class defines constructors or destructors in a private or
protected section.

• 

Default constructors and destructors are not created if any base class defines a private default constructor or a private
destructor.

• 

SWIG should never generate a constructor or destructor for a class in which it is illegal to do so. However, if it is necessary to
disable the default constructor/destructor creation, the %nodefault directive can be used:

%nodefault;   // Disable creation of constructor/destructor
class Foo {
...
};
%makedefault;

%nodefault can also take a class name. For example:

%nodefault Foo;     // Disable for class Foo only.

Compatibility Note: The generation of default constructors/destructors was made the default behavior in SWIG 1.3.7. This may
break certain older modules, but the old behavior can be easily restored using %nodefault or the −nodefault command line
option. Furthermore, in order for SWIG to properly generate (or not generate) default constructors, it must be able to gather
information from both the private and protected sections (specifically, it needs to know if a private or protected
constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously generate
constructors for classes that define a constructor in those sections. Consider restoring those sections in the interface or using
%nodefault to fix the problem.

6.5.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a constructor
wrapper if it thinks that it will result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:
     Foo();         // Not wrapped.
public:
      ...
};

Next, SWIG won't generate wrappers for a class if it appears to be abstract−−that is, it has undefined pure virtual methods. Here
are some examples:

class Bar {
public:
     Bar();               // Not wrappped.  Bar is abstract.
     virtual void spam(void) = 0; 
};
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class Grok : public Bar {
public:
      Grok();            // Not wrapped. No implementation of abstract spam().
};

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caused
when classes are determined to be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

% swig −Wall −python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non−abstract using this:

%feature("notabstract") Foo;

class Foo : public Bar {
public:
     Foo();    // Generated no matter what−−−not abstract. 
     ...
};

More information about %feature can be found in the Customization features chapter.

6.5.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is
supported, the copy constructor is accessible using the normal constructor function. For example, if you have this:

class List {
public:
    List();    
    List(const List &);      // Copy constructor
    ...
};

then the copy constructor can be used as follows:

x = new_List()               # Create a list
y = new_List(x)              # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy_List(List *f) {
    return new List(*f);
}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If
more than one copy constructor is defined, only the first definition that appears is used as the copy constructor−−other definitions
will result in a name−clash. Constructors such as X(const X &), X(X &), and X(X *) are handled as copy constructors in
SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the
treatment of default constructors and destructors.

Compatibility note: Special support for copy constructors was not added until SWIG−1.3.12. In previous versions, copy
constructors could be wrapped, but they had to be renamed. For example:

class Foo {
public:
    Foo();
  %name(CopyFoo) Foo(const Foo &);
    ...
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};

For backwards compatibility, SWIG does not perform any special copy−constructor handling if the constructor has been manually
renamed. For instance, in the above example, the name of the constructor is set to new_CopyFoo(). This is the same as in older
versions.

6.5.5 Member functions

All member functions are roughly translated into accessor functions like this :

int List_search(List *obj, char *value) {
        return obj−>search(value);
}

This translation is the same even if the member function has been declared as virtual.

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access such
as obj−>search(value) is directly inlined into the generated wrapper functions. However, the name and calling convention
of the wrappers match the accessor function prototype described above.

6.5.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member function
print(List *l) directly invokes List::print(List *l) in the generated wrapper code.

Usually, static members are accessed as functions with names in which the class name has been prepended with an underscore.
For example, List_print.

6.5.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are created. For example :

int List_length_get(List *obj) {
        return obj−>length;
}
int List_length_set(List *obj, int value) {
        obj−>length = value;
        return value;
}

A read−only member can be created using the %immutable and %mutable directives. For example, we probably wouldn't
want the user to change the length of a list so we could do the following to make the value available, but read−only.

class List {
public:
...
%immutable;
        int length;
%mutable;
...
};

Alternatively, you can specify an immutable member in advance like this:

%immutable List::length;
...
class List {
   ...
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   int length;         // Immutable by above directive
   ...
};

Similarly, all data attributes declared as const are wrapped as read−only members.

There are some subtle issues when wrapping data members that are themselves classes. For instance, if you had another class like
this,

class Foo {
public:
    List items;
    ...

then access to the items member actually uses pointers. For example:

List *Foo_items_get(Foo *self) {
    return &self−>items;
}
void Foo_items_set(Foo *self, List *value) {
    self−>items = *value;
}

More information about this can be found in the "Structure data members" section of the SWIG Basics chapter.

Compatibility note: Read−only access used to be controlled by a pair of directives %readonly and %readwrite. Although
these directives still work, they generate a warning message. Simply change the directives to %immutable; and %mutable; to
silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG−1.3.12, all members of unknown type were wrapped into accessor functions using pointers.
For example, if you had a structure like this

struct Foo {
   size_t  len;
};

and nothing was known about size_t, then accessors would be written to work with size_t *. Starting in SWIG−1.3.12, this
behavior has been modified. Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure or
class. Therefore, the above code would be wrapped into accessors involving size_t. This change is subtle, but it smooths over a
few problems related to structure wrapping and some of SWIG's customization features.

6.6 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:
    void bar(int x, int y = 3, int z = 4);
};

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively
handling methods with default arguments as if it had wrapped the equivalent overloaded methods. Thus for the example above, it
is as if we had instead given the following to SWIG:

class Foo {
public:
    void bar(int x, int y, int z);
    void bar(int x, int y);
    void bar(int x);
};
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The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this is covered later in the
Wrapping Overloaded Functions and Methods section. This approach allows SWIG to wrap all possible default arguments, but
can be verbose. For example if a method has ten default arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using %feature with functions with default
arguments. The Ambiguity resolution and renaming section also deals with using %rename and %ignore on methods with
default arguments. If you are writing your own typemaps for types used in methods with default arguments, you may also need to
write a typecheck typemap. See the Typemaps and overloading section for details or otherwise use the use the
compactdefaultargs feature as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG−1.3.23 wrapped default arguments slightly differently. Instead a single
wrapper method was generated and the default values were copied into the C++ wrappers so that the method being wrapped was
then called with all the arguments specified. If the size of the wrappers are a concern then this approach to wrapping methods with
default arguments can be re−activated by using the compactdefaultargs feature.

%feature("compactdefaultargs") Foo::bar;
class Foo {
public:
    void bar(int x, int y = 3, int z = 4);
};

This is great for reducing the size of the wrappers, but the caveat is it does not work for the strongly typed languages which don't
have optional arguments in the language, such as C# and Java. Another restriction of this feature is that it cannot handle default
arguments that are not public. The following example illustrates this:

class Foo {
private:
   static const int spam;
public:
   void bar(int x, int y = spam);   // Won't work with %feature("compactdefaultargs") −
                                    // private default value
};

This produces uncompileable wrapper code because default values in C++ are evaluated in the same scope as the member
function whereas SWIG evaluates them in the scope of a wrapper function (meaning that the values have to be public).

This feature is automatically turned on when wrapping C code with default arguments and whenever keyword arguments (kwargs)
are specified for either C or C++ code. Keyword arguments are a language feature of some scripting languages, for example Ruby
and Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.

6.7 Protection

SWIG can only wrap class members that are declared public. Anything specified in a private or protected section will simply be
ignored (although the internal code generator sometimes looks at the contents of the private and protected sections so that it can
properly generate code for default constructors and destructors).

By default, members of a class definition are assumed to be private until you explicitly give a `public:' declaration (This is the
same convention used by C++).

6.8 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the
appropriate language chapter. However, many languages map enums and constants in a class definition into constants with the
classname as a prefix. For example :

class Swig {
public:
        enum {ALE, LAGER, PORTER, STOUT};
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};

Generates the following set of constants in the target scripting language :

Swig_ALE = Swig::ALE
Swig_LAGER = Swig::LAGER
Swig_PORTER = Swig::PORTER
Swig_STOUT = Swig::STOUT

Members declared as const are wrapped as read−only members and do not create constants.

6.9 Friends

Friend declarations are ignored by SWIG. For example, if you have this code:

class Foo {
public:
     ...
     friend void blah(Foo *f);
     ...
};

then the friend declaration does not result in any wrapper code. On the other hand, a declaration of the function itself will work
fine. For instance:

class Foo {
public:
    ...
    friend void blah(Foo *f);       // Ignored
    ...
};

void blah(Foo *f);       // Generates wrappers

Unlike normal member functions or static member functions, a friend declaration does not define a method that operates on an
instance of an object nor does it define a declaration in the scope of the class. Therefore, it would make no sense for SWIG to
create wrappers as such.

6.10 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:
        double bar(double &a);
}

is accessed using a function similar to this:

double Foo_bar(Foo *obj, double *a) {
        obj−>bar(*a);
}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value
instead of pointers. For example, if you have a function like this,

void foo(const int &x);
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it is called from a script as follows:

foo(3)              # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:
     Foo &spam();
};

Generates code like this:

Foo *Bar_spam(Bar *obj) {
   Foo &result = obj−>spam();
   return &result;
}

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value
rather than a pointer. For example, a function like this,

const int &bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this will
probably cause your program to crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more
advanced C++ wrapping applications−−−especially related to templates and the STL. This was first added in SWIG−1.3.12.

6.11 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross_product(Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_cross_product(Vector *a, Vector *b) {
   Vector x = *a;
   Vector y = *b;
   Vector r = cross_product(x,y);
   return new Vector(r);
}

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by
encapsulating the arguments inside a special C++ template wrapper class. This produces a wrapper that looks like this:

Vector cross_product(Vector *a, Vector *b) {
   SwigValueWrapper<Vector> x = *a;
   SwigValueWrapper<Vector> y = *b;
   SwigValueWrapper<Vector> r = cross_product(x,y);
   return new Vector(r);
}

This transformation is a little sneaky, but it provides support for pass−by−value even when a class does not provide a default
constructor and it makes it possible to properly support a number of SWIG's customization options. The definition of
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SwigValueWrapper can be found by reading the SWIG wrapper code. This class is really nothing more than a thin wrapper
around a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG−−−it should be transparent except that you may
see this code when reading the SWIG output file.

Note: This template transformation is new in SWIG−1.3.11 and may be refined in future SWIG releases. In practice, it is only
necessary to do this for classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or
references.

Note: The performance of pass−by−value is especially bad for large objects and should be avoided if possible (consider using
references instead).

6.12 Inheritance

SWIG supports C++ public inheritance of classes and allows both single and multiple inheritance. The SWIG type−checker
knows about the relationship between base and derived classes and allows pointers to any object of a derived class to be used in
functions of a base class. The type−checker properly casts pointer values and is safe to use with multiple inheritance.

SWIG does not support private or protected inheritance (it is parsed, but it has no effect on the generated code). Note: private and
protected inheritance do not define an "isa" relationship between classes so it would have no effect on type−checking anyways.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

// shapes.i
%module shapes
%{
#include "shapes.h"
%}

class Shape {
public:
        double x,y;
        virtual double area() = 0;
        virtual double perimeter() = 0;
        void    set_location(double x, double y);
};
class Circle : public Shape {
public:
        Circle(double radius);
        ~Circle();
        double area();
        double perimeter();
};
class Square : public Shape {
public:
        Square(double size);
        ~Square();
        double area();
        double perimeter();
}

When wrapped into Python, we can now perform the following operations :

$ python
>>> import shapes
>>> circle = shapes.new_Circle(7)
>>> square = shapes.new_Square(10)
>>> print shapes.Circle_area(circle)
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153.93804004599999757
>>> print shapes.Shape_area(circle)
153.93804004599999757
>>> print shapes.Shape_area(square)
100.00000000000000000
>>> shapes.Shape_set_location(square,2,−3)
>>> print shapes.Shape_perimeter(square)
40.00000000000000000
>>>

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making calls to
Circle_area, Square_area, and so on. However, the same results can be accomplished by simply using the Shape_area
function on either object.

One important point concerning inheritance is that the low−level accessor functions are only generated for classes in which they
are actually declared. For instance, in the above example, the method set_location() is only accessible as
Shape_set_location() and not as Circle_set_location() or Square_set_location(). Of course, the
Shape_set_location() function will accept any kind of object derived from Shape. Similarly, accessor functions for the
attributes x and y are generated as Shape_x_get(), Shape_x_set(), Shape_y_get(), and Shape_y_set().
Functions such as Circle_x_get() are not available−−instead you should use Shape_x_get().

Although the low−level C−like interface is functional, most language modules also produce a higher level OO interface using
proxy classes. This approach is described later and can be used to provide a more natural C++ interface.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get an warning
message like this:

example:18. Nothing known about class 'Foo'. Ignored.

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will
accept any object derived from Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want
to generate wrappers for the base class, but you want to silence the warning, you might consider using the %import directive to
include the file that defines Foo. %import simply gathers type information, but doesn't generate wrappers. Alternatively, you
could just define Foo as an empty class in the SWIG interface.

Note: typedef−names can be used as base classes. For example:

class Foo {
...
};

typedef Foo FooObj;
class Bar : public FooObj {     // Ok.  Base class is Foo
...
};

Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {
   ...
} Foo;

class Bar : public Foo {    // Ok. 
...
};

Compatibility Note: Starting in version 1.3.7, SWIG only generates low−level accessor wrappers for the declarations that are
actually defined in each class. This differs from SWIG1.1 which used to inherit all of the declarations defined in base classes and
regenerate specialized accessor functions such as Circle_x_get(), Square_x_get(), Circle_set_location(), and
Square_set_location(). This behavior resulted in huge amounts of replicated code for large class hierarchies and made it
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awkward to build applications spread across multiple modules (since accessor functions are duplicated in every single module). It
is also unnecessary to have such wrappers when advanced features like proxy classes are used. Future versions of SWIG may
apply further optimizations such as not regenerating wrapper functions for virtual members that are already defined in a base
class.

6.13 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value of the
pointer and a type string. For example, in Tcl, a C++ pointer might be encoded as a string like this:

_808fea88_p_Circle

A somewhat common question is whether or not the type−tag could be safely removed from the pointer. For instance, to get better
performance, could you strip all type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in the
target language. Typically this is the equivalent of casting a pointer to void *. This means that any C++ type information
associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features−−especially
multiple inheritance. For example, suppose you had code like this:

class A {
public:
   int x;
};

class B {
public:
   int y;
};

class C : public A, public B {
};

int A_function(A *a) {
   return a−>x;
}

int B_function(B *b) {
   return b−>y;
}

Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;
...
int x = A_function((A *) p);
int y = B_function((B *) p);

In this code, both A_function() and B_function() may legally accept an object of type C * (via inheritance). However,
one of the functions will always return the wrong result when used as shown. The reason for this is that even though p points to an
object of type C, the casting operation doesn't work like you would expect. Internally, this has to do with the data representation of
C. With multiple inheritance, the data from each base class is stacked together. For example:

             −−−−−−−−−−−−    <−−− (C *),  (A *)
            |     A      |
            |−−−−−−−−−−−−|   <−−− (B *)
            |     B      |
             −−−−−−−−−−−−   
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Because of this stacking, a pointer of type C * may change value when it is converted to a A * or B *. However, this adjustment
does not occur if you are converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG
generated wrappers to correctly cast pointer values under inheritance (avoiding the above problem).

One might be inclined to fix this problem using some variation of dynamic_cast<>. The only problem is that it doesn't work
with void pointers, it requires RTTI support, and it only works with polymorphic classes (i.e., classes that define one or more
virtual functions).

The bottom line: learn to live with type−tagged pointers.

6.14 Renaming

C++ member functions and data can be renamed with the %name directive. The %name directive only replaces the member
function name. For example :

class List {
public:
  List();
%name(ListSize) List(int maxsize);
  ~List();
  int  search(char *value); 
%name(find)    void insert(char *); 
%name(delete)  void remove(char *); 
  char *get(int n);
  int  length;
static void print(List *l);
};

This will create the functions List_find, List_delete, and a function named new_ListSize for the overloaded
constructor.

The %name directive can be applied to all members including constructors, destructors, static functions, data members, and
enumeration values.

The class name prefix can also be changed by specifying

%name(newname) class List {
...
}

Although the %name() directive can be used to help deal with overloaded methods, it really doesn't work very well because it
requires a lot of additional markup in your interface. Keep reading for a better solution.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example, if
you supply SWIG with overloaded functions like this:

void foo(int x) {
   printf("x is %d\n", x);
}
void foo(char *x) {
   printf("x is '%s'\n", x);
}

The function is used in a completely natural way. For example:
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>>> foo(3)
x is 3
>>> foo("hello")
x is 'hello'
>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
     Foo();
     Foo(const Foo &);   // Copy constructor
     void bar(int x);
     void bar(char *s, int y);
};

it might be used like this

>>> f = Foo()          # Create a Foo
>>> f.bar(3)
>>> g = Foo(f)         # Copy Foo
>>> f.bar("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting
languages. Unlike C++, which binds overloaded methods at compile time, SWIG must determine the proper function as a runtime
check for scripting language targets. This check is further complicated by the typeless nature of certain scripting languages. For
instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded functions like this,

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the
scripting languages, SWIG generates a dispatch function that checks the number of passed arguments and their types. To create
this function, SWIG first examines all of the overloaded methods and ranks them according to the following rules:

Number of required arguments. Methods are sorted by increasing number of required arguments.1. 
Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by
the language module).

Type              Precedence
−−−−−−−−−−−−−−−−  −−−−−−−−−−
TYPE *            0     (High)
void *            20
Integers          40
Floating point    60
char              80
Strings           100   (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased
order of precedence values.

2. 

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo(double);
void foo(int);
void foo(Bar *);
void foo();
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void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double y);
void foo(double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

rank
−−−−−
[0]   foo()
[1]   foo(double);
[2]   foo(int);
[3]   foo(Bar *);
[4]   foo(int x, int y, int z = 3);
[5]   foo(double x, double y)
[6]   foo(double x, Bar *z)
[7]   foo(int x, int y, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

rank
−−−−−
[0]   foo()
[1]   foo(Bar *);
[2]   foo(int);
[3]   foo(double);
[4]   foo(int x, int y, int z = 3);
[5]   foo(double x, Bar *z)
[6]   foo(double x, double y)
[7]   foo(int x, int y, int z, int w);

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same order as
they appear in this ranking.

If you're still confused, don't worry about it−−−SWIG is probably doing the right thing.

6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore,
which one of these functions do you pick? Clearly, there is no way to truly make a distinction just by looking at the value of the
integer itself (int and long may even be the same precision). Therefore, when SWIG encounters this situation, it may generate
a warning message like this for scripting languages:

example.i:4: Warning(509): Overloaded foo(long) is shadowed by foo(int) at example.i:3.

or for statically typed languages like Java:

example.i:4: Warning(516): Overloaded method foo(long) ignored. Method foo(int)
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped at
all. This is done as SWIG does not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:
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Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown
above.

• 

Floating point conversion. float and double can not be disambiguated in some languages.• 
Pointers and references. For example, Foo * and Foo &.• 
Pointers and arrays. For example, Foo * and Foo [4].• 
Pointers and instances. For example, Foo and Foo *. Note: SWIG converts all instances to pointers.• 
Qualifiers. For example, const Foo * and Foo *.• 
Default vs. non default arguments. For example, foo(int a, int b) and foo(int a, int b = 3).• 

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier methods
will shadow methods that appear later.

When wrapping an overloaded function, there is a chance that you will get an error message like this:

example.i:3: Warning(467): Overloaded foo(int) not supported (no type checking
rule for 'int').

This error means that the target language module supports overloading, but for some reason there is no type−checking rule that
can be used to generate a working dispatch function. The resulting behavior is then undefined. You should report this as a bug to
the SWIG bug tracking database.

If you get an error message such as the following,

foo.i:6. Overloaded declaration ignored.  Spam::foo(double )
foo.i:5. Previous declaration is Spam::foo(int )
foo.i:7. Overloaded declaration ignored.  Spam::foo(Bar *,Spam *,int )
foo.i:5. Previous declaration is Spam::foo(int )

it means that the target language module has not yet implemented support for overloaded functions and methods. The only way to
fix the problem is to read the next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing with
the problem. First, you can tell SWIG to ignore one of the methods. This is easy−−−simply use the %ignore directive. For
example:

%ignore foo(long);

void foo(int);
void foo(long);       // Ignored.  Oh well.

The other alternative is to rename one of the methods. This can be done using %rename. For example:

%rename(foo_long) foo(long);

void foo(int);
void foo(long);       // Accessed as foo_long()

The %ignore and %rename directives are both rather powerful in their ability to match declarations. When used in their simple
form, they apply to both global functions and methods. For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int); 
%rename(foo_d) foo(double);
...
void foo(int);           // Becomes 'foo_i'
void foo(char *c);       // Stays 'foo' (not renamed)

class Spam {
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public:
   void foo(int);      // Becomes 'foo_i'
   void foo(double);   // Becomes 'foo_d'
   ...
};

If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

%rename(foo_i) ::foo(int);      // Only rename foo(int) in the global scope.
                                // (will not rename class members)

%rename(foo_i) Spam::foo(int);  // Only rename foo(int) in class Spam

When a renaming operator is applied to a class as in Spam::foo(int), it is applied to that class and all derived classes. This
can be used to apply a consistent renaming across an entire class hierarchy with only a few declarations. For example:

%rename(foo_i) Spam::foo(int);
%rename(foo_d) Spam::foo(double);

class Spam {
public:
   virtual void foo(int);      // Renamed to foo_i
   virtual void foo(double);   // Renamed to foo_d
   ...
};

class Bar : public Spam {
public:
   virtual void foo(int);      // Renamed to foo_i
   virtual void foo(double);   // Renamed to foo_d
...
};

class Grok : public Bar {
public:
   virtual void foo(int);      // Renamed to foo_i
   virtual void foo(double);   // Renamed to foo_d
...
};

It is also possible to include %rename specifications in the class definition itself. For example:

class Spam {
   %rename(foo_i) foo(int);
   %rename(foo_d) foo(double);
public:
   virtual void foo(int);      // Renamed to foo_i
   virtual void foo(double);   // Renamed to foo_d
   ...
};

class Bar : public Spam {
public:
   virtual void foo(int);      // Renamed to foo_i
   virtual void foo(double);   // Renamed to foo_d
...
};

In this case, the %rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to
explicitly specify the class prefix Spam::.

A special form of %rename can be used to apply a renaming just to class members (of all classes):

%rename(foo_i) *::foo(int);   // Only rename foo(int) if it appears in a class.
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Note: the *:: syntax is non−standard C++, but the '*' is meant to be a wildcard that matches any class name (we couldn't think of
a better alternative so if you have a better idea, send email to the swig−dev mailing list.

Although this discussion has primarily focused on %rename all of the same rules also apply to %ignore. For example:

%ignore foo(double);          // Ignore all foo(double)
%ignore Spam::foo;            // Ignore foo in class Spam
%ignore Spam::foo(double);    // Ignore foo(double) in class Spam
%ignore *::foo(double);       // Ignore foo(double) in all classes

When applied to a base class, %ignore forces all definitions in derived clases to disappear. For example, %ignore
Spam::foo(double) will eliminate foo(double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

Since, the %rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface file.
This makes it possible to apply a consistent name resolution without having to modify header files. For example:

%module foo

/* Rename these overloaded functions */
%rename(foo_i) foo(int); 
%rename(foo_d) foo(double);

%include "header.h"

• 

The scope qualifier (::) can also be used on simple names. For example:

%rename(bar) ::foo;       // Rename foo to bar in global scope only
%rename(bar) Spam::foo;   // Rename foo to bar in class Spam only
%rename(bar) *::foo;      // Rename foo in classes only

• 

Name matching tries to find the most specific match that is defined. A qualified name such as Spam::foo always has
higher precedence than an unqualified name foo. Spam::foo has higher precedence than *::foo and *::foo has
higher precedence than foo. A parameterized name has higher precedence than an unparameterized name within the
same scope level. However, an unparameterized name with a scope qualifier has higher precedence than a parameterized
name in global scope (e.g., a renaming of Spam::foo takes precedence over a renaming of foo(int)).

• 

The order in which %rename directives are defined does not matter as long as they appear before the declarations to be
renamed. Thus, there is no difference between saying:

%rename(bar) foo;
%rename(foo_i) Spam::foo(int);
%rename(Foo) Spam::foo;

and this

%rename(Foo) Spam::foo;
%rename(bar) foo;
%rename(foo_i) Spam::foo(int);

(the declarations are not stored in a linked list and order has no importance). Of course, a repeated %rename directive
will change the setting for a previous %rename directive if exactly the same name, scope, and parameters are supplied.

• 

For multiple inheritance where renaming rules are defined for multiple base classes, the first renaming rule found on a
depth−first traversal of the class hierarchy is used.

• 

The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:
   ...
   void bar() const;
   ...
};

• 
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the declaration

%rename(name) Spam::bar();

will not apply as there is no unqualified member bar(). The following will apply as the qualifier matches correctly:

%rename(name) Spam::bar() const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their
qualifiers, like this:

class Spam {
public:
   ...
   void bar();         // Unqualified member
   void bar() const;   // Qualified member
   ...
};

%rename can then be used to target each of the overloaded methods individually. For example we can give them separate
names in the target language:

%rename(name1) Spam::bar();
%rename(name2) Spam::bar() const;

Similarly, if you merely wanted to ignore one of the declarations, use %ignore with the full qualification. For example,
the following directive would tell SWIG to ignore the const version of bar() above:

%ignore Spam::bar() const;   // Ignore bar() const, but leave other bar() alone

The name matching rules also use default arguments for finer control when wrapping methods that have default
arguments. Recall that methods with default arguments are wrapped as if the equivalent overloaded methods had been
parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:
   ...
   void bar(int i=−1, double d=0.0);
   ...
};

The following %rename will match exactly and apply to all the target language overloaded methods because the
declaration with the default arguments exactly matches the wrapped method:

%rename(newbar) Spam::bar(int i=−1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are
specified, for example: newbar(2, 2.0), newbar(2) or newbar(). However, if the %rename does not contain
the default arguments, it will only apply to the single equivalent target language overloaded method. So if instead we
have:

%rename(newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar(2, 2.0) when both
arguments are supplied or with the original name as bar(2) (one argument) or bar() (no arguments). In fact it is
possible to use %rename on the equivalent overloaded methods, to rename all the equivalent overloaded methods:

%rename(bar_2args)   Spam::bar(int i, double d);
%rename(bar_1arg)    Spam::bar(int i);
%rename(bar_default) Spam::bar();

• 
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Similarly, the extra overloaded methods can be selectively ignored using %ignore.

Compatibility note: The %rename directive introduced the default argument matching rules in SWIG−1.3.23 at the
same time as the changes to wrapping methods with default arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG−1.3.14. The implementation is somewhat unusual when compared to
similar tools. For instance, the order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not rely
upon trial execution or exception handling to figure out which method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of
overloading support may vary from language to language. As a general rule, statically typed languages like Java are able to
provide more support than dynamically typed languages like Perl, Python, Ruby, and Tcl.

6.16 Wrapping overloaded operators

Starting in SWIG−1.3.10, C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:
  double rpart, ipart;
public:
  Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
  Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
  Complex &operator=(const Complex &c) {
    rpart = c.rpart;
    ipart = c.ipart;
    return *this;
  }
  Complex operator+(const Complex &c) const {
    return Complex(rpart+c.rpart, ipart+c.ipart);
  }
  Complex operator−(const Complex &c) const {
    return Complex(rpart−c.rpart, ipart−c.ipart);
  }
  Complex operator*(const Complex &c) const {
    return Complex(rpart*c.rpart − ipart*c.ipart,
                   rpart*c.ipart + c.rpart*ipart);
  }
  Complex operator−() const {
    return Complex(−rpart, −ipart);
  }
  double re() const { return rpart; }
  double im() const { return ipart; }
};

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of these
methods are set to strings like "operator +" or "operator −". The problem with these names is that they are illegal
identifiers in most scripting languages. For instance, you can't just create a method called "operator +" in Python−−there
won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the target
language). However, the underlying implementation of this is really managed in a very general way using the %rename directive.
For example, in Python a declaration similar to this is used:

%rename(__add__) Complex::operator+;

This binds the + operator to a method called __add__ (which is conveniently the same name used to implement the Python +
operator). Internally, the generated wrapper code for a wrapped operator will look something like this pseudocode:
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_wrap_Complex___add__(args) {
   ... get args ...
   obj−>operator+(args);
   ...
}

When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> a = Complex(3,4)
>>> b = Complex(5,2)
>>> c = a + b           # Invokes __add__ method

It is important to realize that there is nothing magical happening here. The %rename directive really only picks a valid method
name. If you wrote this:

%rename(add) operator+;

The resulting scripting interface might work like this:

a = Complex(3,4)
b = Complex(5,2)
c = a.add(b)      # Call a.operator+(b)

All of the techniques described to deal with overloaded functions also apply to operators. For example:

%ignore Complex::operator=;             // Ignore = in class Complex
%ignore *::operator=;                   // Ignore = in all classes
%ignore operator=;                      // Ignore = everywhere.

%rename(__sub__) Complex::operator−; 
%rename(__neg__) Complex::operator−();  // Unary − 

The last part of this example illustrates how multiple definitions of the operator− method might be handled.

Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

In C++, it is fairly common to define different versions of the operators to account for different types. For example, a
class might also include a friend function like this:

class Complex {
public:
  friend Complex operator+(Complex &, double);
};
Complex operator+(Complex &, double);

SWIG simply ignores all friend declarations. Furthermore, it doesn't know how to associate the associated
operator+ with the class (because it's not a member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename(add_complex_double) operator+(Complex &, double);

• 

Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion
operators.

• 

The semantics of certain C++ operators may not match those in the target language.• 

6.17 Class extension

New methods can be added to a class using the %extend directive. This directive is primarily used in conjunction with proxy
classes to add additional functionality to an existing class. For example :
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%module vector
%{
#include "vector.h"
%}

class Vector {
public:
        double x,y,z;
        Vector();
        ~Vector();
        ... bunch of C++ methods ...
        %extend {
                char *__str__() {
                        static char temp[256];
                        sprintf(temp,"[ %g, %g, %g ]", v−>x,v−>y,v−>z);
                        return &temp[0];
                }
        }
};

This code adds a __str__ method to our class for producing a string representation of the object. In Python, such a method
would allow us to print the value of an object using the print command.

>>>
>>> v = Vector();
>>> v.x = 3
>>> v.y = 4
>>> v.z = 0
>>> print(v)
[ 3.0, 4.0, 0.0 ]
>>>

The %extend directive follows all of the same conventions as its use with C structures. Please refer to the SWIG Basics chapter
for further details.

Compatibility note: The %extend directive is a new name for the %addmethods directive. Since %addmethods could be
used to extend a structure with more than just methods, a more suitable directive name has been chosen.

6.18 Templates

In all versions of SWIG, template type names may appear anywhere a type is expected in an interface file. For example:

void foo(vector<int> *a, int n);
void bar(list<int,100> *x);

There are some restrictions on the use of non−type arguments. Specifically, they have to be simple literals and not expressions.
For example:

void bar(list<int,100> *x);    // OK
void bar(list<int,2*50> *x);   // Illegal

The type system is smart enough to figure out clever games you might try to play with typedef. For instance, consider this
code:

typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo() will accept either
variant.
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Starting with SWIG−1.3.7, simple C++ template declarations can also be wrapped. SWIG−1.3.12 greatly expands upon the earlier
implementation. Before discussing this any further, there are a few things you need to know about template wrapping. First, a bare
C++ template does not define any sort of runnable object−code for which SWIG can normally create a wrapper. Therefore, in
order to wrap a template, you need to give SWIG information about a particular template instantiation (e.g., vector<int>,
array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier name in most
target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating
a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
    T *data;
    int nitems;
    int maxitems;
public:
    List(int max) {
      data = new T [max];
      nitems = 0;
      maxitems = max;
    }
    ~List() {
      delete [] data;
    };
    void append(T obj) {
      if (nitems < maxitems) {
        data[nitems++] = obj;
      }
    }
    int length() {
      return nitems;
    }
    T get(int n) {
      return data[n];
    }
};

By itself, this template declaration is useless−−SWIG simply ignores it because it doesn't know how to generate any code until
unless a definition of T is provided.

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly like
this:

%rename(intList) List<int>;       // Rename to a suitable identifier
class List<int> {
private:
    int *data;
    int nitems;
    int maxitems;
public:
    List(int max);
    ~List();
    void append(int obj);
    int length();
    int get(int n);
};

The %rename directive is needed to give the template class an appropriate identifier name in the target language (most languages
would not recognize C++ template syntax as a valid class name). The rest of the code is the same as what would appear in a
normal class definition.

Since manual expansion of templates gets old in a hurry, the %template directive can be used to create instantiations of a
template class. Semantically, %template is simply a shortcut−−−it expands template code in exactly the same way as shown
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above. Here are some examples:

/* Instantiate a few different versions of the template */
%template(intList) List<int>;
%template(doubleList) List<double>;

The argument to %template() is the name of the instantiation in the target language. The name you choose should not conflict
with any other declarations in the interface file with one exception−−−it is okay for the template name to match that of a typedef
declaration. For example:

%template(intList) List<int>;
...
typedef List<int> intList;    // OK

SWIG can also generate wrappers for function templates using a similar technique. For example:

// Function template
template<class T> T max(T a, T b) { return a > b ? a : b; }

// Make some different versions of this function
%template(maxint) max<int>;
%template(maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

The number of arguments supplied to %template should match that in the original template definition. Template default
arguments are supported. For example:

template vector<typename T, int max=100> class vector {
...
};

%template(intvec) vector<int>;           // OK
%template(vec1000) vector<int,1000>;     // OK

The %template directive should not be used to wrap the same template instantiation more than once in the same scope. This
will generate an error. For example:

%template(intList) List<int>;
%template(Listint) List<int>;    // Error.   Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a symbol
table conflict. Besides, it probably more efficient to only wrap a specific instantiation only once in order to reduce the potential for
code bloat.

Since the type system knows how to handle typedef, it is generally not necessary to instantiate different versions of a template
for typenames that are equivalent. For instance, consider this code:

%template(intList) vector<int>;
typedef int Integer;
...
void foo(vector<Integer> *x);

In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<Integer> is mapped
back to the instantiation of vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type
Integer (doing so is redundant and will simply result in code bloat).

When a template is instantiated using %template, information about that class is saved by SWIG and used elsewhere in the
program. For example, if you wrote code like this,
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...
%template(intList) List<int>;
...
class UltraList : public List<int> {
   ...
};

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance
correctly. If, on the other hand, nothing is known about List<int>, you will get a warning message similar to this:

example.h:42. Nothing known about class 'List<int >' (ignored). 
example.h:42. Maybe you forgot to instantiate 'List<int >' using %template. 

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derived
classes. For example:

template<class T> class Foo {
...
};

template<class T> class Bar : public Foo<T> {
...
};

// Instantiate base classes first 
%template(intFoo) Foo<int>;
%template(doubleFoo) Foo<double>;

// Now instantiate derived classes
%template(intBar) Bar<int>;
%template(doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting
wrapper code (and base classes need to be wrapped before derived classes). Don't worry−−if you get the order wrong, SWIG
should generate a warning message.

Occassionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be
wrapped. Since SWIG is not able to automatically instantiate templates for this purpose, you must do it manually. To do this,
simply use %template with no name. For example:

// Instantiate traits<double,double>, but don't wrap it.
%template() traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For
example:

%define TEMPLATE_WRAP(T,prefix) 
%template(prefix ## Foo) Foo<T>;
%template(prefix ## Bar) Bar<T>;
...
%enddef

TEMPLATE_WRAP(int, int)
TEMPLATE_WRAP(double, double)
TEMPLATE_WRAP(char *, String)
...

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {
private:
    int *data;
    int nitems;
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    int maxitems;
public:
    List(int max);
    ~List();
    void append(int obj);
    int length();
    int get(int n);
};

then SWIG will use this code whenever the user expands List<int>. In practice, this may have very little effect on the
underlying wrapper code since specialization is often used to provide slightly modified method bodies (which are ignored by
SWIG). However, special SWIG directives such as %typemap, %extend, and so forth can be attached to a specialization to
provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when the
template argument is a pointer.

template<class T> class List<T*> {
private:
    T *data;
    int nitems;
    int maxitems;
public:
    List(int max);
    ~List();
    void append(int obj);
    int length();
    T get(int n);
};

SWIG should be able to handle most simple uses of partial specialization. However, it may fail to match templates properly in
more complicated cases. For example, if you have this code,

template<class T1, class T2> class Foo<T1, T2 *> { };

SWIG isn't able to match it properly for instantiations like Foo<int *, int *>. This problem is not due to parsing, but due
to the fact that SWIG does not currently implement all of the C++ argument deduction rules.

Member function templates are supported. The underlying principle is the same as for normal templates−−SWIG can't create a
wrapper unless you provide more information about types. For example, a class with a member template might look like this:

class Foo {
public:
     template<class T> void bar(T x, T y) { ... };
     ...
};

To expand the template, simply use %template inside the class.

class Foo {
public:
     template<class T> void bar(T x, T y) { ... };
     ...
     %template(barint)    bar<int>;
     %template(bardouble) bar<double>;
};

Or, if you want to leave the original class definition alone, just do this:

class Foo {
public:
     template<class T> void bar(T x, T y) { ... };
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     ...
};
...
%extend Foo {
     %template(barint)    bar<int>;
     %template(bardouble) bar<double>;
};

Note: because of the way that templates are handled, the %template directive must always appear after the definition of the
template to be expanded.

When used with members, the %template directive may be placed in another template class. Here is a slightly perverse
example:

// A template
template<class T> class Foo {
public:
     // A member template
     template<class S> T bar(S x, S y) { ... };
     ...
};

// Expand a few member templates
%extend Foo {
     %template(bari) bar<int>;
     %template(bard) bar<double>;
};

// Create some wrappers for the template
%template(Fooi) Foo<int>;
%template(Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari() and bard() added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1, class T2> struct pair {
   T1 first;
   T2 second;
   pair() : first(T1()), second(T2()) { }
   pair(const T1 &x, const T2 &y) : first(x), second(y) { }
   template<class U1, class U2> pair(const pair<U1,U2> &x) 
                                        : first(x.first),second(x.second) { }
};

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. To
do that, you could expand a few versions of the constructor in the template class itself. For example:

%extend pair {
   %template(pair) pair<T1,T2>;        // Generate default copy constructor
};

When using %extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

// Instantiate a few versions
%template(pairii) pair<int,int>;
%template(pairdd) pair<double,double>;

// Create a conversion constructor from int to double
%extend pair<double,double> {
   %template(pairdd_from_pairii) pair<int,int>;   // Conversion constructor
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};

Admittedly, this isn't very pretty or automatic. However, it's probably better than nothing−−well, maybe.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as %rename,
%extend, and %typemap can be included directly in template definitions. For example:

// File : list.h
template<class T> class List {
   ...
public:
    %rename(__getitem__) get(int);
    List(int max);
    ~List();
    ...
    T get(int index);
    %extend {
        char *__str__() {
            /* Make a string representation */
            ...
        }
    }
};

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the template class. For example:

%rename(__getitem__) List::get;
%extend List {
    char *__str__() {
        /* Make a string representation */
        ...
    }
    /* Make a copy */
    T *__copy__() {
       return new List<T>(*self);
    }
};

...
template<class T> class List {
   ...
   public:
   List() { };
   ...
};

When %extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class
definition. These are replaced when the template is expanded. In addition, the %extend directive can be used to add additional
methods to a specific instantiation. For example:

%template(intList) List<int>;

%extend List<int> {
    void blah() {
          printf("Hey, I'm an List<int>!\n");
    }
};

SWIG even supports overloaded templated functions. As usual the %template directive is used to wrap templated functions.
For example:

template<class T> void foo(T x) { };
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template<class T> void foo(T x, T y) { };

%template(foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take
two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final
point is that SWIG does not perform extensive error checking of templates! Specifically, SWIG does not perform type
checking nor does it check to see if the actual contents of the template declaration make any sense. Since the C++ compiler will
hopefully check this when it compiles the resulting wrapper file, there is no practical reason for SWIG to duplicate this
functionality (besides, none of the SWIG developers are masochistic enough to want to implement this right now).

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor.
Templates have been more tightly integrated into the parser and type system in SWIG−1.3.12 and the preprocessor is no longer
used. Code that relied on preprocessing features in template expansion will no longer work. However, SWIG still allows the #
operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the %template directive introduced a new class name. This name could then
be used with other directives. For example:

%template(vectori) vector<int>;
%extend vectori {
    void somemethod() { }
};

This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

%template(vectori) vector<int>;
%extend vector<int> {
    void somemethod() { }
};

Similar changes apply to typemaps and other customization features.

6.19 Namespaces

Support for C++ namespaces is a relatively late addition to SWIG, first appearing in SWIG−1.3.12. Before describing the
implementation, it is worth nothing that the semantics of C++ namespaces is extremely non−trivial−−especially with regard to the
C++ type system and class machinery. At a most basic level, namespaces are sometimes used to encapsulate common
functionality. For example:

namespace math {
   double sin(double);
   double cos(double);

   class Complex {
      double im,re;
   public:
      ...
   };
   ...
};

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magitude(math::Complex *c);
math::Complex c;
...
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At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other ways a
namespace can be used. For example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude(Complex *c);       // Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude(Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude(M::Complex *c);

Using combinations of these features, it is possible to write head−exploding code like this:

namespace A {
  class Foo {
  };
}

namespace B {
   namespace C {
      using namespace A;
   }
   typedef C::Foo FooClass;
}

namespace BIGB = B;

namespace D {
   using BIGB::FooClass;
   class Bar : public FooClass {
   }
};

class Spam : public D::Bar {
};

void evil(A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
          BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into the
target language. Clearly this code defines three different classes. However, one of those classes is accessible under at least six
different class names!

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it
will be parsed correctly, it will generate compilable wrapper code, and it will produce a working scripting language module.
However, the default wrapping behavior is to flatten namespaces in the target language. This means that the contents of all
namespaces are merged together in the resulting scripting language module. For example, if you have code like this,

%module foo
namespace foo {
   void bar(int);
   void spam();
}

namespace bar {
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   void blah();
}

then SWIG simply creates three wrapper functions bar(), spam(), and blah() in the target language. SWIG does not
prepend the names with a namespace prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a
natural correlation between the likely contents of a SWIG module and the contents of a namespace. For instance, it would not be
unreasonable to assume that a programmer might make a separate extension module for each C++ namespace. In this case, it
would be redundant to prepend everything with an additional namespace prefix when the module itself already serves as a
namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each
namespace with its own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in the
target language. For example:

namespace A {
   void foo(int);
}
namespace B {
   void foo(double);
}

When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use %rename to disambiguate the declarations. For example:

%rename(B_foo) B::foo;
...
namespace A {
   void foo(int);
}
namespace B {
   void foo(double);     // Gets renamed to B_foo
}

Similarly, %ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and they
do not result in any code. However, these declarations are used by the internal type system to track type−names. Therefore, if you
have code like this:

namespace A {
   typedef int Integer;
}
using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same as A::Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the %template directive can be used to expand a template defined
in a different namespace. For example:

namespace foo {
    template<typename T> max(T a, T b) { return a > b ? a : b; }
}

SWIG−1.3 Documentation

6.19 Namespaces 80



using foo::max;

%template(maxint)   max<int>            // Okay.
%template(maxfloat) foo::max<float>;    // Okay (qualified name).

namespace bar {
    using namespace foo;
    %template(maxdouble)  max<double>;    // Okay.
}

The combination of namespaces and other SWIG directives may introduce subtle scope−related problems. The key thing to keep
in mind is that all SWIG generated wrappers are produced in the global namespace. Symbols from other namespaces are always
accessed using fully qualified names−−−names are never imported into the global space unless the interface happens to do so with
a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be fully qualified. However, this is not done in
code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the following:

namespace foo {
    typedef int Integer;
    class bar {
    public:
       ...
    };
}

%extend foo::bar {
   Integer add(Integer x, Integer y) {
       Integer r = x + y;        // Error. Integer not defined in this scope
       return r;
   }
};

In this case, SWIG correctly resolves the added method parameters and return type to foo::Integer. However, since function
bodies aren't parsed and such code is emitted in the global namespace, this code produces a compiler error about Integer. To
fix the problem, make sure you use fully qualified names. For example:

%extend foo::bar {
   Integer add(Integer x, Integer y) {
       foo::Integer r = x + y;        // Ok.
       return r;
   }
};

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface,
they should also appear in any header files that might have been included in a %{ ... %} section. In other words, don't insert
extra using declarations into a SWIG interface unless they also appear in the underlying C++ code.

Note: Code inclusion directives such as %{ ... %} or %inline %{ ... %} should not be placed inside a namespace
declaration. The code emitted by these directives will not be enclosed in a namespace and you may get very strange results. If you
need to use namespaces with these directives, consider the following:

// Good version
%inline %{
namespace foo {
     void bar(int) { ... }
     ...
}
%}

// Bad version.  Emitted code not placed in namespace.
namespace foo {
%inline %{
     void bar(int) { ... }   /* I'm bad */
     ...
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%}
}

Note: When the %extend directive is used inside a namespace, the namespace name is included in the generated functions. For
example, if you have code like this,

namespace foo {
   class bar {
   public:
        %extend {
           int blah(int x);
        };
   };
}

the added method blah() is mapped to a function int foo_bar_blah(foo::bar *self, int x). This function
resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same namespace
conventions as used in the input file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generated
code.

Note: Namespaces have a subtle effect on the wrapping of conversion operators. For instance, suppose you had an interface like
this:

namespace foo {
   class bar;
   class spam {
   public;
        ...
        operator bar();      // Conversion of spam −> bar
        ...
   };
}

To wrap the conversion function, you might be inclined to write this:

%rename(tofoo) foo::spam::operator bar();

The only problem is that it doesn't work. The reason it doesn't work is that bar is not defined in the global scope. Therefore, to
make it work, do this instead:

%rename(tofoo) foo::spam::operator foo::bar();

Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. Since namespaces are a new
addition to SWIG, none of the target language modules are currently programmed with any namespace awareness. In the future,
language modules may or may not provide more advanced namespace support.

6.20 Exception specifiers

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaration.
For example:

class Error { };

class Foo {
public:
    ...
    void blah() throw(Error);
    ...
};
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If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and
converting it into an error in the target language. In certain language modules, wrapped exception classes themselves can be used
to catch errors. For example, in Python, you can write code like this:

f = Foo()
try:
    f.blah()
except Error,e:
     # e is a wrapped instance of "Error"

Obviously, the exact details of how exceptions are handled depend on the target language module.

Since exception specifiers are sometimes only used sparingly, this alone may not be enough to properly handle C++ exceptions.
To do that, a different set of special SWIG directives are used. Consult the "Customization features" chapter for details.

6.21 Pointers to Members

Starting with SWIG1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do_op(Object *o, double (Object::*callback)(double,double));
extern double (Object::*fooptr)(double,double);
%constant double (Object::*FOO)(double,double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how to
handle them due to implementation differences from standard C pointers. Readers are strongly advised to consult an advanced text
such as the "The Annotated C++ Manual" for specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO
_ff0d54a800000000_m_Object__f_double_double__double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ structure
on most machines.

SWIG's type−checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track
of inheritance when checking types. However, no such support is currently provided for member pointers.

6.22 Smart pointers and operator−>()

In some C++ programs, objects are often encapsulated by smart−pointers or proxy classes. This is sometimes done to implement
automatic memory management (reference counting) or persistence. Typically a smart−pointer is defined by a template class
where the −> operator has been overloaded. This class is then wrapped around some other class. For example:

// Smart−pointer class
template<class T> class SmartPtr {
    T *pointee;
public:
    ...
    T *operator−>() {
        return pointee;
    }
    ...
};

// Ordinary class
class Foo_Impl {
public:
    int x;
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    virtual void bar();
    ...
};

// Smart−pointer wrapper
typedef SmartPtr<Foo_Impl> Foo;

// Create smart pointer Foo
Foo make_Foo() {
    return SmartPtr(new Foo_Impl());
}

// Do something with smart pointer Foo
void do_something(Foo f) {
    printf("x = %d\n", f−>x);
    f−>bar();
}

A key feature of this approach is that by defining operator−> the methods and attributes of the object wrapped by a smart
pointer are transparently accessible. For example, expressions such as these (from the previous example),

f−>x
f−>bar()

are transparently mapped to the following

(f.operator−>())−>x;
(f.operator−>())−>bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever
operator−>() is encountered in a class, SWIG looks at its returned type and uses it to generate wrappers for accessing
attributes of the underlying object. For example, wrapping the above code produces wrappers like this:

int Foo_x_get(Foo *f) {
   return (*f)−>x;
}
void Foo_x_set(Foo *f, int value) {
   (*f)−>x = value;
}
void Foo_bar(Foo *f) {
   (*f)−>bar();
}

These wrappers take a smart−pointer instance as an argument, but dereference it in a way to gain access to the object returned by
operator−>(). You should carefully compare these wrappers to those in the first part of this chapter (they are slightly
different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make_Foo()
>>> print f.x
0
>>> f.bar()
>>>

When generating wrappers through a smart−pointer, SWIG tries to generate wrappers for all methods and attributes that might be
accessible through operator−>(). This includes any methods that might be accessible through inheritance. However, there are
a number of restrictions:

Only member variables and methods are wrapped through a smart pointer. Static members, enumerations, constructors,
and destructors are not wrapped.

• 
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If the smart−pointer class and the underlying object both define a method or variable of the same name, then the
smart−pointer version has precedence. For example, if you have this code

class Foo {
public:
    int x;
};

class Bar {
public:
    int x;       
    Foo *operator−>();
};

then the wrapper for Bar::x accesses the x defined in Bar, and not the x defined in Foo.

• 

If your intent is to only expose the smart−pointer class in the interface, it is not necessary to wrap both the smart−pointer class and
the class for the underlying object. However, you must still tell SWIG about both classes if you want the technique described in
this section to work. To only generate wrappers for the smart−pointer class, you can use the %ignore directive. For example:

%ignore Foo;
class Foo {       // Ignored
};

class Bar {
public:
   Foo *operator−>();
   ...
};

Alternatively, you can import the definition of Foo from a separate file using %import.

Note: When a class defines operator−>(), the operator itself is wrapped as a method __deref__(). For example:

f = Foo()               # Smart−pointer
p = f.__deref__()       # Raw pointer from operator−>

Note: To disable the smart−pointer behavior, use %ignore to ignore operator−>(). For example:

%ignore Bar::operator−>;

Note: Smart pointer support was first added in SWIG−1.3.14.

6.23 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:
      int  blah(int x);
};

class Bar {
public:
      double blah(double x);
};

class FooBar : public Foo, public Bar {
public:
      using Foo::blah;  
      using Bar::blah;
      char *blah(const char *x);

SWIG−1.3 Documentation

6.23 Using declarations and inheritance 85



};

In this example, the using declarations make different versions of the overloaded blah() method accessible from the derived
class. For example:

FooBar *f;
f−>blah(3);         // Ok. Invokes Foo::blah(int)
f−>blah(3.5);       // Ok. Invokes Bar::blah(double)
f−>blah("hello");   // Ok. Invokes FooBar::blah(const char *);

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module works
just like you would expect:

>>> import example
>>> f = example.FooBar()
>>> f.blah(3)
>>> f.blah(3.5)
>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {
protected:
    int x;
    int blah(int x);
};

class Bar : public Foo {
public:
    using Foo::x;       // Make x public
    using Foo::blah;    // Make blah public
};

This also works in SWIG−−−the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derived
class and wrapped normally. When copied, the declarations retain any properties that might have been attached using %rename,
%ignore, or %feature. Thus, if a method is ignored in a base class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine−grained control over the declarations that get imported, it may be difficult to
manage such declarations in applications that make heavy use of SWIG customization features. If you can't get using to work
correctly, you can always change the interface to the following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG
      using Foo::blah;  
      using Bar::blah;
#else
      int blah(int x);         // explicitly tell SWIG about other declarations
      double blah(double x);
#endif

      char *blah(const char *x);
};

Notes:

If a derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For
example:

• 
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class Foo {
public:
       int blah(int );
       double blah(double);
};

class Bar : public Foo {
public:
       using Foo::blah;    // Only imports blah(double);
       int blah(int);
};

Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

%rename(blah_long) Foo::blah(long);
class Foo {
public:
     int blah(int);
     long blah(long);  // Renamed to blah_long
};

class Bar : public Foo {
public:
     using Foo::blah;     // Only imports blah(int)
     double blah(double x);
};

• 

6.24 Partial class definitions

Since SWIG is still limited in its support of C++, it may be necessary to use partial class information in an interface file. However,
since SWIG does not need the entire class specification to work, conditional compilation can be used to comment out problematic
parts. For example, if you had a nested class definition, you might do this:

class Foo {
public:
#ifndef SWIG
   class Bar {
   public:
     ...
   };
#endif
   Foo();
  ~Foo();
   ...
};

Also, as a rule of thumb, SWIG should not be used on raw C++ source files.

6.25 A brief rant about const−correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack
thereof) will break your program, all programs linked against your program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that
are free of const−related warnings, SWIG does not make any attempt to preserve const−correctness in the target language. Thus, it
is possible to pass const qualified objects to non−const methods and functions. For example, consider the following code in
C++:

const Object * foo();
void bar(Object *);

...
// C++ code
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void blah() {
   bar(foo());         // Error: bar discards const
};

Now, consider the behavior when wrapped into a Python module:

>>> bar(foo())         # Okay
>>> 

Although this is clearly a violation of the C++ type−system, fixing the problem doesn't seem to be worth the added
implementation complexity that would be required to support it in the SWIG run−time type system. There are no plans to change
this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might want to
consider using another tool if maintaining constness is the most important part of your project.

6.26 Proxy classes

In order to provide a more natural API, SWIG's target languages wrap C++ classes with special proxy classes. These proxy classes
are typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is
wrapped by a Python class. Or if you're building a Java module, each C++ class is wrapped by a Java class.

6.26.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses the low−level accessor functions described in the
previous section. To illustrate, suppose you had a C++ class like this:

class Foo {
public:
      Foo();
     ~Foo();
      int  bar(int x);
      int  x;
};

Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
      Foo    *self;
public:
      FooProxy() {
            self = new_Foo();
      }
     ~FooProxy() {
            delete_Foo(self);
      }
      int bar(int x) {
            return Foo_bar(self,x);
      }
      int x_get() {
            return Foo_x_get(self);
      }
      void x_set(int x) {
            Foo_x_set(self,x);
      }
};

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy might
look roughly like this:
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class Foo:
    def __init__(self):
         self.this = new_Foo()
    def __del__(self):
         delete_Foo(self.this)
    def bar(self,x):
         return Foo_bar(self.this,x)
    def __getattr__(self,name):
         if name == 'x':
              return Foo_x_get(self.this)
         ...
    def __setattr__(self,name,value):
         if name == 'x':
              Foo_x_set(self.this,value)
         ...

Again, it's important to emphasize that the low−level accessor functions are always used to construct the proxy classes.

Whenever possible, proxies try to take advantage of language features that are similar to C++. This might include operator
overloading, exception handling, and other features.

6.26.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
      Foo();
     ~Foo();
      int bar(int x);
      int x;
};

class Spam {
public:
      Foo *value;
      ...
};

Now, consider some script code that uses these classes:

f = Foo()               # Creates a new Foo
s = Spam()              # Creates a new Spam
s.value = f             # Stores a reference to f inside s
g = s.value             # Returns stored reference
g = 4                   # Reassign g to some other value
del f                   # Destroy f 

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by newly
created proxy classes. That is, there is both a new proxy class instance and a new instance of the underlying C++ class. In this
example, both f and s are created in this way. However, the statement s.value is rather curious−−−when executed, a pointer to
f is stored inside another object. This means that the scripting proxy class AND another C++ class share a reference to the same
object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new proxy
class g that provides a wrapper around the C++ object stored in s.value. In general, there is no way to know where this object
came from−−−it could have been created by the script, but it could also have been generated internally. In this particular example,
the assignment of g results in a second proxy class for f. In other words, a reference to f is now shared by two proxy classes and
a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many
languages, this makes the old value of g available for garbage collection. Therefore, this causes one of the proxy classes to be
destroyed. Later on, the statement del f destroys the other proxy class. Of course, there is still a reference to the original object
stored inside another C++ object. What happens to it? Is it the object still valid?
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To deal with memory management problems, proxy classes always provide an API for controlling ownership. In C++ pseudocode,
ownership control might look roughly like this:

class FooProxy {
public:
      Foo    *self;
      int     thisown;

      FooProxy() {
            self = new_Foo();
            thisown = 1;       // Newly created object
      }
     ~FooProxy() {
            if (thisown) delete_Foo(self);
      }
      ...
      // Ownership control API
      void disown() {
           thisown = 0;
      }
      void acquire() {
           thisown = 1;
      }
};

class FooPtrProxy: public FooProxy {
public:
      FooPtrProxy(Foo *s) {
          self = s;
          thisown = 0;
      }
};

class SpamProxy {
     ...
     FooProxy *value_get() {
          return FooPtrProxy(Spam_value_get(self));
     }
     void value_set(FooProxy *v) {
          Spam_value_set(self,v−>self);
          v−>disown();
     }
     ...
};

Looking at this code, there are a few central features:

Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set.• 
When new objects are created in the target language, the ownership flag is set.• 
When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not have
ownership.

• 

In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is lost.• 
Manual ownership control is provided by special disown() and acquire() methods.• 

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible
memory management problem. However, proxies do provide a mechanism for manual control that can be used (if necessary) to
address some of the more tricky memory management problems.

6.26.3 Language specific details

Language specific details on proxy classes are contained the chapters describing each target language. This chapter has merely
introduced the topic in a very general way.
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6.27 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and
Stroustrup. This is the reference document we use to guide a lot of SWIG's C++ support.
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7 Preprocessing
File inclusion• 
File imports• 
Conditional Compilation• 
Macro Expansion• 
SWIG Macros• 
C99 and GNU Extensions• 
Preprocessing and %{ ... %} blocks• 
Preprocessing and { ... }• 
Viewing preprocessor output• 

SWIG includes its own enhanced version of the C preprocessor. The preprocessor supports the standard preprocessor directives
and macro expansion rules. However, a number of modifications and enhancements have been made. This chapter describes some
of these modifications.

7.1 File inclusion

To include another file into a SWIG interface, use the %include directive like this:

%include "pointer.i"

Unlike, #include, %include includes each file once (and will not reload the file on subsequent %include declarations).
Therefore, it is not necessary to use include−guards in SWIG interfaces.

By default, the #include is ignored unless you run SWIG with the −includeall option. The reason for ignoring traditional
includes is that you often don't want SWIG to try and wrap everything included in standard header system headers and auxilliary
files.

7.2 File imports

SWIG provides another file inclusion directive with the %import directive. For example:

%import "foo.i"

The purpose of %import is to collect certain information from another SWIG interface file or a header file without actually
generating any wrapper code. Such information generally includes type declarations (e.g., typedef) as well as C++ classes that
might be used as base−classes for class declarations in the interface. The use of %import is also important when SWIG is used
to generate extensions as a collection of related modules. This is an advanced topic and is described in a later chapter.

The −importall directive tells SWIG to follow all #include statements as imports. This might be useful if you want to
extract type definitions from system header files without generating any wrappers.

7.3 Conditional Compilation

SWIG fully supports the use of #if, #ifdef, #ifndef, #else, #endif to conditionally include parts of an interface. The
following symbols are predefined by SWIG when it is parsing the interface:

SWIG                            Always defined when SWIG is processing a file
SWIGIMPORTED                    Defined when SWIG is importing a file with %import
SWIGMAC                         Defined when running SWIG on the Macintosh
SWIGWIN                         Defined when running SWIG under Windows
SWIG_VERSION                    Hexadecimal number containing SWIG version,
                                such as 0x010311 (corresponding to SWIG−1.3.11).

SWIGCHICKEN                     Defined when using CHICKEN
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SWIGCSHARP                      Defined when using C#
SWIGGUILE                       Defined when using Guile
SWIGJAVA                        Defined when using Java
SWIGMZSCHEME                    Defined when using Mzscheme        
SWIGOCAML                       Defined when using Ocaml
SWIGPERL                        Defined when using Perl
SWIGPERL5                       Defined when using Perl5
SWIGPHP                         Defined when using PHP
SWIGPHP4                        Defined when using PHP4
SWIGPYTHON                      Defined when using Python
SWIGRUBY                        Defined when using Ruby
SWIGSEXP                        Defined when using S−expressions
SWIGTCL                         Defined when using Tcl
SWIGTCL8                        Defined when using Tcl8.0
SWIGXML                         Defined when using XML

In addition, SWIG defines the following set of standard C/C++ macros:

__LINE__                        Current line number
__FILE__                        Current file name
__STDC__                        Defined to indicate ANSI C
__cplusplus                     Defined when −c++ option used

Interface files can look at these symbols as necessary to change the way in which an interface is generated or to mix SWIG
directives with C code. These symbols are also defined within the C code generated by SWIG (except for the symbol `SWIG'
which is only defined within the SWIG compiler).

7.4 Macro Expansion

Traditional preprocessor macros can be used in SWIG interfaces. Be aware that the #define statement is also used to try and
detect constants. Therefore, if you have something like this in your file,

#ifndef _FOO_H 1
#define _FOO_H 1
...
#endif

you may get some extra constants such as _FOO_H showing up in the scripting interface.

More complex macros can be defined in the standard way. For example:

#define EXTERN extern
#ifdef __STDC__
#define _ANSI(args)   (args)
#else
#define _ANSI(args) ()
#endif

The following operators can appear in macro definitions:

#x
Converts macro argument x to a string surrounded by double quotes ("x").

• 

x ## y
Concatenates x and y together to form xy.

• 

`x`
If x is a string surrounded by double quotes, do nothing. Otherwise, turn into a string like #x. This is a non−standard
SWIG extension.

• 
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7.5 SWIG Macros

SWIG provides an enhanced macro capability with the %define and %enddef directives. For example:

%define ARRAYHELPER(type,name)
%inline %{
type *new_ ## name (int nitems) {
   return (type *) malloc(sizeof(type)*nitems);
}
void delete_ ## name(type *t) {
   free(t);
}
type name ## _get(type *t, int index) {
   return t[index];
}
void name ## _set(type *t, int index, type val) {
   t[index] = val;
}
%}
%enddef

ARRAYHELPER(int, IntArray)
ARRAYHELPER(double, DoubleArray)

The primary purpose of %define is to define large macros of code. Unlike normal C preprocessor macros, it is not necessary to
terminate each line with a continuation character (\)−−the macro definition extends to the first occurrence of %enddef.
Furthermore, when such macros are expanded, they are reparsed through the C preprocessor. Thus, SWIG macros can contain all
other preprocessor directives except for nested %define statements.

The SWIG macro capability is a very quick and easy way to generate large amounts of code. In fact, many of SWIG's advanced
features and libraries are built using this mechanism (such as C++ template support).

7.6 C99 and GNU Extensions

SWIG−1.3.12 and newer releases support variadic preprocessor macros. For example:

#define DEBUGF(fmt,...)   fprintf(stderr,fmt,__VA_ARGS__)

When used, any extra arguments to ... are placed into the special variable __VA_ARGS__. This also works with special SWIG
macros defined using %define.

SWIG allows a variable number of arguments to be empty. However, this often results in an extra comma (,) and syntax error in
the resulting expansion. For example:

DEBUGF("hello");   −−> fprintf(stderr,"hello",);

To get rid of the extra comma, use ## like this:

#define DEBUGF(fmt,...)   fprintf(stderr,fmt, ##__VA_ARGS__)

SWIG also supports GNU−style variadic macros. For example:

#define DEBUGF(fmt, args...)  fprintf(stdout,fmt,args)

Comment: It's not entirely clear how variadic macros might be useful to interface building. However, they are used internally to
implement a number of SWIG directives and are provided to make SWIG more compatible with C99 code.
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7.7 Preprocessing and %{ ... %} blocks

The SWIG preprocessor does not process any text enclosed in a code block %{ ... %}. Therefore, if you write code like this,

%{
#ifdef NEED_BLAH
int blah() {
   ...
}
#endif
%}

the contents of the %{ ... %} block are copied without modification to the output (including all preprocessor directives).

7.8 Preprocessing and { ... }

SWIG always runs the preprocessor on text appearing inside { ... }. However, sometimes it is desirable to make a
preprocessor directive pass through to the output file. For example:

%extend Foo {
   void bar() {
      #ifdef DEBUG
       printf("I'm in bar\n");
      #endif
   }
}

By default, SWIG will interpret the #ifdef DEBUG statement. However, if you really wanted that code to actually go into the
wrapper file, prefix the preprocessor directives with % like this:

%extend Foo {
   void bar() {
      %#ifdef DEBUG
       printf("I'm in bar\n");
      %#endif
   }
}

SWIG will strip the extra % and leave the preprocessor directive in the code.

7.9 Viewing preprocessor output

Like many compilers, SWIG supports a −E command line option to display the output from the preprocessor. When the −E switch
is used, SWIG will not generate any wrappers. Instead the results after the preprocessor has run are displayed. This might be
useful as an aid to debugging and viewing the results of macro expansions.
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8 SWIG library
The %include directive and library search path• 
C Arrays and Pointers

cpointer.i♦ 
carrays.i♦ 
cmalloc.i♦ 
cdata.i♦ 

• 

C String Handling
Default string handling♦ 
Passing binary data♦ 
Using %newobject to release memory♦ 
cstring.i♦ 

• 

C++ Library
std_string.i♦ 
std_vector.i♦ 

• 

Utility Libraries
exception.i♦ 

• 

To help build extension modules, SWIG is packaged with a library of support files that you can include in your own interfaces.
These files often define new SWIG directives or provide utility functions that can be used to access parts of the standard C and
C++ libraries. This chapter provides a reference to the current set of supported library files.

Compatibility note: Older versions of SWIG included a number of library files for manipulating pointers, arrays, and other
structures. Most these files are now deprecated and have been removed from the distribution. Alternative libraries provide similar
functionality. Please read this chapter carefully if you used the old libraries.

8.1 The %include directive and library search path

Library files are included using the %include directive. When searching for files, directories are searched in the following
order:

The current directory• 
Directories specified with the −I command line option• 
./swig_lib• 
/usr/local/lib/swig_lib (or wherever you installed SWIG)• 
On Windows, SWIG also looks for the library relative to the location of swig.exe.• 

Within each directory, SWIG first looks for a subdirectory corresponding to a target language (e.g., python, tcl, etc.). If found,
SWIG will search the language specific directory first. This allows for language−specific implementations of library files.

You can override the location of the SWIG library by setting the SWIG_LIB environment variable.

8.2 C Arrays and Pointers

This section describes library modules for manipulating low−level C arrays and pointers. The primary use of these modules is in
supporting C declarations that manipulate bare pointers such as int *, double *, or void *. The modules can be used to
allocate memory, manufacture pointers, dereference memory, and wrap pointers as class−like objects. Since these functions
provide direct access to memory, their use is potentially unsafe and you should exercise caution.

8.2.1 cpointer.i

The cpointer.i module defines macros that can be used to used to generate wrappers around simple C pointers. The primary
use of this module is in generating pointers to primitive datatypes such as int and double.
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%pointer_functions(type,name)

Generates a collection of four functions for manipulating a pointer type *:

type *new_name()

Creates a new object of type type and returns a pointer to it. In C, the object is created using
calloc(). In C++, new is used.

type *copy_name(type value)

Creates a new object of type type and returns a pointer to it. An initial value is set by
copying it from value. In C, the object is created using calloc(). In C++, new is used.

type *delete_name(type *obj)

Deletes an object type type.

void name_assign(type *obj, type value)

Assigns *obj = value.

type name_value(type *obj)

Returns the value of *obj.

When using this macro, type may be any type and name must be a legal identifier in the target language.
name should not correspond to any other name used in the interface file.

Here is a simple example of using %pointer_functions():

%module example
%include "cpointer.i"

/* Create some functions for working with "int *" */
%pointer_functions(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python:

>>> import example
>>> c = example.new_intp()     # Create an "int" for storing result
>>> example.add(3,4,c)         # Call function   
>>> example.intp_value(c)      # Dereference
7
>>> example.delete_intp(c)     # Delete

%pointer_class(type,name)

Wraps a pointer of type * inside a class−based interface. This interface is as follows:

struct name {
   name();                            // Create pointer object
  ~name();                            // Delete pointer object
   void assign(type value);           // Assign value
   type value();                      // Get value
   type *cast();                      // Cast the pointer to original type
   static name *frompointer(type *);  // Create class wrapper from existing
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                                      // pointer
};

When using this macro, type is restricted to a simple type name like int, float, or Foo. Pointers and other
complicated types are not allowed. name must be a valid identifier not already in use. When a pointer is
wrapped as a class, the "class" may be transparently passed to any function that expects the pointer.

If the target language does not support proxy classes, the use of this macro will produce the example same
functions as %pointer_functions() macro.

It should be noted that the class interface does introduce a new object or wrap a pointer inside a special
structure. Instead, the raw pointer is used directly.

Here is the same example using a class instead:

%module example
%include "cpointer.i"

/* Wrap a class interface around an "int *" */
%pointer_class(int, intp);

/* A function that uses an "int *" */
void add(int x, int y, int *result);

Now, in Python (using proxy classes)

>>> import example
>>> c = example.intp()         # Create an "int" for storing result
>>> example.add(3,4,c)         # Call function   
>>> c.value()                  # Dereference
7

Of the two macros, %pointer_class is probably the most convenient when working with simple pointers. This is because the
pointers are access like objects and they can be easily garbage collected (destruction of the pointer object destroys the underlying
object).

%pointer_cast(type1, type2, name)

Creates a casting function that converts type1 to type2. The name of the function is name. For example:

%pointer_cast(int *, unsigned int *, int_to_uint);

In this example, the function int_to_uint() would be used to cast types in the target language.

Note: None of these macros can be used to safely work with strings (char * or char **).

Note: When working with simple pointers, typemaps can often be used to provide more seamless operation.

8.2.2 carrays.i

This module defines macros that assist in wrapping ordinary C pointers as arrays. The module does not provide any safety or an
extra layer of wrapping−−it merely provides functionality for creating, destroying, and modifying the contents of raw C array
data.

%array_functions(type,name)

Creates four functions.

type *new_name(int nelements)
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Creates a new array of objects of type type. In C, the array is allocated using calloc(). In
C++, new [] is used.

type *delete_name(type *ary)

Deletes an array. In C, free() is used. In C++, delete [] is used.

type name_getitem(type *ary, int index)

Returns the value ary[index].

void name_setitem(type *ary, int index, type value)

Assigns ary[index] = value.

When using this macro, type may be any type and name must be a legal identifier in the target language.
name should not correspond to any other name used in the interface file.

Here is an example of %array_functions(). Suppose you had a function like this:

void print_array(double x[10]) {
   int i;
   for (i = 0; i < 10; i++) {
      printf("[%d] = %g\n", i, x[i]);
   }
}

To wrap it, you might write this:

%module example

%include "carrays.i"
%array_functions(double, doubleArray);

void print_array(double x[10]);

Now, in a scripting language, you might write this:

a = new_doubleArray(10)           # Create an array
for i in range(0,10):
    doubleArray_setitem(a,i,2*i)  # Set a value
print_array(a)                    # Pass to C
delete_doubleArray(a)             # Destroy array

%array_class(type,name)

Wraps a pointer of type * inside a class−based interface. This interface is as follows:

struct name {
   name(int nelements);               // Create an array
  ~name();                            // Delete array
   type getitem(int index);           // Return item
   void setitem(index, type value);   // Set item
   type *cast();                      // Cast to original type
   static name *frompointer(type *);  // Create class wrapper from
                                      // existing pointer
};

When using this macro, type is restricted to a simple type name like int or float. Pointers and other
complicated types are not allowed. name must be a valid identifier not already in use. When a pointer is
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wrapped as a class, it can be transparently passed to any function that expects the pointer.

When combined with proxy classes, the %array_class() macro can be especially useful. For example:

%module example
%include "carrays.i"
%array_class(double, doubleArray);

void print_array(double x[10]);

Allows you to do this:

import example
c = example.doubleArray(10)  # Create double[10]
for i in range(0,10):
    c[i] = 2*i               # Assign values
example.print_array(c)       # Pass to C

Note: These macros do not encapsulate C arrays inside a special data structure or proxy. There is no bounds checking or safety of
any kind. If you want this, you should consider using a special array object rather than a bare pointer.

Note: %array_functions() and %array_class() should not be used with types of char or char *.

8.2.3 cmalloc.i

This module defines macros for wrapping the low−level C memory allocation functions malloc(), calloc(), realloc(),
and free().

%malloc(type [,name=type])

Creates a wrapper around malloc() with the following prototype:

type *malloc_name(int nbytes = sizeof(type));

If type is void, then the size parameter nbytes is required. The name parameter only needs to be specified
when wrapping a type that is not a valid identifier (e.g., "int *", "double **", etc.).

%calloc(type [,name=type])

Creates a wrapper around calloc() with the following prototype:

type *calloc_name(int nobj =1, int sz = sizeof(type));

If type is void, then the size parameter sz is required.

%realloc(type [,name=type])

Creates a wrapper around realloc() with the following prototype:

type *realloc_name(type *ptr, int nitems);

Note: unlike the C realloc(), the wrapper generated by this macro implicitly includes the size of the
corresponding type. For example, realloc_int(p, 100) reallocates p so that it holds 100 integers.

%free(type [,name=type])

Creates a wrapper around free() with the following prototype:
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void free_name(type *ptr);

%sizeof(type [,name=type])

Creates the constant:

%constant int sizeof_name = sizeof(type);

%allocators(type [,name=type])

Generates wrappers for all five of the above operations.

Here is a simple example that illustrates the use of these macros:

// SWIG interface
%module example
%include "cmalloc.i"

%malloc(int);
%free(int);

%malloc(int *, intp);
%free(int *, intp);

%allocators(double);

Now, in a script:

>>> from example import *
>>> a = malloc_int()
>>> a
'_000efa70_p_int'
>>> free_int(a)    
>>> b = malloc_intp()
>>> b
'_000efb20_p_p_int'
>>> free_intp(b)
>>> c = calloc_double(50)
>>> c
'_000fab98_p_double'
>>> c = realloc_double(100000)
>>> free_double(c)
>>> print sizeof_double
8
>>>

8.2.4 cdata.i

The cdata.i module defines functions for converting raw C data to and from strings in the target language. The primary
applications of this module would be packing/unpacking of binary data structures−−−for instance, if you needed to extract data
from a buffer. The target language must support strings with embedded binary data in order for this to work.

char *cdata(void *ptr, int nbytes)

Converts nbytes of data at ptr into a string. ptr can be any pointer.

void memmove(void *ptr, char *s)

Copies all of the string data in s into the memory pointed to by ptr. The string may contain embedded NULL
bytes. The length of the string is implicitly determined in the underlying wrapper code.
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One use of these functions is packing and unpacking data from memory. Here is a short example:

// SWIG interface
%module example
%include "carrays.i"
%include "cdata.i"

%array_class(int, intArray);

Python example:

>>> a = intArray(10)
>>> for i in range(0,10):
...    a[i] = i
>>> b = cdata(a,40)
>>> b
'\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04
\x00\x00\x00\x05\x00\x00\x00\x06\x00\x00\x00\x07\x00\x00\x00\x08\x00\x00\x00\t'
>>> c = intArray(10)
>>> memmove(c,b)
>>> print c[4]
4
>>> 

Since the size of data is not always known, the following macro is also defined:

%cdata(type [,name=type])

Generates the following function for extracting C data for a given type.

char *cdata_name(int nitems)

nitems is the number of items of the given type to extract.

Note: These functions provide direct access to memory and can be used to overwrite data. Clearly they are unsafe.

8.3 C String Handling

A common problem when working with C programs is dealing with functions that manipulate raw character data using char *.
In part, problems arise because there are different interpretations of char *−−−it could be a NULL−terminated string or it could
point to binary data. Moreover, functions that manipulate raw strings may mutate data, perform implicit memory allocations, or
utilize fixed−sized buffers.

The problems (and perils) of using char * are well−known. However, SWIG is not in the business of enforcing morality. The
modules in this section provide basic functionality for manipulating raw C strings.

8.3.1 Default string handling

Suppose you have a C function with this prototype:

char *foo(char *s);

The default wrapping behavior for this function is to set s to a raw char * that refers to the internal string data in the target
language. In other words, if you were using a language like Tcl, and you wrote this,

% foo Hello

then s would point to the representation of "Hello" inside the Tcl interpreter. When returning a char *, SWIG assumes that it is
a NULL−terminated string and makes a copy of it. This gives the target language its own copy of the result.
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There are obvious problems with the default behavior. First, since a char * argument points to data inside the target language, it
is NOT safe for a function to modify this data (doing so may corrupt the interpreter and lead to a crash). Furthermore, the default
behavior does not work well with binary data. Instead, strings are assumed to be NULL−terminated.

8.3.2 Passing binary data

If you have a function that expects binary data,

int parity(char *str, int len, int initial);

you can wrap the parameters (char *str, int len) as a single argument using a typemap. Just do this:

%apply (char *STRING, int LENGTH) { (char *str, int len) };
...
int parity(char *str, int len, int initial);

Now, in the target language, you can use binary string data like this:

>>> s = "H\x00\x15eg\x09\x20"
>>> parity(s,0)

In the wrapper function, the passed string will be expanded to a pointer and length parameter.

8.3.3 Using %newobject to release memory

If you have a function that allocates memory like this,

char *foo() {
   char *result = (char *) malloc(...);
   ...
   return result;
}

then the SWIG generated wrappers will have a memory leak−−the returned data will be copied into a string object and the old
contents ignored.

To fix the memory leak, use the %newobject directive.

%newobject foo;
...
char *foo();

This will release the result.

8.3.4 cstring.i

The cstring.i library file provides a collection of macros for dealing with functions that either mutate string arguments or
which try to output string data through their arguments. An example of such a function might be this rather questionable
implementation:

void get_path(char *s) {
    // Potential buffer overflow−−−uh, oh.
    sprintf(s,"%s/%s", base_directory, sub_directory);
}
...
// Somewhere else in the C program
{
    char path[1024];
    ...
    get_path(path);
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    ...
}

(Off topic rant: If your program really has functions like this, you would be well−advised to replace them with safer alternatives
involving bounds checking).

The macros defined in this module all expand to various combinations of typemaps. Therefore, the same pattern matching rules
and ideas apply.

%cstring_bounded_output(parm, maxsize)

Turns parameter parm into an output value. The output string is assumed to be NULL−terminated and smaller
than maxsize characters. Here is an example:

%cstring_bounded_output(char *path, 1024);
...
void get_path(char *path);

In the target language:

>>> get_path()
/home/beazley/packages/Foo/Bar
>>>

Internally, the wrapper function allocates a small buffer (on the stack) of the requested size and passes it as the
pointer value. Data stored in the buffer is then returned as a function return value. If the function already returns
a value, then the return value and the output string are returned together (multiple return values). If more than
maxsize bytes are written, your program will crash with a buffer overflow!

%cstring_chunk_output(parm, chunksize)

Turns parameter parm into an output value. The output string is always chunksize and may contain binary
data. Here is an example:

%cstring_chunk_output(char *packet, PACKETSIZE);
...
void get_packet(char *packet);

In the target language:

>>> get_packet()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f"\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This macro is essentially identical to %cstring_bounded_output. The only difference is that the result is
always chunksize characters. Furthermore, the result can contain binary data. If more than maxsize bytes
are written, your program will crash with a buffer overflow!

%cstring_bounded_mutable(parm, maxsize)

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL−terminated and
smaller than maxsize characters. The output string is also assumed to be NULL−terminated and less than
maxsize characters.

%cstring_bounded_mutable(char *ustr, 1024);
...
void make_upper(char *ustr);

In the target language:
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>>> make_upper("hello world")
'HELLO WORLD'
>>>

Internally, this macro is almost exactly the same as %cstring_bounded_output. The only difference is
that the parameter accepts an input value that is used to initialize the internal buffer. It is important to emphasize
that this function does not mutate the string value passed−−−instead it makes a copy of the input value, mutates
it, and returns it as a result. If more than maxsize bytes are written, your program will crash with a
buffer overflow!

%cstring_mutable(parm [, expansion])

Turns parameter parm into a mutable string argument. The input string is assumed to be NULL−terminated. An
optional parameter expansion specifies the number of extra characters by which the string might grow when
it is modified. The output string is assumed to be NULL−terminated and less than the size of the input string
plus any expansion characters.

%cstring_mutable(char *ustr);
...
void make_upper(char *ustr);

%cstring_mutable(char *hstr, HEADER_SIZE);
...
void attach_header(char *hstr);

In the target language:

>>> make_upper("hello world")
'HELLO WORLD'
>>> attach_header("Hello world")
'header: Hello world'
>>>

This macro differs from %cstring_bounded_mutable() in that a buffer is dynamically allocated (on the
heap using malloc/new). This buffer is always large enough to store a copy of the input value plus any
expansion bytes that might have been requested. It is important to emphasize that this function does not directly
mutate the string value passed−−−instead it makes a copy of the input value, mutates it, and returns it as a result.
If the function expands the result by more than expansion extra bytes, then the program will crash
with a buffer overflow!

%cstring_output_maxsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a maximum length
parameter are provided. As input, a user simply supplies the maximum length. The return value is assumed to be
a NULL−terminated string.

%cstring_output_maxsize(char *path, int maxpath);
...
void get_path(char *path, int maxpath);

In the target language:

>>> get_path(1024)
'/home/beazley/Packages/Foo/Bar'
>>>

This macro provides a safer alternative for functions that need to write string data into a buffer. User supplied
buffer size is used to dynamically allocate memory on heap. Results are placed into that buffer and returned as a
string object.
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%cstring_output_withsize(parm, maxparm)

This macro is used to handle bounded character output functions where both a char * and a pointer int *
are passed. Initially, the int * parameter points to a value containing the maximum size. On return, this value
is assumed to contain the actual number of bytes. As input, a user simply supplies the maximum length. The
output value is a string that may contain binary data.

%cstring_output_withsize(char *data, int *maxdata);
...
void get_data(char *data, int *maxdata);

In the target language:

>>> get_data(1024)
'x627388912'
>>> get_data(1024)
'xyzzy'
>>>

This macro is a somewhat more powerful version of %cstring_output_chunk(). Memory is dynamically
allocated and can be arbitrary large. Furthermore, a function can control how much data is actually returned by
changing the value of the maxparm argument.

%cstring_output_allocate(parm, release)

This macro is used to return strings that are allocated within the program and returned in a parameter of type
char **. For example:

void foo(char **s) {
    *s = (char *) malloc(64);
    sprintf(*s, "Hello world\n");
}

The returned string is assumed to be NULL−terminated. release specifies how the allocated memory is to be
released (if applicable). Here is an example:

%cstring_output_allocate(char **s, free(*$1));
...
void foo(char **s);

In the target language:

>>> foo()
'Hello world\n'
>>>

%cstring_output_allocate_size(parm, szparm, release)

This macro is used to return strings that are allocated within the program and returned in two parameters of type
char ** and int *. For example:

void foo(char **s, int *sz) {
    *s = (char *) malloc(64);
    *sz = 64;
    // Write some binary data
    ...
}

The returned string may contain binary data. release specifies how the allocated memory is to be released (if
applicable). Here is an example:
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%cstring_output_allocate_size(char **s, int *slen, free(*$1));
...
void foo(char **s, int *slen);

In the target language:

>>> foo()
'\xa9Y:\xf6\xd7\xe1\x87\xdbH;y\x97\x7f"\xd3\x99\x14V\xec\x06\xea\xa2\x88'
>>>

This is the safest and most reliable way to return binary string data in SWIG. If you have functions that conform
to another prototype, you might consider wrapping them with a helper function. For example, if you had this:

char  *get_data(int *len);

You could wrap it with a function like this:

void my_get_data(char **result, int *len) {
   *result = get_data(len);
}

Comments:

Support for the cstring.i module depends on the target language. Not all SWIG modules currently support this
library.

• 

Reliable handling of raw C strings is a delicate topic. There are many ways to accomplish this in SWIG. This library
provides support for a few common techniques.

• 

If used in C++, this library uses new and delete [] for memory allocation. If using ANSI C, the library uses
malloc() and free().

• 

Rather than manipulating char * directly, you might consider using a special string structure or class instead.• 

8.4 C++ Library

The library modules in this section provide access to parts of the standard C++ library. All of these modules are new in
SWIG−1.3.12 and are only the beginning phase of more complete C++ library support including support for the STL.

8.4.1 std_string.i

The std_string.i library provides typemaps for converting C++ std::string objects to and from strings in the target
scripting language. For example:

%module example
%include "std_string.i"

std::string foo();
void        bar(const std::string &x);

In the target language:

x = foo();                # Returns a string object
bar("Hello World");       # Pass string as std::string

This module only supports types std::string and const std::string &. Pointers and non−const references are left
unmodified and returned as SWIG pointers.

This library file is fully aware of C++ namespaces. If you export std::string or rename it with a typedef, make sure you
include those declarations in your interface. For example:

%module example
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%include "std_string.i"

using namespace std;
typedef std::string String;
...
void foo(string s, const String &t);     // std_string typemaps still applied

Note: The std_string library is incompatible with Perl on some platforms. We're looking into it.

8.4.2 std_vector.i

The std_vector.i library provides support for the C++ vector class in the STL. Using this library involves the use of the
%template directive. All you need to do is to instantiate different versions of vector for the types that you want to use. For
example:

%module example
%include "std_vector.i"

namespace std {
   %template(vectori) vector<int>;
   %template(vectord) vector<double>;
};

When a template vector<X> is instantiated a number of things happen:

A class that exposes the C++ API is created in the target language . This can be used to create objects, invoke methods,
etc. This class is currently a subset of the real STL vector class.

• 

Input typemaps are defined for vector<X>, const vector<X> &, and const vector<X> *. For each of these,
a pointer vector<X> * may be passed or a native list object in the target language.

• 

An output typemap is defined for vector<X>. In this case, the values in the vector are expanded into a list object in the
target language.

• 

For all other variations of the type, the wrappers expect to receive a vector<X> * object in the usual manner.• 
An exception handler for std::out_of_range is defined.• 
Optionally, special methods for indexing, item retrieval, slicing, and element assignment may be defined. This depends
on the target language.

• 

To illustrate the use of this library, consider the following functions:

/* File : example.h */

#include <vector>
#include <algorithm>
#include <functional>
#include <numeric>

double average(std::vector<int> v) {
    return std::accumulate(v.begin(),v.end(),0.0)/v.size();
}

std::vector<double> half(const std::vector<double>& v) {
    std::vector<double> w(v);
    for (unsigned int i=0; i<w.size(); i++)
        w[i] /= 2.0;
    return w;
}

void halve_in_place(std::vector<double>& v) {
    std::transform(v.begin(),v.end(),v.begin(),
                   std::bind2nd(std::divides<double>(),2.0));
}

To wrap with SWIG, you might write the following:
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%module example
%{
#include "example.h"
%}

%include "std_vector.i"
// Instantiate templates used by example
namespace std {
   %template(IntVector) vector<int>;
   %template(DoubleVector) vector<double>;
}

// Include the header file with above prototypes
%include "example.h"

Now, to illustrate the behavior in the scripting interpreter, consider this Python example:

>>> from example import *
>>> iv = IntVector(4)         # Create an vector<int>
>>> for i in range(0,4):
...      iv[i] = i
>>> average(iv)               # Call method
1.5
>>> average([0,1,2,3])        # Call with list
1.5
>>> half([1,2,3])             # Half a list
(0.5,1.0,1.5)
>>> halve_in_place([1,2,3])   # Oops
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_std__vectorTdouble_t
>>> dv = DoubleVector(4)
>>> for i in range(0,4):
...       dv[i] = i
>>> halve_in_place(dv)       # Ok
>>> for i in dv:
...       print i
...
0.0
0.5
1.0
1.5
>>> dv[20] = 4.5
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
  File "example.py", line 81, in __setitem__
    def __setitem__(*args): return apply(examplec.DoubleVector___setitem__,args)
IndexError: vector index out of range
>>>

This library module is fully aware of C++ namespaces. If you use vectors with other names, make sure you include the
appropriate using or typedef directives. For example:

%include "std_vector.i"

namespace std {
    %template(IntVector) vector<int>;
}

using namespace std;
typedef std::vector Vector;

void foo(vector<int> *x, const Vector &x);

Note: This module makes use of several advanced SWIG features including templatized typemaps and template partial
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specialization. If you are tring to wrap other C++ code with templates, you might look at the code contained in std_vector.i.
Alternatively, you can show them the code if you want to make their head explode.

Note: This module is defined for all SWIG target languages. However argument conversion details and the public API exposed to
the interpreter vary.

Note: std_vector.i was written by Luigi "The Amazing" Ballabio.

8.5 Utility Libraries

8.5.1 exception.i

The exception.i library provides a language−independent function for raising a run−time exception in the target language.

SWIG_exception(int code, const char *message)

Raises an exception in the target language. code is one of the following symbolic constants:

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError

message is a string indicating more information about the problem.

The primary use of this module is in writing language−independent exception handlers. For example:

%include "exception.i"
%exception std::vector::getitem {
    try {
        $action
    } catch (std::out_of_range& e) {
        SWIG_exception(SWIG_IndexError,const_cast<char*>(e.what()));
    }
}

SWIG−1.3 Documentation

8.5 Utility Libraries 110



9 Argument Handling
The typemaps.i library

Introduction♦ 
Input parameters♦ 
Output parameters♦ 
Input/Output parameters♦ 
Using different names♦ 

• 

Applying constraints to input values
Simple constraint example♦ 
Constraint methods♦ 
Applying constraints to new datatypes♦ 

• 

Disclaimer: This chapter is under construction.

In Chapter 3, SWIG's treatment of basic datatypes and pointers was described. In particular, primitive types such as int and
double are mapped to corresponding types in the target language. For everything else, pointers are used to refer to structures,
classes, arrays, and other user−defined datatypes. However, in certain applications it is desirable to change SWIG's handling of a
specific datatype. For example, you might want to return multiple values through the arguments of a function. This chapter
describes some of the techniques for doing this.

9.1 The typemaps.i library

This section describes the typemaps.i library file−−commonly used to change certain properties of argument conversion.

9.1.1 Introduction

Suppose you had a C function like this:

void add(double a, double b, double *result) {
        *result = a + b;
}

From reading the source code, it is clear that the function is storing a value in the double *result parameter. However, since
SWIG does not examine function bodies, it has no way to know that this is the underlying behavior.

One way to deal with this is to use the typemaps.i library file and write interface code like this:

// Simple example using typemaps
%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };
extern void add(double a, double b, double *result);

The %apply directive tells SWIG that you are going to apply a special type handling rule to a type. The "double *OUTPUT"
specification is the name of a rule that defines how to return an output value from an argument of type double *. This rule gets
applied to all of the datatypes listed in curly braces−− in this case "double *result".

When the resulting module is created, you can now use the function like this (shown for Python):

>>> a = add(3,4)
>>> print a
7
>>>
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In this case, you can see how the output value normally returned in the third argument has magically been transformed into a
function return value. Clearly this makes the function much easier to use since it is no longer necessary to manufacture a special
double * object and pass it to the function somehow.

Once a typemap has been applied to a type, it stays in effect for all future occurrences of the type and name. For example, you
could write the following:

%module example
%include "typemaps.i"

%apply double *OUTPUT { double *result };
extern void add(double a, double b, double *result);
extern void sub(double a, double b, double *result);
extern void mul(double a, double b, double *result);
extern void div(double a, double b, double *result);
...

In this case, the double *OUTPUT rule is applied to all of the functions that follow.

Typemap transformations can even be extended to multiple return values. For example, consider this code:

%include "typemaps.i"
%apply int *OUTPUT { int *width, int *height };

// Returns a pair (width,height)
void getwinsize(int winid, int *width, int *height);

In this case, the function returns multiple values, allowing it to be used like this:

>>> w,h = genwinsize(wid)
>>> print w
400
>>> print h
300
>>>

It should also be noted that although the %apply directive is used to associate typemap rules to datatypes, you can also use the
rule names directly in arguments. For example, you could write this:

// Simple example using typemaps
%module example
%include "typemaps.i"

extern void add(double a, double b, double *OUTPUT);

Typemaps stay in effect until they are explicitly deleted or redefined to something else. To clear a typemap, the %clear directive
should be used. For example:

%clear double *result;      // Remove all typemaps for double *result

9.1.2 Input parameters

The following typemaps instruct SWIG that a pointer really only holds a single input value:

int *INPUT              
short *INPUT
long *INPUT
unsigned int *INPUT
unsigned short *INPUT
unsigned long *INPUT
double *INPUT
float *INPUT
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When used, it allows values to be passed instead of pointers. For example, consider this function:

double add(double *a, double *b) {
        return *a+*b;
}

Now, consider this SWIG interface:

%module example
%include "typemaps.i"
...
extern double add(double *INPUT, double *INPUT);

When the function is used in the scripting language interpreter, it will work like this:

result = add(3,4)

9.1.3 Output parameters

The following typemap rules tell SWIG that pointer is the output value of a function. When used, you do not need to supply the
argument when calling the function. Instead, one or more output values are returned.

int *OUTPUT
short *OUTPUT
long *OUTPUT
unsigned int *OUTPUT
unsigned short *OUTPUT
unsigned long *OUTPUT
double *OUTPUT
float *OUTPUT

These methods can be used as shown in an earlier example. For example, if you have this C function :

void add(double a, double b, double *c) {
        *c = a+b;
}

A SWIG interface file might look like this :

%module example
%include "typemaps.i"
...
extern void add(double a, double b, double *OUTPUT);

In this case, only a single output value is returned, but this is not a restriction. An arbitrary number of output values can be
returned by applying the output rules to more than one argument (as shown previously).

If the function also returns a value, it is returned along with the argument. For example, if you had this:

extern int foo(double a, double b, double *OUTPUT);

The function will return two values like this:

iresult, dresult = foo(3.5, 2)
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9.1.4 Input/Output parameters

When a pointer serves as both an input and output value you can use the following typemaps :

int *INOUT
short *INOUT
long *INOUT
unsigned int *INOUT
unsigned short *INOUT
unsigned long *INOUT
double *INOUT
float *INOUT

A C function that uses this might be something like this:

void negate(double *x) {
        *x = −(*x);
}

To make x function as both and input and output value, declare the function like this in an interface file :

%module example
%include typemaps.i
...
extern void negate(double *INOUT);

Now within a script, you can simply call the function normally :

a = negate(3);         # a = −3 after calling this

One subtle point of the INOUT rule is that many scripting languages enforce mutability constraints on primitive objects (meaning
that simple objects like integers and strings aren't supposed to change). Because of this, you can't just modify the object's value in
place as the underlying C function does in this example. Therefore, the INOUT rule returns the modified value as a new object
rather than directly overwriting the value of the original input object.

Compatibility note : The INOUT rule used to be known as BOTH in earlier versions of SWIG. Backwards compatibility is
preserved, but deprecated.

9.1.5 Using different names

As previously shown, the %apply directive can be used to apply the INPUT, OUTPUT, and INOUT typemaps to different
argument names. For example:

// Make double *result an output value
%apply double *OUTPUT { double *result };

// Make Int32 *in an input value
%apply int *INPUT { Int32 *in };

// Make long *x inout
%apply long *INOUT {long *x};

To clear a rule, the %clear directive is used:

%clear double *result;
%clear Int32 *in, long *x;
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Typemap declarations are lexically scoped so a typemap takes effect from the point of definition to the end of the file or a
matching %clear declaration.

9.2 Applying constraints to input values

In addition to changing the handling of various input values, it is also possible to use typemaps to apply constraints. For example,
maybe you want to insure that a value is positive, or that a pointer is non−NULL. This can be accomplished including the
constraints.i library file.

9.2.1 Simple constraint example

The constraints library is best illustrated by the following interface file :

// Interface file with constraints
%module example
%include "constraints.i"

double exp(double x);
double log(double POSITIVE);         // Allow only positive values
double sqrt(double NONNEGATIVE);     // Non−negative values only
double inv(double NONZERO);          // Non−zero values
void   free(void *NONNULL);          // Non−NULL pointers only

The behavior of this file is exactly as you would expect. If any of the arguments violate the constraint condition, a scripting
language exception will be raised. As a result, it is possible to catch bad values, prevent mysterious program crashes and so on.

9.2.2 Constraint methods

The following constraints are currently available

POSITIVE                     Any number > 0 (not zero)
NEGATIVE                     Any number < 0 (not zero)
NONNEGATIVE                  Any number >= 0
NONPOSITIVE                  Any number <= 0
NONZERO                      Nonzero number
NONNULL                      Non−NULL pointer (pointers only).

9.2.3 Applying constraints to new datatypes

The constraints library only supports the primitive C datatypes, but it is easy to apply it to new datatypes using %apply. For
example :

// Apply a constraint to a Real variable
%apply Number POSITIVE { Real in };

// Apply a constraint to a pointer type
%apply Pointer NONNULL { Vector * };

The special types of "Number" and "Pointer" can be applied to any numeric and pointer variable type respectively. To later
remove a constraint, the %clear directive can be used :

%clear Real in;
%clear Vector *;

SWIG−1.3 Documentation

9.2 Applying constraints to input values 115



10 Typemaps
Introduction

Type conversion♦ 
Typemaps♦ 
Pattern matching♦ 
Reusing typemaps♦ 
What can be done with typemaps?♦ 
What can't be done with typemaps?♦ 
The rest of this chapter♦ 

• 

Typemap specifications
Defining a typemap♦ 
Typemap scope♦ 
Copying a typemap♦ 
Deleting a typemap♦ 
Placement of typemaps♦ 

• 

Pattern matching rules
Basic matching rules♦ 
Typedef reductions♦ 
Default typemaps♦ 
Mixed default typemaps♦ 
Multi−arguments typemaps♦ 

• 

Code generation rules
Scope♦ 
Declaring new local variables♦ 
Special variables♦ 

• 

Common typemap methods
"in" typemap♦ 
"typecheck" typemap♦ 
"out" typemap♦ 
"arginit" typemap♦ 
"default" typemap♦ 
"check" typemap♦ 
"argout" typemap♦ 
"freearg" typemap♦ 
"newfree" typemap♦ 
"memberin" typemap♦ 
"varin" typemap♦ 
"varout" typemap♦ 
"throws" typemap♦ 

• 

Some typemap examples
Typemaps for arrays♦ 
Implementing constraints with typemaps♦ 

• 

Multi−argument typemaps• 
The run−time type checker• 
Typemaps and overloading• 
More about%apply and %clear• 
Reducing wrapper code size• 
Passing data between typemaps• 
Where to go for more information?• 

Disclaimer: This chapter is under construction!

10 Typemaps 116



10.1 Introduction

Chances are, you are reading this chapter for one of two reasons; you either want to customize SWIG's behavior or you overheard
someone mumbling some incomprehensible drivel about "typemaps" and you asked yourself "typemaps, what are those?" That
said, let's start with a short disclaimer that "typemaps" are an advanced customization feature that provide direct access to SWIG's
low−level code generator. Not only that, they are an integral part of the SWIG C++ type system (a non−trivial topic of its own).
Typemaps are generally not a required part of using SWIG. Therefore, you might want to re−read the earlier chapters if you have
found your way to this chapter with only a vaque idea of what SWIG already does by default.

10.1.1 Type conversion

One of the most important problems in wrapper code generation is the conversion of datatypes between programming languages.
Specifically, for every C/C++ declaration, SWIG must somehow generate wrapper code that allows values to be passed back and
forth between languages. Since every programming language represents data differently, this is not a simple of matter of simply
linking code together with the C linker. Instead, SWIG has to know something about how data is represented in each language and
how it can be manipulated.

To illustrate, suppose you had a simple C function like this:

int factorial(int n);

To access this function from Python, a pair of Python API functions are used to convert integer values. For example:

long PyInt_AsLong(PyObject *obj);      /* Python −−> C */
PyObject *PyInt_FromLong(long x);      /* C −−> Python */

The first function is used to convert the input argument from a Python integer object to C long. The second function is used to
convert a value from C back into a Python integer object.

Inside the wrapper function, you might see these functions used like this:

PyObject *wrap_factorial(PyObject *self, PyObject *args) {
    int       arg1;
    int       result;
    PyObject *obj1;
    PyObject *resultobj;

    if (!PyArg_ParseTuple("O:factorial", &obj1)) return NULL;
arg1 = PyInt_AsLong(obj1);

    result = factorial(arg1);
resultobj = PyInt_FromLong(result);

    return resultobj;
}

Every target language supported by SWIG has functions that work in a similar manner. For example, in Perl, the following
functions are used:

IV SvIV(SV *sv);                     /* Perl −−> C */
void sv_setiv(SV *sv, IV val);       /* C −−> Perl */

In Tcl:

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *obj, long *value);
Tcl_Obj *Tcl_NewIntObj(long value);

The precise details are not so important. What is important is that all of the underlying type conversion is handled by collections
of utility functions and short bits of C code like this−−−you simply have to read the extension documentation for your favorite
language to know how it works (an exercise left to the reader).
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10.1.2 Typemaps

Since type handling is so central to wrapper code generation, SWIG allows it to be completely defined (or redefined) by the user.
To do this, a special %typemap directive is used. For example:

/* Convert from Python −−> C */
%typemap(in) int {
    $1 = PyInt_AsLong($input);
}

/* Convert from C −−> Python */
%typemap(out) int {
    $result = PyInt_FromLong($1);
}

At first glance, this code will look a little confusing. However, there is really not much to it. The first typemap (the "in" typemap)
is used to convert a value from the target language to C. The second typemap (the "out" typemap) is used to convert in the other
direction. The content of each typemap is a small fragment of C code that is inserted directly into the SWIG generated wrapper
functions. Within this code, a number of special variables prefixed with a $ are expanded. These are really just placeholders for C
variables that are generated in the course of creating the wrapper function. In this case, $input refers to an input object that
needs to be converted to C and $result refers to an object that is going to be returned by a wrapper function. $1 refers to a C
variable that has the same type as specified in the typemap declaration (an int in this example).

A short example might make this a little more clear. If you were wrapping a function like this:

int gcd(int x, int y);

A wrapper function would look approximately like this:

PyObject *wrap_gcd(PyObject *self, PyObject *args) {
   int arg1;
   int arg2;
   int result;
   PyObject *obj1;
   PyObject *obj2;
   PyObject *resultobj;

   if (!PyArg_ParseTuple("OO:gcd", &obj1, &obj2)) return NULL;

   /* "in" typemap, argument 1 */
   {
      arg1 = PyInt_AsLong(obj1);
   }

   /* "in" typemap, argument 2 */
   {
      arg2 = PyInt_AsLong(obj2);
   }

   result = gcd(arg1,arg2);

   /* "out" typemap, return value */
   {
      resultobj = PyInt_FromLong(result);
   }

   return resultobj;
}

In this code, you can see how the typemap code has been inserted into the function. You can also see how the special $ variables
have been expanded to match certain variable names inside the wrapper function. This is really the whole idea behind
typemaps−−they simply let you insert arbitrary code into different parts of the generated wrapper functions. Because arbitrary
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code can be inserted, it possible to completely change the way in which values are converted.

10.1.3 Pattern matching

As the name implies, the purpose of a typemap is to "map" C datatypes to types in the target language. Once a typemap is defined
for a C datatype, it is applied to all future occurrences of that type in the input file. For example:

/* Convert from Perl −−> C */
%typemap(in) int {
   $1 = SvIV($input);
}

...
int factorial(int n);
int gcd(int x, int y);
int count(char *s, char *t, int max);

The matching of typemaps to C datatypes is more than a simple textual match. In fact, typemaps are fully built into the underlying
type system. Therefore, typemaps are unaffected by typedef, namespaces, and other declarations that might hide the underlying
type. For example, you could have code like this:

/* Convert from Ruby−−> C */
%typemap(in) int {
   $1 = NUM2INT($input);
}
...
typedef int Integer;
namespace foo {
    typedef Integer Number;
};

int foo(int x);
int bar(Integer y);
int spam(foo::Number a, foo::Number b);

In this case, the typemap is still applied to the proper arguments even though typenames don't always match the text "int". This
ability to track types is a critical part of SWIG−−in fact, all of the target language modules work merely define a set of typemaps
for the basic types. Yet, it is never necessary to write new typemaps for typenames introduced by typedef.

In addition to tracking typenames, typemaps may also be specialized to match against a specific argument name. For example,
you could write a typemap like this:

%typemap(in) double nonnegative {
   $1 = PyFloat_AsDouble($input);
   if ($1 < 0) {
        PyErr_SetString(PyExc_ValueError,"argument must be nonnegative.");
        return NULL;
   }
}

...
double sin(double x);
double cos(double x);
double sqrt(double nonnegative);

typedef double Real;
double log(Real nonnegative);
...

For certain tasks such as input argument conversion, typemaps can be defined for sequences of consecutive arguments. For
example:

%typemap(in) (char *str, int len) {
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    $1 = PyString_AsString($input);   /* char *str */
    $2 = PyString_Size($input);       /* int len   */
}
...
int count(char *str, int len, char c);

In this case, a single input object is expanded into a pair of C arguments. This example also provides a hint to the unusual variable
naming scheme involving $1, $2, and so forth.

10.1.4 Reusing typemaps

Typemaps are normally defined for specific type and argument name patterns. However, typemaps can also be copied and reused.
One way to do this is to use assignment like this:

%typemap(in) Integer = int;   
%typemap(in) (char *buffer, int size) = (char *str, int len);

A more general form of copying is found in the %apply directive like this:

%typemap(in) int {
   /* Convert an integer argument */
   ...
}
%typemap(out) int {
   /* Return an integer value */
   ...
}

/* Apply all of the integer typemaps to size_t */
%apply int { size_t };    

%apply merely takes all of the typemaps that are defined for one type and applies them to other types. Note: you can include a
comma separated set of types in the { ... } part of %apply.

It should be noted that it is not necessary to copy typemaps for types that are related by typedef. For example, if you have this,

typedef int size_t;

then SWIG already knows that the int typemaps apply. You don't have to do anything.

10.1.5 What can be done with typemaps?

The primary use of typemaps is for defining wrapper generation behavior at the level of individual C/C++ datatypes. There are
currently six general categories of problems that typemaps address:

Argument handling

int foo(int x, double y, char *s);

Input argument conversion ("in" typemap).• 
Input argument type checking ("typecheck" typemap).• 
Output argument handling ("argout" typemap).• 
Input argument value checking ("check" typemap).• 
Input argument initialization ("arginit" typemap).• 
Default arguments ("default" typemap).• 
Input argument resource management ("freearg" typemap).• 

Return value handling
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int foo(int x, double y, char *s);

Function return value conversion ("out" typemap).• 
Return value resource management ("ret" typemap).• 
Resource management for newly allocated objects ("newfree" typemap).• 

Exception handling

int foo(int x, double y, char *s) throw(MemoryError, IndexError);

Handling of C++ exception specifiers. ("throw" typemap).• 

Global variables

int foo;

Assignment of a global variable. ("varin" typemap).• 
Reading a global variable. ("varout" typemap).• 

Member variables

struct Foo {
int x[20];

};

Assignment of data to a class/structure member. ("memberin" typemap).• 

Constant creation

#define FOO 3
%constant int BAR = 42;
enum { ALE, LAGER, STOUT };

Creation of constant values. ("consttab" or "constcode" typemap).• 

Details of each of these typemaps will be covered shortly. Also, certain language modules may define additional typemaps that
expand upon this list. For example, the Java module defines a variety of typemaps for controlling additional aspects of the Java
bindings. Consult language specific documentation for further details.

10.1.6 What can't be done with typemaps?

Typemaps can't be used to define properties that apply to C/C++ declarations as a whole. For example, suppose you had a
declaration like this,

Foo *make_Foo();

and you wanted to tell SWIG that make_Foo() returned a newly allocated object (for the purposes of providing better memory
management). Clearly, this property of make_Foo() is not a property that would be associated with the datatype Foo * by
itself. Therefore, a completely different SWIG customization mechanism (%feature) is used for this purpose. Consult the
Customization Features chapter for more information about that.

Typemaps also can't be used to rearrange or transform the order of arguments. For example, if you had a function like this:

void foo(int, char *);

you can't use typemaps to interchange the arguments, allowing you to call the function like this:

foo("hello",3)          # Reversed arguments
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If you want to change the calling conventions of a function, write a helper function instead. For example:

%rename(foo) wrap_foo;
%inline %{
void wrap_foo(char *s, int x) {
   foo(x,s);
}
%}

10.1.7 The rest of this chapter

The rest of this chapter provides detailed information for people who want to write new typemaps. This information is of
particular importance to anyone who intends to write a new SWIG target language module. Power users can also use this
information to write application specific type conversion rules.

Since typemaps are strongly tied to the underlying C++ type system, subsequent sections assume that you are reasonably familiar
with the basic details of values, pointers, references, arrays, type qualifiers (e.g., const), structures, namespaces, templates, and
memory management in C/C++. If not, you would be well−advised to consult a copy of "The C Programming Language" by
Kernighan and Ritchie or "The C++ Programming Language" by Stroustrup before going any further.

10.2 Typemap specifications

This section describes the behavior of the %typemap directive itself.

10.2.1 Defining a typemap

New typemaps are defined using the %typemap declaration. The general form of this declaration is as follows (parts enclosed in
[ ... ] are optional):

%typemap(method [, modifiers]) typelist code ;

method is a simply a name that specifies what kind of typemap is being defined. It is usually a name like "in", "out", or
"argout". The purpose of these methods is described later.

modifiers is an optional comma separated list of name="value" values. These are sometimes to attach extra information to a
typemap and is often target−language dependent.

typelist is a list of the C++ type patterns that the typemap will match. The general form of this list is as follows:

typelist    :  typepattern [, typepattern, typepattern, ... ] ;

typepattern :  type [ (parms) ]
            |  type name [ (parms) ]
            |  ( typelist ) [ (parms) ]

Each type pattern is either a simple type, a simple type and argument name, or a list of types in the case of multi−argument
typemaps. In addition, each type pattern can be parameterized with a list of temporary variables (parms). The purpose of these
variables will be explained shortly.

code specifies the C code used in the typemap. It can take any one of the following forms:

code       : { ... }
           | " ... "
           | %{ ... %}

Here are some examples of valid typemap specifications:
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/* Simple typemap declarations */
%typemap(in) int {
   $1 = PyInt_AsLong($input);
}
%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{ 
   $1 = PyInt_AsLong($input);
%}

/* Typemap with extra argument name */
%typemap(in) int nonnegative {
   ...
}

/* Multiple types in one typemap */
%typemap(in) int, short, long { 
   $1 = SvIV($input);
}

/* Typemap with modifiers */
%typemap(in,doc="integer") int "$1 = gh_scm2int($input);";

/* Typemap applied to patterns of multiple arguments */
%typemap(in) (char *str, int len),
             (char *buffer, int size)
{
   $1 = PyString_AsString($input);
   $2 = PyString_Size($input);
}

/* Typemap with extra pattern parameters */
%typemap(in, numinputs=0) int *output (int temp),
                          long *output (long temp)
{
   $1 = &temp;
}

Admittedly, it's not the most readable syntax at first glance. However, the purpose of the individual pieces will become clear.

10.2.2 Typemap scope

Once defined, a typemap remains in effect for all of the declarations that follow. A typemap may be redefined for different
sections of an input file. For example:

// typemap1
%typemap(in) int {
...
}

int fact(int);                    // typemap1
int gcd(int x, int y);            // typemap1

// typemap2
%typemap(in) int {
...
}

int isprime(int);                 // typemap2

One exception to the typemap scoping rules pertains to the %extend declaration. %extend is used to attach new declarations to
a class or structure definition. Because of this, all of the declarations in an %extend block are subject to the typemap rules that
are in effect at the point where the class itself is defined. For example:

class Foo {
   ...
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};

%typemap(in) int {
 ...
}

%extend Foo {
   int blah(int x);    // typemap has no effect.  Declaration is attached to Foo which 
                       // appears before the %typemap declaration.
};

10.2.3 Copying a typemap

A typemap is copied by using assignment. For example:

%typemap(in) Integer = int;

or this:

%typemap(in) Integer, Number, int32_t = int;

Types are often managed by a collection of different typemaps. For example:

%typemap(in)     int { ... }
%typemap(out)    int { ... }
%typemap(varin)  int { ... }
%typemap(varout) int { ... }

To copy all of these typemaps to a new type, use %apply. For example:

%apply int { Integer };            // Copy all int typemaps to Integer
%apply int { Integer, Number };    // Copy all int typemaps to both Integer and Number

The patterns for %apply follow the same rules as for %typemap. For example:

%apply int *output { Integer *output };                    // Typemap with name
%apply (char *buf, int len) { (char *buffer, int size) };  // Multiple arguments

10.2.4 Deleting a typemap

A typemap can be deleted by simply defining no code. For example:

%typemap(in) int;               // Clears typemap for int
%typemap(in) int, long, short;  // Clears typemap for int, long, short
%typemap(in) int *output;       

The %clear directive clears all typemaps for a given type. For example:

%clear int;                     // Removes all types for int
%clear int *output, long *output;

Note: Since SWIG's default behavior is defined by typemaps, clearing a fundamental type like int will make that type unusable
unless you also define a new set of typemaps immediately after the clear operation.

10.2.5 Placement of typemaps

Typemap declarations can be declared in the global scope, within a C++ namespace, and within a C++ class. For example:

%typemap(in) int {
   ...
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}

namespace std {
    class string;
    %typemap(in) string {
        ...
    }
}

class Bar {
public:
    typedef const int & const_reference;
    %typemap(out) const_reference {
         ...
    }
};

When a typemap appears inside a namespace or class, it stays in effect until the end of the SWIG input (just like before).
However, the typemap takes the local scope into account. Therefore, this code

namespace std {
    class string;
    %typemap(in) string {
       ...
    }
}

is really defining a typemap for the type std::string. You could have code like this:

namespace std {
    class string;
    %typemap(in) string {          /* std::string */
       ...
    }
}

namespace Foo {
    class string;
    %typemap(in) string {          /* Foo::string */
       ...
    }
}

In this case, there are two completely distinct typemaps that apply to two completely different types (std::string and
Foo::string).

It should be noted that for scoping to work, SWIG has to know that string is a typename defined within a particular namespace.
In this example, this is done using the class declaration class string.

10.3 Pattern matching rules

The section describes the pattern matching rules by which C datatypes are associated with typemaps.

10.3.1 Basic matching rules

Typemaps are matched using both a type and a name (typically the name of a argument). For a given TYPE NAME pair, the
following rules are applied, in order, to find a match. The first typemap found is used.

Typemaps that exactly match TYPE and NAME.• 
Typemaps that exactly match TYPE only.• 
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If TYPE includes qualifiers (const, volatile, etc.), they are stripped and the following checks are made:

Typemaps that match the stripped TYPE and NAME.• 
Typemaps that match the stripped TYPE only.• 

If TYPE is an array. The following transformation is made:

Replace all dimensions to [ANY] and look for a generic array typemap.• 

To illustrate, suppose that you had a function like this:

int foo(const char *s);

To find a typemap for the argument const char *s, SWIG will search for the following typemaps:

const char *s           Exact type and name match
const char *            Exact type match
char *s                 Type and name match (stripped qualifiers)
char *                  Type match (stripped qualifiers)

When more than one typemap rule might be defined, only the first match found is actually used. Here is an example that shows
how some of the basic rules are applied:

%typemap(in) int *x {
   ... typemap 1
}

%typemap(in) int * {
   ... typemap 2
}

%typemap(in) const int *z {
   ... typemap 3
}

%typemap(in) int [4] {
   ... typemap 4
}

%typemap(in) int [ANY] {
   ... typemap 5
}

void A(int *x);        // int *x rule    (typemap 1)
void B(int *y);        // int * rule     (typemap 2)
void C(const int *x);  // int *x rule    (typemap 1)
void D(const int *z);  // int * rule     (typemap 3)
void E(int x[4]);      // int [4] rule   (typemap 4)
void F(int x[1000]);   // int [ANY] rule (typemap 5)

10.3.2 Typedef reductions

If no match is found using the rules in the previous section, SWIG applies a typedef reduction to the type and repeats the typemap
search for the reduced type. To illustrate, suppose you had code like this:

%typemap(in) int {
   ... typemap 1
}

typedef int Integer;
void blah(Integer x);
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To find the typemap for Integer x, SWIG will first search for the following typemaps:

Integer x
Integer

Finding no match, it then applies a reduction Integer −> int to the type and repeats the search.

int x
int      −−> match: typemap 1

Even though two types might be the same via typedef, SWIG allows typemaps to be defined for each typename independently.
This allows for interesting customization possibilities based solely on the typename itself. For example, you could write code like
this:

typedef double  pdouble;     // Positive double

// typemap 1
%typemap(in) double {
   ... get a double ...
}
// typemap 2
%typemap(in) pdouble {
   ... get a positive double ...
}
double sin(double x);           // typemap 1
pdouble sqrt(pdouble x);        // typemap 2

When reducing the type, only one typedef reduction is applied at a time. The search process continues to apply reductions until a
match is found or until no more reductions can be made.

For complicated types, the reduction process can generate a long list of patterns. Consider the following:

typedef int Integer;
typedef Integer Row4[4];
void foo(Row4 rows[10]);

To find a match for the Row4 rows[10] argument, SWIG would check the following patterns, stopping only when it found a
match:

Row4 rows[10]
Row4 [10]
Row4 rows[ANY]
Row4 [ANY]

# Reduce Row4 −−> Integer[4]
Integer rows[10][4]
Integer [10][4]
Integer rows[ANY][ANY]
Integer [ANY][ANY]

# Reduce Integer −−> int
int rows[10][4]
int [10][4]
int rows[ANY][ANY]
int [ANY][ANY]

For parametized types like templates, the situation is even more complicated. Suppose you had some declarations like this:

typedef int Integer;
typedef foo<Integer,Integer> fooii;
void blah(fooii *x);
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In this case, the following typemap patterns are searched for the argument fooii *x:

fooii *x
fooii *

# Reduce fooii −−> foo<Integer,Integer>
foo<Integer,Integer> *x
foo<Integer,Integer> *

# Reduce Integer −> int
foo<int, Integer> *x
foo<int, Integer> *

# Reduce Integer −> int
foo<int, int> *x
foo<int, int> *

Typemap reductions are always applied to the left−most type that appears. Only when no reductions can be made to the left−most
type are reductions made to other parts of the type. This behavior means that you could define a typemap for
foo<int,Integer>, but a typemap for foo<Integer,int> would never be matched. Admittedly, this is rather
esoteric−−there's little practical reason to write a typemap quite like that. Of course, you could rely on this to confuse your
coworkers even more.

10.3.3 Default typemaps

Most SWIG language modules use typemaps to define the default behavior of the C primitive types. This is entirely
straightforward. For example, a set of typemaps are written like this:

%typemap(in) int   "convert an int";
%typemap(in) short "convert a short";
%typemap(in) float "convert a float";
...

Since typemap matching follows all typedef declarations, any sort of type that is mapped to a primitive type through typedef
will be picked up by one of these primitive typemaps.

The default behavior for pointers, arrays, references, and other kinds of types are handled by specifying rules for variations of the
reserved SWIGTYPE type. For example:

%typemap(in) SWIGTYPE *            { ... default pointer handling ...         }
%typemap(in) SWIGTYPE &            { ... default reference handling ...       }
%typemap(in) SWIGTYPE []           { ... default array handling ...           }
%typemap(in) enum SWIGTYPE         { ... default handling for enum values ... }
%typemap(in) SWIGTYPE (CLASS::*)   { ... default pointer member handling ...  } 

These rules match any kind of pointer, reference, or array−−even when multiple levels of indirection or multiple array dimensions
are used. Therefore, if you wanted to change SWIG's default handling for all types of pointers, you would simply redefine the rule
for SWIGTYPE *.

Finally, the following typemap rule is used to match against simple types that don't match any other rules:

%typemap(in) SWIGTYPE   { ... handle an unknown type ... }

This typemap is important because it is the rule that gets triggered when call or return by value is used. For instance, if you have a
declaration like this:

double dot_product(Vector a, Vector b);

The Vector type will usually just get matched against SWIGTYPE. The default implementation of SWIGTYPE is to convert the
value into pointers (as described in chapter 3).
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By redefining SWIGTYPE it may be possible to implement other behavior. For example, if you cleared all typemaps for
SWIGTYPE, SWIG simply won't wrap any unknown datatype (which might be useful for debugging). Alternatively, you might
modify SWIGTYPE to marshal objects into strings instead of converting them to pointers.

The best way to explore the default typemaps is to look at the ones already defined for a particular language module. Typemaps
definitions are usually found in the SWIG library in a file such as python.swg, tcl8.swg, etc.

10.3.4 Mixed default typemaps

The default typemaps described above can be mixed with const and with each other. For example the SWIGTYPE * typemap is
for default pointer handling, but if a const SWIGTYPE * typemap is defined it will be used instead for constant pointers. Some
further examples follow:

%typemap(in) enum SWIGTYPE &        { ... enum references ...                       }
%typemap(in) const enum SWIGTYPE &  { ... const enum references ...                 }
%typemap(in) SWIGTYPE *&            { ... pointers passed by reference ...          }
%typemap(in) SWIGTYPE * const &     { ... constant pointers passed by reference ... }
%typemap(in) SWIGTYPE[ANY][ANY]     { ... 2D arrays ...                             }

Note that the the typedef reduction described earlier is also used with these mixed default typemaps. For example, say the
following typemaps are defined and SWIG is looking for the best match for the enum shown below:

%typemap(in) const Hello &          { ... }
%typemap(in) const enum SWIGTYPE &  { ... }
%typemap(in) enum SWIGTYPE &        { ... }
%typemap(in) SWIGTYPE &             { ... }
%typemap(in) SWIGTYPE               { ... }

enum Hello {};
const Hello &hi;

The typemap at the top of the list will be chosen, not because it is defined first, but because it is the closest match for the type
being wrapped. If any of the typemaps in the above list were not defined, then the next one on the list would have precedence. In
other words the typemap chosen is the closest explicit match.

Compatibility note: The mixed default typemaps were introduced in SWIG−1.3.23, but were not used much in this version.
Expect to see them being used more and more within the various libraries in later versions of SWIG.

10.3.5 Multi−arguments typemaps

When multi−argument typemaps are specified, they take precedence over any typemaps specified for a single type. For example:

%typemap(in) (char *buffer, int len) {
   // typemap 1
}

%typemap(in) char *buffer {
   // typemap 2
}

void foo(char *buffer, int len, int count); // (char *buffer, int len)
void bar(char *buffer, int blah);           // char *buffer

Multi−argument typemaps are also more restrictive in the way that they are matched. Currently, the first argument follows the
matching rules described in the previous section, but all subsequent arguments must match exactly.

10.4 Code generation rules

This section describes rules by which typemap code is inserted into the generated wrapper code.
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10.4.1 Scope

When a typemap is defined like this:

%typemap(in) int {
   $1 = PyInt_AsLong($input);
}

the typemap code is inserted into the wrapper function using a new block scope. In other words, the wrapper code will look like
this:

wrap_whatever() {
    ...
    // Typemap code
    {                    
       arg1 = PyInt_AsLong(obj1);
    }
    ...
}

Because the typemap code is enclosed in its own block, it is legal to declare temporary variables for use during typemap
execution. For example:

%typemap(in) short {
   long temp;          /* Temporary value */
   if (Tcl_GetLongFromObj(interp, $input, &temp) != TCL_OK) {
      return TCL_ERROR;
   }
   $1 = (short) temp;
}

Of course, any variables that you declare inside a typemap are destroyed as soon as the typemap code has executed (they are not
visible to other parts of the wrapper function or other typemaps that might use the same variable names).

Occasionally, typemap code will be specified using a few alternative forms. For example:

%typemap(in) int "$1 = PyInt_AsLong($input);";
%typemap(in) int %{
$1 = PyInt_AsLong($input);
%}

These two forms are mainly used for cosmetics−−the specified code is not enclosed inside a block scope when it is emitted. This
sometimes results in a less complicated looking wrapper function.

10.4.2 Declaring new local variables

Sometimes it is useful to declare a new local variable that exists within the scope of the entire wrapper function. A good example
of this might be an application in which you wanted to marshal strings. Suppose you had a C++ function like this

int foo(std::string *s);

and you wanted to pass a native string in the target language as an argument. For instance, in Perl, you wanted the function to
work like this:

$x = foo("Hello World");

To do this, you can't just pass a raw Perl string as the std::string * argument. Instead, you have to create a temporary
std::string object, copy the Perl string data into it, and then pass a pointer to the object. To do this, simply specify the
typemap with an extra parameter like this:
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%typemap(in) std::string * (std::string temp) {
    unsigned int len;
    char        *s;
    s = SvPV($input,len);         /* Extract string data */
    temp.assign(s,len);           /* Assign to temp */
    $1 = &temp;                   /* Set argument to point to temp */
}

In this case, temp becomes a local variable in the scope of the entire wrapper function. For example:

wrap_foo() {
   std::string temp;    <−−− Declaration of temp goes here
   ...

   /* Typemap code */
   {
      ...
      temp.assign(s,len);
      ...
   } 
   ...
}

When you set temp to a value, it persists for the duration of the wrapper function and gets cleaned up automatically on exit.

It is perfectly safe to use more than one typemap involving local variables in the same declaration. For example, you could declare
a function as :

void foo(std::string *x, std::string *y, std::string *z);

This is safely handled because SWIG actually renames all local variable references by appending an argument number suffix.
Therefore, the generated code would actually look like this:

wrap_foo() {
   int *arg1;    /* Actual arguments */
   int *arg2;
   int *arg3;
   std::string temp1;    /* Locals declared in the typemap */
   std::string temp2;
   std::string temp3;
   ...
   {
       char *s;
       unsigned int len;
       ...
       temp1.assign(s,len);
       arg1 = *temp1;
   }
   {
       char *s;
       unsigned int len;
       ...
       temp2.assign(s,len);
       arg2 = &temp2;
   }
   {
       char *s;
       unsigned int len;
       ...
       temp3.assign(s,len);
       arg3 = &temp3;
   }
   ...
}
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Some typemaps do not recognize local variables (or they may simply not apply). At this time, only typemaps that apply to
argument conversion support this.

10.4.3 Special variables

Within all typemaps, the following special variables are expanded.

Variable Meaning

$n A C local variable corresponding to type n in the typemap pattern.

$argnum Argument number. Only available in typemaps related to argument conversion

$n_name Argument name

$n_type Real C datatype of type n.

$n_ltype ltype of type n

$n_mangle Mangled form of type n. For example _p_Foo

$n_descriptor
Type descriptor structure for type n. For example SWIGTYPE_p_Foo. This is primarily used when interacting
with the run−time type checker (described later).

$*n_type Real C datatype of type n with one pointer removed.

$*n_ltype ltype of type n with one pointer removed.

$*n_mangle Mangled form of type n with one pointer removed.

$*n_descriptorType descriptor structure for type n with one pointer removed.

$&n_type Real C datatype of type n with one pointer added.

$&n_ltype ltype of type n with one pointer added.

$&n_mangle Mangled form of type n with one pointer added.

$&n_descriptorType descriptor structure for type n with one pointer added.

$n_basetype Base typename with all pointers and qualifiers stripped.

Within the table, $n refers to a specific type within the typemap specification. For example, if you write this

%typemap(in) int *INPUT {

}

then $1 refers to int *INPUT. If you have a typemap like this,

%typemap(in) (int argc, char *argv[]) {
  ...
}

then $1 refers to int argc and $2 refers to char *argv[].

Substitutions related to types and names always fill in values from the actual code that was matched. This is useful when a
typemap might match multiple C datatype. For example:

%typemap(in)  int, short, long {
   $1 = ($1_ltype) PyInt_AsLong($input);
}

In this case, $1_ltype is replaced with the datatype that is actually matched.

When typemap code is emitted, the C/C++ datatype of the special variables $1 and $2 is always an "ltype." An "ltype" is simply
a type that can legally appear on the left−hand side of a C assignment operation. Here are a few examples of types and ltypes:

type              ltype
−−−−−−            −−−−−−−−−−−−−−−−
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int               int
const int         int
conts int *       int *
int [4]           int *
int [4][5]        int (*)[5]

In most cases a ltype is simply the C datatype with qualifiers stripped off. In addition, arrays are converted into pointers.

Variables such as $&1_type and $*1_type are used to safely modify the type by removing or adding pointers. Although not
needed in most typemaps, these substitutions are sometimes needed to properly work with typemaps that convert values between
pointers and values.

If necessary, type related substitutions can also be used when declaring locals. For example:

%typemap(in) int * ($*1_type temp) {
    temp = PyInt_AsLong($input);
    $1 = &temp;
}

There is one word of caution about declaring local variables in this manner. If you declare a local variable using a type
substitution such as $1_ltype temp, it won't work like you expect for arrays and certain kinds of pointers. For example, if you
wrote this,

%typemap(in) int [10][20] {
   $1_ltype temp;
}

then the declaration of temp will be expanded as

int (*)[20] temp;

This is illegal C syntax and won't compile. There is currently no straightforward way to work around this problem in SWIG due to
the way that typemap code is expanded and processed. However, one possible workaround is to simply pick an alternative type
such as void * and use casts to get the correct type when needed. For example:

%typemap(in) int [10][20] {
   void *temp;
   ...
   (($1_ltype) temp)[i][j] = x;    /* set a value */
   ...
}

Another approach, which only works for arrays is to use the $1_basetype substitution. For example:

%typemap(in) int [10][20] {
   $1_basetype temp[10][20];
   ...
   temp[i][j] = x;    /* set a value */
   ...
}

10.5 Common typemap methods

The set of typemaps recognized by a language module may vary. However, the following typemap methods are nearly universal:

10.5.1 "in" typemap

The "in" typemap is used to convert function arguments from the target language to C. For example:

%typemap(in) int {
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   $1 = PyInt_AsLong($input);
}

The following special variables are available:

$input            − Input object holding value to be converted.
$symname          − Name of function/method being wrapped

This is probably the most commonly redefined typemap because it can be used to implement customized conversions.

In addition, the "in" typemap allows the number of converted arguments to be specified. For example:

// Ignored argument.
%typemap(in, numinputs=0) int *out (int temp) {
    $1 = &temp;
}

At this time, only zero or one arguments may be converted.

Compatibility note: Specifying numinputs=0 is the same as the old "ignore" typemap.

10.5.2 "typecheck" typemap

The "typecheck" typemap is used to support overloaded functions and methods. It merely checks an argument to see whether or
not it matches a specific type. For example:

%typemap(typecheck,precedence=SWIG_TYPECHECK_INTEGER) int {
   $1 = PyInt_Check($input) ? 1 : 0;
}

For typechecking, the $1 variable is always a simple integer that is set to 1 or 0 depending on whether or not the input argument is
the correct type.

If you define new "in" typemaps and your program uses overloaded methods, you should also define a collection of "typecheck"
typemaps. More details about this follow in a later section on "Typemaps and Overloading."

10.5.3 "out" typemap

The "out" typemap is used to convert function/method return values from C into the target language. For example:

%typemap(out) int {
   $result = PyInt_FromLong($1);
}

The following special variables are available.

$result           − Result object returned to target language.
$symname          − Name of function/method being wrapped

10.5.4 "arginit" typemap

The "arginit" typemap is used to set the initial value of a function argument−−before any conversion has occurred. This is not
normally necessary, but might be useful in highly specialized applications. For example:

// Set argument to NULL before any conversion occurs
%typemap(arginit) int *data {
   $1 = NULL;
}
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10.5.5 "default" typemap

The "default" typemap is used to turn an argument into a default argument. For example:

%typemap(default) int flags {
   $1 = DEFAULT_FLAGS;
}
...
int foo(int x, int y, int flags);

The primary use of this typemap is to either change the wrapping of default arguments or specify a default argument in a language
where they aren't supported (like C). Target languages that do not support optional arguments, such as Java and C#, effecively
ignore the value specified by this typemap as all arguments must be given.

Once a default typemap has been applied to an argument, all arguments that follow must have default values. See the
Default/optional arguments section for further information on default argument wrapping.

10.5.6 "check" typemap

The "check" typemap is used to supply value checking code during argument conversion. The typemap is applied after arguments
have been converted. For example:

%typemap(check) int positive {
   if ($1 <= 0) {
       SWIG_exception(SWIG_ValueError,"Expected positive value.");
   }
}

10.5.7 "argout" typemap

The "argout" typemap is used to return values from arguments. This is most commonly used to write wrappers for C/C++
functions that need to return multiple values. The "argout" typemap is almost always combined with an "in" typemap−−−possibly
to ignore the input value. For example:

/* Set the input argument to point to a temporary variable */
%typemap(in, numinputs=0) int *out (int temp) {
   $1 = &temp;
}

%typemap(argout) int *out {
   // Append output value $1 to $result
   ...
}

The following special variables are available.

$result           − Result object returned to target language.
$input            − The original input object passed.
$symname          − Name of function/method being wrapped

The code supplied to the "argout" typemap is always placed after the "out" typemap. If multiple return values are used, the extra
return values are often appended to return value of the function.

See the typemaps.i library for examples.

10.5.8 "freearg" typemap

The "freearg" typemap is used to cleanup argument data. It is only used when an argument might have allocated resources that
need to be cleaned up when the wrapper function exits. The "freearg" typemap usually cleans up argument resources allocated by
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the "in" typemap. For example:

// Get a list of integers
%typemap(in) int *items {
   int nitems = Length($input);    
   $1 = (int *) malloc(sizeof(int)*nitems);
}
// Free the list 
%typemap(freearg) int *items {
   free($1);
}

The "freearg" typemap inserted at the end of the wrapper function, just before control is returned back to the target language. This
code is also placed into a special variable $cleanup that may be used in other typemaps whenever a wrapper function needs to
abort prematurely.

10.5.9 "newfree" typemap

The "newfree" typemap is used in conjunction with the %newobject directive and is used to deallocate memory used by the
return result of a function. For example:

%typemap(newfree) string * {
   delete $1;
}
%typemap(out) string * {
   $result = PyString_FromString($1−>c_str());
}
...

%newobject foo;
...
string *foo();

10.5.10 "memberin" typemap

The "memberin" typemap is used to copy data from an already converted input value into a structure member. It is typically used
to handle array members and other special cases. For example:

%typemap(memberin) int [4] {
   memmove($1, $input, 4*sizeof(int));
}

It is rarely necessary to write "memberin" typemaps−−−SWIG already provides a default implementation for arrays, strings, and
other objects.

10.5.11 "varin" typemap

The "varin" typemap is used to convert objects in the target language to C for the purposes of assigning to a C/C++ global
variable. This is implementation specific.

10.5.12 "varout" typemap

The "varout" typemap is used to convert a C/C++ object to an object in the target language when reading a C/C++ global variable.
This is implementation specific.

10.5.13 "throws" typemap

The "throws" typemap is only used when SWIG parses a C++ method with an exception specification. It provides a default
mechanism for handling C++ methods that have declared the exceptions it will throw. The purpose of this typemap is to convert a
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C++ exception into an error or exception in the target language. It is slightly different to the other typemaps as it is based around
the exception type rather than the type of a parameter or variable. For example:

%typemap(throws) const char * %{
  PyErr_SetString(PyExc_RuntimeError, $1);
  SWIG_fail;
%}
void bar() throw (const char *);

As can be seen from the generated code below, SWIG generates an exception handler with the catch block comprising the
"throws" typemap content.

...
try {
    bar();
}
catch(char const *_e) {
    PyErr_SetString(PyExc_RuntimeError, _e);
    SWIG_fail;

}
...

Note that if your methods do not have an exception specification yet they do throw exceptions, SWIG cannot know how to deal
with them. For a neat way to handle these, see the Exception handling with %exception section.

10.6 Some typemap examples

This section contains a few examples. Consult language module documentation for more examples.

10.6.1 Typemaps for arrays

A common use of typemaps is to provide support for C arrays appearing both as arguments to functions and as structure members.

For example, suppose you had a function like this:

void set_vector(int type, float value[4]);

If you wanted to handle float value[4] as a list of floats, you might write a typemap similar to this:

%typemap(in) float value[4] (float temp[4]) {
  int i;
  if (!PySequence_Check($input)) {
    PyErr_SetString(PyExc_ValueError,"Expected a sequence");
    return NULL;
  }
  if (PySequence_Length($input) != 4) {
    PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected 4 elements");
    return NULL;
  }
  for (i = 0; i < 4; i++) {
    PyObject *o = PySequence_GetItem($input,i);
    if (PyNumber_Check(o)) {
      temp[i] = (float) PyFloat_AsDouble(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");      
      return NULL;
    }
  }
  $1 = temp;
}
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In this example, the variable temp allocates a small array on the C stack. The typemap then populates this array and passes it to
the underlying C function.

When used from Python, the typemap allows the following type of function call:

>>> set_vector(type, [ 1, 2.5, 5, 20 ])

If you wanted to generalize the typemap to apply to arrays of all dimensions you might write this:

%typemap(in) float value[ANY] (float temp[$1_dim0]) {
  int i;
  if (!PySequence_Check($input)) {
    PyErr_SetString(PyExc_ValueError,"Expected a sequence");
    return NULL;
  }
  if (PySequence_Length($input) != $1_dim0) {
    PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
    return NULL;
  }
  for (i = 0; i < $1_dim0; i++) {
    PyObject *o = PySequence_GetItem($input,i);
    if (PyNumber_Check(o)) {
      temp[i] = (float) PyFloat_AsDouble(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");      
      return NULL;
    }
  }
  $1 = temp;
}

In this example, the special variable $1_dim0 is expanded with the actual array dimensions. Multidimensional arrays can be
matched in a similar manner. For example:

%typemap(python,in) float matrix[ANY][ANY] (float temp[$1_dim0][$1_dim1]) {
   ... convert a 2d array ...
}

For large arrays, it may be impractical to allocate storage on the stack using a temporary variable as shown. To work with heap
allocated data, the following technique can be used.

%typemap(in) float value[ANY] {
  int i;
  if (!PySequence_Check($input)) {
    PyErr_SetString(PyExc_ValueError,"Expected a sequence");
    return NULL;
  }
  if (PySequence_Length($input) != $1_dim0) {
    PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
    return NULL;
  }
  $1 = (float *) malloc($1_dim0*sizeof(float));
  for (i = 0; i < $1_dim0; i++) {
    PyObject *o = PySequence_GetItem($input,i);
    if (PyNumber_Check(o)) {
      $1[i] = (float) PyFloat_AsDouble(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");      
      return NULL;
    }
  }
}
%typemap(freearg) float value[ANY] {
   if ($1) free($1);
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}

In this case, an array is allocated using malloc. The freearg typemap is then used to release the argument after the function
has been called.

Another common use of array typemaps is to provide support for array structure members. Due to subtle differences between
pointers and arrays in C, you can't just "assign" to a array structure member. Instead, you have to explicitly copy elements into the
array. For example, suppose you had a structure like this:

struct SomeObject {
        float  value[4];
        ...
};

When SWIG runs, it won't produce any code to set the vec member. You may even get a warning message like this:

swig −python  example.i
Generating wrappers for Python
example.i:10.  Warning. Array member value will be read−only.

These warning messages indicate that SWIG does not know how you want to set the vec field.

To fix this, you can supply a special "memberin" typemap like this:

%typemap(memberin) float [ANY] {
  int i;
  for (i = 0; i < $1_dim0; i++) {
      $1[i] = $input[i];
  }
}

The memberin typemap is used to set a structure member from data that has already been converted from the target language to C.
In this case, $input is the local variable in which converted input data is stored. This typemap then copies this data into the
structure.

When combined with the earlier typemaps for arrays, the combination of the "in" and "memberin" typemap allows the following
usage:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]

Related to structure member input, it may be desirable to return structure members as a new kind of object. For example, in this
example, you will get very odd program behavior where the structure member can be set nicely, but reading the member simply
returns a pointer:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5. 10]
>>> print s.x
_1008fea8_p_float
>>> 

To fix this, you can write an "out" typemap. For example:

%typemap(out) float [ANY] {
  int i;
  $result = PyList_New($1_dim0);
  for (i = 0; i < $1_dim0; i++) {
    PyObject *o = PyFloat_FromDouble((double) $1[i]);
    PyList_SetItem($result,i,o);
  }
}
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Now, you will find that member access is quite nice:

>>> s = SomeObject()
>>> s.x = [1, 2.5, 5, 10]
>>> print s.x
[ 1, 2.5, 5, 10]

Compatibility Note: SWIG1.1 used to provide a special "memberout" typemap. However, it was mostly useless and has since
been eliminated. To return structure members, simply use the "out" typemap.

10.6.2 Implementing constraints with typemaps

One particularly interesting application of typemaps is the implementation of argument constraints. This can be done with the
"check" typemap. When used, this allows you to provide code for checking the values of function arguments. For example :

%module math

%typemap(check) double posdouble {
        if ($1 < 0) {
                croak("Expecting a positive number");
        }
}

...
double sqrt(double posdouble);

This provides a sanity check to your wrapper function. If a negative number is passed to this function, a Perl exception will be
raised and your program terminated with an error message.

This kind of checking can be particularly useful when working with pointers. For example :

%typemap(check) Vector * {
    if ($1 == 0) {
        PyErr_SetString(PyExc_TypeError,"NULL Pointer not allowed");
        return NULL;
   }
}

will prevent any function involving a Vector * from accepting a NULL pointer. As a result, SWIG can often prevent a
potential segmentation faults or other run−time problems by raising an exception rather than blindly passing values to the
underlying C/C++ program.

Note: A more advanced constraint checking system is in development. Stay tuned.

10.7 Multi−argument typemaps

So far, the typemaps presented have focused on the problem of dealing with single values. For example, converting a single input
object to a single argument in a function call. However, certain conversion problems are difficult to handle in this manner. As an
example, consider the example at the very beginning of this chapter:

int foo(int argc, char *argv[]);

Suppose that you wanted to wrap this function so that it accepted a single list of strings like this:

>>> foo(["ale","lager","stout"])

To do this, you not only need to map a list of strings to char *argv[], but the value of int argc is implicitly determined by
the length of the list. Using only simple typemaps, this type of conversion is possible, but extremely painful. Therefore, SWIG1.3

SWIG−1.3 Documentation

10.6.2 Implementing constraints with typemaps 140



introduces the notion of multi−argument typemaps.

A multi−argument typemap is a conversion rule that specifies how to convert a single object in the target language to set of
consecutive function arguments in C/C++. For example, the following multi−argument maps perform the conversion described for
the above example:

%typemap(in) (int argc, char *argv[]) {
  int i;
  if (!PyList_Check($input)) {
    PyErr_SetString(PyExc_ValueError, "Expecting a list");
    return NULL;
  }
  $1 = PyList_Size($input);
  $2 = (char **) malloc(($1+1)*sizeof(char *));
  for (i = 0; i < $1; i++) {
    PyObject *s = PyList_GetItem($input,i);
    if (!PyString_Check(s)) {
        free($2);
        PyErr_SetString(PyExc_ValueError, "List items must be strings");
        return NULL;
    }
    $2[i] = PyString_AsString(s);
  }
  $2[i] = 0;
}

%typemap(freearg) (int argc, char *argv[]) {
   if ($2) free($2);
}

A multi−argument map is always specified by surrounding the arguments with parentheses as shown. For example:

%typemap(in) (int argc, char *argv[]) { ... }

Within the typemap code, the variables $1, $2, and so forth refer to each type in the map. All of the usual substitutions
apply−−just use the appropriate $1 or $2 prefix on the variable name (e.g., $2_type, $1_ltype, etc.)

Multi−argument typemaps always have precedence over simple typemaps and SWIG always performs longest−match searching.
Therefore, you will get the following behavior:

%typemap(in) int argc                              { ... typemap 1 ... }
%typemap(in) (int argc, char *argv[])              { ... typemap 2 ... }
%typemap(in) (int argc, char *argv[], char *env[]) { ... typemap 3 ... }

int foo(int argc, char *argv[]);                   // Uses typemap 2
int bar(int argc, int x);                          // Uses typemap 1
int spam(int argc, char *argv[], char *env[]);     // Uses typemap 3

It should be stressed that multi−argument typemaps can appear anywhere in a function declaration and can appear more than once.
For example, you could write this:

%typemap(in) (int scount, char *swords[]) { ... }
%typemap(in) (int wcount, char *words[]) { ... }

void search_words(int scount, char *swords[], int wcount, char *words[], int maxcount);

Other directives such as %apply and %clear also work with multi−argument maps. For example:

%apply (int argc, char *argv[]) {
    (int scount, char *swords[]),
    (int wcount, char *words[])
};
...
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%clear (int scount, char *swords[]), (int wcount, char *words[]);
...

Although multi−argument typemaps may seem like an exotic, little used feature, there are several situations where they make
sense. First, suppose you wanted to wrap functions similar to the low−level read() and write() system calls. For example:

typedef unsigned int size_t;

int read(int fd, void *rbuffer, size_t len);
int write(int fd, void *wbuffer, size_t len);

As is, the only way to use the functions would be to allocate memory and pass some kind of pointer as the second argument−−−a
process that might require the use of a helper function. However, using multi−argument maps, the functions can be transformed
into something more natural. For example, you might write typemaps like this:

// typemap for an outgoing buffer
%typemap(in) (void *wbuffer, size_t len) {
   if (!PyString_Check($input)) {
       PyErr_SetString(PyExc_ValueError, "Expecting a string");
       return NULL;
   }
   $1 = (void *) PyString_AsString($input);
   $2 = PyString_Size($input);
}

// typemap for an incoming buffer
%typemap(in) (void *rbuffer, size_t len) {
   if (!PyInt_Check($input)) {
       PyErr_SetString(PyExc_ValueError, "Expecting an integer");
       return NULL;
   }
   $2 = PyInt_AsLong($input);
   if ($2 < 0) {
       PyErr_SetString(PyExc_ValueError, "Positive integer expected");
       return NULL;
   }
   $1 = (void *) malloc($2);
}

// Return the buffer.  Discarding any previous return result
%typemap(argout) (void *rbuffer, size_t len) {
   Py_XDECREF($result);   /* Blow away any previous result */
   if (result < 0) {      /* Check for I/O error */
       free($1);
       PyErr_SetFromErrno(PyExc_IOError);
       return NULL;
   }
   $result = PyString_FromStringAndSize($1,result);
   free($1);
}

(note: In the above example, $result and result are two different variables. result is the real C datatype that was returned
by the function. $result is the scripting language object being returned to the interpreter.).

Now, in a script, you can write code that simply passes buffers as strings like this:

>>> f = example.open("Makefile")
>>> example.read(f,40)
'TOP        = ../..\nSWIG       = $(TOP)/.'
>>> example.read(f,40)
'./swig\nSRCS       = example.c\nTARGET    '
>>> example.close(f)
0
>>> g = example.open("foo", example.O_WRONLY | example.O_CREAT, 0644)
>>> example.write(g,"Hello world\n")
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12
>>> example.write(g,"This is a test\n")
15
>>> example.close(g)
0
>>>

A number of multi−argument typemap problems also arise in libraries that perform matrix−calculations−−especially if they are
mapped onto low−level Fortran or C code. For example, you might have a function like this:

int is_symmetric(double *mat, int rows, int columns);

In this case, you might want to pass some kind of higher−level object as an matrix. To do this, you could write a multi−argument
typemap like this:

%typemap(in) (double *mat, int rows, int columns) {
    MatrixObject *a;
    a = GetMatrixFromObject($input);     /* Get matrix somehow */

    /* Get matrix properties */
    $1 = GetPointer(a);
    $2 = GetRows(a);
    $3 = GetColumns(a);
}

This kind of technique can be used to hook into scripting−language matrix packages such as Numeric Python. However, it should
also be stressed that some care is in order. For example, when crossing languages you may need to worry about issues such as
row−major vs. column−major ordering (and perform conversions if needed).

10.8 The run−time type checker

The run−time type checker is used by many, but not all, of SWIG's supported target languages. The run−time type checker
features are not required and are thus not used for strongly typed languages such as Java and C#. The scripting and scheme based
languages rely on it and it forms a critical part of SWIG's operation for these languages.

When pointers, arrays, and objects are wrapped by SWIG, they are normally converted into typed pointer objects. For example, an
instance of Foo * might be a string encoded like this:

_108e688_p_Foo

At a basic level, the type checker simply restores some type−safety to extension modules. However, the type checker is also
responsible for making sure that wrapped C++ classes are handled correctly−−−especially when inheritance is used. This is
especially important when an extension module makes use of multiple inheritance. For example:

class Foo {
   int x;
};

class Bar {
   int y;
};

class FooBar : public Foo, public Bar {
   int z;
};

When the class FooBar is organized in memory, it contains the contents of the classes Foo and Bar as well as its own data
members. For example:

FooBar −−> | −−−−−−−−−−−|  <−− Foo
           |   int x    |
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           |−−−−−−−−−−−−|  <−− Bar
           |   int y    |
           |−−−−−−−−−−−−|
           |   int z    |
           |−−−−−−−−−−−−|

Because of the way that base class data is stacked together, the casting of a Foobar * to either of the base classes may change
the actual value of the pointer. This means that it is generally not safe to represent pointers using a simple integer or a bare void
*−−−type tags are needed to implement correct handling of pointer values (and to make adjustments when needed).

In the wrapper code generated for each language, pointers are handled through the use of special type descriptors and conversion
functions. For example, if you look at the wrapper code for Python, you will see code like this:

if ((SWIG_ConvertPtr(obj0,(void **) &arg1, SWIGTYPE_p_Foo,1)) == −1) return NULL;

In this code, SWIGTYPE_p_Foo is the type descriptor that describes Foo *. The type descriptor is actually a pointer to a
structure that contains information about the type name to use in the target language, a list of equivalent typenames (via typedef or
inheritance), and pointer value handling information (if applicable). The SWIG_ConvertPtr() function is simply a utility
function that takes a pointer object in the target language and a type−descriptor objects and uses this information to generate a
C++ pointer. However, the exact name and calling conventions of the conversion function depends on the target language (see
language specific chapters for details).

When pointers are converted in a typemap, the typemap code often looks similar to this:

%typemap(in) Foo * {
  if ((SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == −1) return NULL;
}

The most critical part is the typemap is the use of the $1_descriptor special variable. When placed in a typemap, this is
expanded into the SWIGTYPE_* type descriptor object above. As a general rule, you should always use $1_descriptor
instead of trying to hard−code the type descriptor name directly.

There is another reason why you should always use the $1_descriptor variable. When this special variable is expanded,
SWIG marks the corresponding type as "in use." When type−tables and type information is emitted in the wrapper file, descriptor
information is only generated for those datatypes that were actually used in the interface. This greatly reduces the size of the type
tables and improves efficiency.

Occassionally, you might need to write a typemap that needs to convert pointers of other types. To handle this, a special macro
substition $descriptor(type) can be used to generate the SWIG type descriptor name for any C datatype. For example:

%typemap(in) Foo * {
  if ((SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor)) == −1) {
     Bar *temp;
     if ((SWIG_ConvertPtr($input), (void **) &temp, $descriptor(Bar *)) == −1) {
         return NULL;
     }
     $1 = (Foo *) temp;
  }
}

The primary use of $descriptor(type) is when writing typemaps for container objects and other complex data structures.
There are some restrictions on the argument−−−namely it must be a fully defined C datatype. It can not be any of the special
typemap variables.

In certain cases, SWIG may not generate type−descriptors like you expect. For example, if you are converting pointers in some
non−standard way or working with an unusual combination of interface files and modules, you may find that SWIG omits
information for a specific type descriptor. To fix this, you may need to use the %types directive. For example:

%types(int *, short *, long *, float *, double *);
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When %types is used, SWIG generates type−descriptor information even if those datatypes never appear elsewhere in the
interface file.

A final problem related to the type−checker is the conversion of types in code that is external to the SWIG wrapper file. This
situation is somewhat rare in practice, but occasionally a programmer may want to convert a typed pointer object into a C++
pointer somewhere else in their program. The only problem is that the SWIG type descriptor objects are only defined in the
wrapper code and not normally accessible.

To correctly deal with this situation, the following technique can be used:

/* Some non−SWIG file */

/* External declarations */
extern void *SWIG_TypeQuery(const char *);
extern int   SWIG_ConvertPtr(PyObject *, void **ptr, void *descr);

void foo(PyObject *o) {
   Foo *f;
   static void *descr = 0;
   if (!descr) {
      descr = SWIG_TypeQuery("Foo *");    /* Get the type descriptor structure for Foo */
      assert(descr);
   }
   if ((SWIG_ConvertPtr(o,(void **) &f, descr) == −1)) {
       abort();
   }
   ...
}

Further details about the run−time type checking can be found in the documentation for individual language modules. Reading the
source code may also help. The file common.swg in the SWIG library contains all of the source code for type−checking. This
code is also included in every generated wrapped file so you probably just look at the output of SWIG to get a better sense for
how types are managed.

10.9 Typemaps and overloading

In many target languages, SWIG fully supports C++ overloaded methods and functions. For example, if you have a collection of
functions like this:

int foo(int x);
int foo(double x);
int foo(char *s, int y);

You can access the functions in a normal way from the scripting interpreter:

# Python
foo(3)           # foo(int)
foo(3.5)         # foo(double)
foo("hello",5)   # foo(char *, int)

# Tcl
foo 3            # foo(int)
foo 3.5          # foo(double)
foo hello 5      # foo(char *, int)

To implement overloading, SWIG generates a separate wrapper function for each overloaded method. For example, the above
functions would produce something roughly like this:

// wrapper pseudocode
_wrap_foo_0(argc, args[]) {       // foo(int)
   int arg1;
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   int result;
   ...
   arg1 = FromInteger(args[0]);
   result = foo(arg1);
   return ToInteger(result);
}

_wrap_foo_1(argc, args[]) {       // foo(double)
   double arg1;
   int result;
   ...
   arg1 = FromDouble(args[0]);
   result = foo(arg1);
   return ToInteger(result);
}

_wrap_foo_2(argc, args[]) {       // foo(char *, int)
   char *arg1;
   int   arg2;
   int result;
   ...
   arg1 = FromString(args[0]);
   arg2 = FromInteger(args[1]);
   result = foo(arg1,arg2);
   return ToInteger(result);
}

Next, a dynamic dispatch function is generated:

_wrap_foo(argc, args[]) {
   if (argc == 1) {
       if (IsInteger(args[0])) {
           return _wrap_foo_0(argc,args);
       } 
       if (IsDouble(args[0])) {
           return _wrap_foo_1(argc,args);
       }
   }
   if (argc == 2) {
       if (IsString(args[0]) && IsInteger(args[1])) {
          return _wrap_foo_2(argc,args);
       }
   }
   error("No matching function!\n");
}

The purpose of the dynamic dispatch function is to select the appropriate C++ function based on argument types−−−a task that
must be performed at runtime in most of SWIG's target languages.

The generation of the dynamic dispatch function is a relatively tricky affair. Not only must input typemaps be taken into account
(these typemaps can radically change the types of arguments accepted), but overloaded methods must also be sorted and checked
in a very specific order to resolve potential ambiguity. A high−level overview of this ranking process is found in the "SWIG and
C++" chapter. What isn't mentioned in that chapter is the mechanism by which it is implemented−−−as a collection of typemaps.

To support dynamic dispatch, SWIG first defines a general purpose type hierarchy as follows:

Symbolic Name                   Precedence Value
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  −−−−−−−−−−−−−−−−−−
SWIG_TYPECHECK_POINTER           0  
SWIG_TYPECHECK_VOIDPTR           10 
SWIG_TYPECHECK_BOOL              15 
SWIG_TYPECHECK_UINT8             20 
SWIG_TYPECHECK_INT8              25 
SWIG_TYPECHECK_UINT16            30 
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SWIG_TYPECHECK_INT16             35 
SWIG_TYPECHECK_UINT32            40 
SWIG_TYPECHECK_INT32             45 
SWIG_TYPECHECK_UINT64            50 
SWIG_TYPECHECK_INT64             55 
SWIG_TYPECHECK_UINT128           60 
SWIG_TYPECHECK_INT128            65 
SWIG_TYPECHECK_INTEGER           70 
SWIG_TYPECHECK_FLOAT             80 
SWIG_TYPECHECK_DOUBLE            90 
SWIG_TYPECHECK_COMPLEX           100 
SWIG_TYPECHECK_UNICHAR           110 
SWIG_TYPECHECK_UNISTRING         120 
SWIG_TYPECHECK_CHAR              130 
SWIG_TYPECHECK_STRING            140 
SWIG_TYPECHECK_BOOL_ARRAY        1015 
SWIG_TYPECHECK_INT8_ARRAY        1025 
SWIG_TYPECHECK_INT16_ARRAY       1035 
SWIG_TYPECHECK_INT32_ARRAY       1045 
SWIG_TYPECHECK_INT64_ARRAY       1055 
SWIG_TYPECHECK_INT128_ARRAY      1065 
SWIG_TYPECHECK_FLOAT_ARRAY       1080 
SWIG_TYPECHECK_DOUBLE_ARRAY      1090 
SWIG_TYPECHECK_CHAR_ARRAY        1130 
SWIG_TYPECHECK_STRING_ARRAY      1140 

(These precedence levels are defined in swig.swg, a library file that's included by all target language modules.)

In this table, the precedence−level determines the order in which types are going to be checked. Low values are always checked
before higher values. For example, integers are checked before floats, single values are checked before arrays, and so forth.

Using the above table as a guide, each target language defines a collection of "typecheck" typemaps. The follow excerpt from the
Python module illustrates this:

/* Python type checking rules */
/* Note:  %typecheck(X) is a macro for %typemap(typecheck,precedence=X) */

%typecheck(SWIG_TYPECHECK_INTEGER)
         int, short, long,
         unsigned int, unsigned short, unsigned long,
         signed char, unsigned char,
         long long, unsigned long long,
         const int &, const short &, const long &,
         const unsigned int &, const unsigned short &, const unsigned long &,
         const long long &, const unsigned long long &,
         enum SWIGTYPE,
         bool, const bool & 
{
  $1 = (PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_DOUBLE)
        float, double,
        const float &, const double &
{
  $1 = (PyFloat_Check($input) || PyInt_Check($input) || PyLong_Check($input)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_CHAR) char {
  $1 = (PyString_Check($input) && (PyString_Size($input) == 1)) ? 1 : 0;
}

%typecheck(SWIG_TYPECHECK_STRING) char * {
  $1 = PyString_Check($input) ? 1 : 0;
}
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%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [] {
  void *ptr;
  if (SWIG_ConvertPtr($input, (void **) &ptr, $1_descriptor, 0) == −1) {
    $1 = 0;
    PyErr_Clear();
  } else {
    $1 = 1;
  }
}

%typecheck(SWIG_TYPECHECK_POINTER) SWIGTYPE {
  void *ptr;
  if (SWIG_ConvertPtr($input, (void **) &ptr, $&1_descriptor, 0) == −1) {
    $1 = 0;
    PyErr_Clear();
  } else {
    $1 = 1;
  }
}

%typecheck(SWIG_TYPECHECK_VOIDPTR) void * {
  void *ptr;
  if (SWIG_ConvertPtr($input, (void **) &ptr, 0, 0) == −1) {
    $1 = 0;
    PyErr_Clear();
  } else {
    $1 = 1;
  }
}

%typecheck(SWIG_TYPECHECK_POINTER) PyObject *
{
  $1 = ($input != 0);
}

It might take a bit of contemplation, but this code has merely organized all of the basic C++ types, provided some simple
type−checking code, and assigned each type a precedence value.

Finally, to generate the dynamic dispatch function, SWIG uses the following algorithm:

Overloaded methods are first sorted by the number of required arguments.• 
Methods with the same number of arguments are then sorted by precedence values of argument types.• 
Typecheck typemaps are then emitted to produce a dispatch function that checks arguments in the correct order.• 

If you haven't written any typemaps of your own, it is unnecessary to worry about the typechecking rules. However, if you have
written new input typemaps, you might have to supply a typechecking rule as well. An easy way to do this is to simply copy one
of the existing typechecking rules. Here is an example,

// Typemap for a C++ string
%typemap(in) std::string {
    if (PyString_Check($input)) {
         $1 = std::string(PyString_AsString($input));
     } else {
         SWIG_exception(SWIG_TypeError, "string expected");
     }
}
// Copy the typecheck code for "char *".  
%typemap(typecheck) std::string = char *;

The bottom line: If you are writing new typemaps and you are using overloaded methods, you will probably have to write
typecheck code or copy existing code. Since this is a relatively new SWIG feature, there are few examples to work with.
However, you might look at some of the existing library files likes 'typemaps.i' for a guide.
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Notes:

Typecheck typemaps are not used for non−overloaded methods. Because of this, it is still always necessary to check
types in any "in" typemaps.

• 

The dynamic dispatch process is only meant to be a heuristic. There are many corner cases where SWIG simply can't
disambiguate types to the same degree as C++. The only way to resolve this ambiguity is to use the %rename directive to
rename one of the overloaded methods (effectively eliminating overloading).

• 

Typechecking may be partial. For example, if working with arrays, the typecheck code might simply check the type of
the first array element and use that to dispatch to the correct function. Subsequent "in" typemaps would then perform
more extensive type−checking.

• 

Make sure you read the section on overloading in the "SWIG and C++" chapter.• 

10.10 More about %apply and %clear

In order to implement certain kinds of program behavior, it is sometimes necessary to write sets of typemaps. For example, to
support output arguments, one often writes a set of typemaps like this:

%typemap(in,numinputs=0) int *OUTPUT (int temp) {
   $1 = &temp;
}
%typemap(argout) int *OUTPUT {
   // return value somehow
}

To make it easier to apply the typemap to different argument types and names, the %apply directive performs a copy of all
typemaps from one type to another. For example, if you specify this,

%apply int *OUTPUT { int *retvalue, int32 *output };

then all of the int *OUTPUT typemaps are copied to int *retvalue and int32 *output.

However, there is a subtle aspect of %apply that needs more description. Namely, %apply does not overwrite a typemap rule if
it is already defined for the target datatype. This behavior allows you to do two things:

You can specialize parts of a complex typemap rule by first defining a few typemaps and then using %apply to
incorporate the remaining pieces.

• 

Sets of different typemaps can be applied to the same datatype using repeated %apply directives.• 

For example:

%typemap(in) int *INPUT (int temp) {
   temp = ... get value from $input ...;
   $1 = &temp;
}

%typemap(check) int *POSITIVE {
   if (*$1 <= 0) {
      SWIG_exception(SWIG_ValueError,"Expected a positive number!\n");
      return NULL;
   }
}

...
%apply int *INPUT     { int *invalue };
%apply int *POSITIVE  { int *invalue };

Since %apply does not overwrite or replace any existing rules, the only way to reset behavior is to use the %clear directive.
%clear removes all typemap rules defined for a specific datatype. For example:

%clear int *invalue;
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10.11 Reducing wrapper code size

Since the code supplied to a typemap is inlined directly into wrapper functions, typemaps can result in a tremendous amount of
code bloat. For example, consider this typemap for an array:

%typemap(in) float [ANY] {
  int i;
  if (!PySequence_Check($input)) {
    PyErr_SetString(PyExc_ValueError,"Expected a sequence");
    return NULL;
  }
  if (PySequence_Length($input) != $1_dim0) {
    PyErr_SetString(PyExc_ValueError,"Size mismatch. Expected $1_dim0 elements");
    return NULL;
  }
  $1 = (float) malloc($1_dim0*sizeof(float));
  for (i = 0; i < $1_dim0; i++) {
    PyObject *o = PySequence_GetItem($input,i);
    if (PyNumber_Check(o)) {
      $1[i] = (float) PyFloat_AsDouble(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");      
      return NULL;
    }
  }
}

If you had a large interface with hundreds of functions all accepting array parameters, this typemap would be replicated
repeatedly−−generating a huge amount of code. A better approach might be to consolidate some of the typemap into a function.
For example:

%{
/* Define a helper function */
static float *
convert_float_array(PyObject *input, int size) {
  int i;
  float *result;
  if (!PySequence_Check(input)) {
    PyErr_SetString(PyExc_ValueError,"Expected a sequence");
    return NULL;
  }
  if (PySequence_Length(input) != size) {
    PyErr_SetString(PyExc_ValueError,"Size mismatch. ");
    return NULL;
  }
  result = (float) malloc(size*sizeof(float));
  for (i = 0; i < size; i++) {
    PyObject *o = PySequence_GetItem(input,i);
    if (PyNumber_Check(o)) {
      result[i] = (float) PyFloat_AsDouble(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Sequence elements must be numbers");
      free(result);       
      return NULL;
    }
  }
  return result;
}
%}

%typemap(in) float [ANY] {
    $1 = convert_float_array($input, $1_dim0);
    if (!$1) return NULL;
}
%}
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10.12 Passing data between typemaps

It is also important to note that the primary use of local variables is to create stack−allocated objects for temporary use inside a
wrapper function (this is faster and less−prone to error than allocating data on the heap). In general, the variables are not intended
to pass information between different types of typemaps. However, this can be done if you realize that local names have the
argument number appended to them. For example, you could do this:

%typemap(in) int *(int temp) {
   temp = (int) PyInt_AsLong($input);
   $1 = &temp;
}

%typemap(argout) int * {
   PyObject *o = PyInt_FromLong(temp$argnum);
   ...
}

In this case, the $argnum variable is expanded into the argument number. Therefore, the code will reference the appropriate local
such as temp1 and temp2. It should be noted that there are plenty of opportunities to break the universe here and that accessing
locals in this manner should probably be avoided. At the very least, you should make sure that the typemaps sharing information
have exactly the same types and names.

10.13 Where to go for more information?

The best place to find out more information about writing typemaps is to look in the SWIG library. Most language modules define
all of their default behavior using typemaps. These are found in files such as python.swg, perl5.swg, tcl8.swg and so
forth. The typemaps.i file in the library also contains numerous examples. You should look at these files to get a feel for how
to define typemaps of your own. Some of the language modules support additional typemaps and further information is available
in the individual chapters for each target language.
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11 Customization Features
Exception handling with %exception

Handling exceptions in C code♦ 
Exception handling with longjmp()♦ 
Handling C++ exceptions♦ 
Defining different exception handlers♦ 
Using The SWIG exception library♦ 

• 

Object ownership and %newobject• 
Features and the %feature directive

Features and default arguments♦ 
Feature example♦ 

• 

In many cases, it is desirable to change the default wrapping of particular declarations in an interface. For example, you might
want to provide hooks for catching C++ exceptions, add assertions, or provide hints to the underlying code generator. This chapter
describes some of these customization techniques. First, a discussion of exception handling is presented. Then, a more
general−purpose customization mechanism known as "features" is described.

11.1 Exception handling with %exception

The %exception directive allows you to define a general purpose exception handler. For example, you can specify the
following:

%exception {
    try {
        $action
    }
    catch (RangeError) {
        PyErr_SetString(PyExc_IndexError,"index out−of−bounds");
        return NULL;
    }
}

When defined, the code enclosed in braces is inserted directly into the low−level wrapper functions. The special symbol
$action gets replaced with the actual operation to be performed (a function call, method invocation, attribute access, etc.). An
exception handler remains in effect until it is explicitly deleted. This is done by using either %exception or %noexception
with no code. For example:

%exception;   // Deletes any previously defined handler

Compatibility note: Previous versions of SWIG used a special directive %except for exception handling. That directive is still
supported but is deprecated−−%exception provides the same functionality, but is substantially more flexible.

11.1.1 Handling exceptions in C code

C has no formal exception handling mechanism so there are several approaches that might be used. A somewhat common
technique is to simply set a special error code. For example:

/* File : except.c */

static char error_message[256];
static int error_status = 0;

void throw_exception(char *msg) {
        strncpy(error_message,msg,256);
        error_status = 1;
}

11 Customization Features 152



void clear_exception() {
        error_status = 0;
}
char *check_exception() {
        if (error_status) return error_message;
        else return NULL;
}

To use these functions, functions simply call throw_exception() to indicate an error occurred. For example :

double inv(double x) {
        if (x != 0) return 1.0/x;
        else {
                throw_exception("Division by zero");
                return 0;
        }
}

To catch the exception, you can write a simple exception handler such as the following (shown for Perl5) :

%exception {
    char *err;
    clear_exception();
    $action
    if ((err = check_exception())) {
       croak(err);
    }
}

In this case, when an error occurs, it is translated into a Perl error.

11.1.2 Exception handling with longjmp()

Exception handling can also be added to C code using the <setjmp.h> library. Here is a minimalistic implementation that relies
on the C preprocessor :

/* File : except.c
   Just the declaration of a few global variables we're going to use */

#include <setjmp.h>
jmp_buf exception_buffer;
int exception_status;

/* File : except.h */
#include <setjmp.h>
extern jmp_buf exception_buffer;
extern int exception_status;

#define try if ((exception_status = setjmp(exception_buffer)) == 0)
#define catch(val) else if (exception_status == val)
#define throw(val) longjmp(exception_buffer,val)
#define finally else

/* Exception codes */

#define RangeError     1
#define DivisionByZero 2
#define OutOfMemory    3

Now, within a C program, you can do the following :
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double inv(double x) {
        if (x) return 1.0/x;
        else throw(DivisionByZero);
}

Finally, to create a SWIG exception handler, write the following :

%{
#include "except.h"
%}

%exception {
        try {
                $action
        } catch(RangeError) {
                croak("Range Error");
        } catch(DivisionByZero) {
                croak("Division by zero");
        } catch(OutOfMemory) {
                croak("Out of memory");
        } finally {
                croak("Unknown exception");
        }
}

Note: This implementation is only intended to illustrate the general idea. To make it work better, you'll need to modify it to handle
nested try declarations.

11.1.3 Handling C++ exceptions

Handling C++ exceptions is also straightforward. For example:

%exception {
        try {
                $action
        } catch(RangeError) {
                croak("Range Error");
        } catch(DivisionByZero) {
                croak("Division by zero");
        } catch(OutOfMemory) {
                croak("Out of memory");
        } catch(...) {
                croak("Unknown exception");
        }
}

The exception types need to be declared as classes elsewhere, possibly in a header file :

class RangeError {};
class DivisionByZero {};
class OutOfMemory {};

11.1.4 Defining different exception handlers

By default, the %exception directive creates an exception handler that is used for all wrapper functions that follow it. Unless
there is a well−defined (and simple) error handling mechanism in place, defining one universal exception handler may be
unwieldy and result in excessive code bloat since the handler is inlined into each wrapper function.

To fix this, you can be more selective about how you use the %exception directive. One approach is to only place it around
critical pieces of code. For example:

SWIG−1.3 Documentation

11.1.3 Handling C++ exceptions 154



%exception {
        ... your exception handler ...
}
/* Define critical operations that can throw exceptions here */

%exception;

/* Define non−critical operations that don't throw exceptions */

More precise control over exception handling can be obtained by attaching an exception handler to specific declaration name. For
example:

%exception allocate {
    try {
        $action
    } 
    catch (MemoryError) {
        croak("Out of memory");
    }
}

In this case, the exception handler is only attached to declarations named "allocate". This would include both global and member
functions. The names supplied to %exception follow the same rules as for %rename described in the section on Ambiguity
resolution and renaming. For example, if you wanted to define an exception handler for a specific class, you might write this:

%exception Object::allocate {
    try {
        $action
    } 
    catch (MemoryError) {
        croak("Out of memory");
    }
}

When a class prefix is supplied, the exception handler is applied to the corresponding declaration in the specified class as well as
for identically named functions appearing in derived classes.

%exception can even be used to pinpoint a precise declaration when overloading is used. For example:

%exception Object::allocate(int) {
    try {
        $action
    } 
    catch (MemoryError) {
        croak("Out of memory");
    }
}

Attaching exceptions to specific declarations is a good way to reduce code bloat. It can also be a useful way to attach exceptions
to specific parts of a header file. For example:

%module example
%{
#include "someheader.h"
%}

// Define a few exception handlers for specific declarations
%exception Object::allocate(int) {
    try {
        $action
    } 
    catch (MemoryError) {
        croak("Out of memory");
    }
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}

%exception Object::getitem {
    try {
       $action
    }
    catch (RangeError) {
       croak("Index out of range");
    }
}
...
// Read a raw header file
%include "someheader.h"

Compatibility note: The %exception directive replaces the functionality provided by the deprecated "except" typemap. The
typemap would allow exceptions to be thrown in the target language based on the return type of a function and was intended to be
a mechanism for pinpointing specific declarations. However, it never really worked that well and the new %exception directive is
much better.

11.1.5 Using The SWIG exception library

The exception.i library file provides support for creating language independent exceptions in your interfaces. To use it,
simply put an "%include exception.i" in your interface file. This creates a function SWIG_exception() that can be
used to raise common scripting language exceptions in a portable manner. For example :

// Language independent exception handler
%include exception.i       

%exception {
    try {
        $action
    } catch(RangeError) {
        SWIG_exception(SWIG_ValueError, "Range Error");
    } catch(DivisionByZero) {
        SWIG_exception(SWIG_DivisionByZero, "Division by zero");
    } catch(OutOfMemory) {
        SWIG_exception(SWIG_MemoryError, "Out of memory");
    } catch(...) {
        SWIG_exception(SWIG_RuntimeError,"Unknown exception");
    }
}

As arguments, SWIG_exception() takes an error type code (an integer) and an error message string. The currently supported
error types are :

SWIG_MemoryError
SWIG_IOError
SWIG_RuntimeError
SWIG_IndexError
SWIG_TypeError
SWIG_DivisionByZero
SWIG_OverflowError
SWIG_SyntaxError
SWIG_ValueError
SWIG_SystemError
SWIG_UnknownError

Since the SWIG_exception() function is defined at the C−level it can be used elsewhere in SWIG. This includes typemaps
and helper functions.
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11.2 Object ownership and %newobject

A common problem in some applications is managing proper ownership of objects. For example, consider a function like this:

Foo *blah() {
   Foo *f = new Foo();
   return f;
}

If you wrap the function blah(), SWIG has no idea that the return value is a newly allocated object. As a result, the resulting
extension module may produce a memory leak (SWIG is conservative and will never delete objects unless it knows for certain
that the returned object was newly created).

To fix this, you can provide an extra hint to the code generator using the %newobject directive. For example:

%newobject blah;
Foo *blah();

%newobject works exactly like %rename and %exception. In other words, you can attach it to class members and
parameterized declarations as before. For example:

%newobject ::blah();                   // Only applies to global blah
%newobject Object::blah(int,double);   // Only blah(int,double) in Object
%newobject *::copy;                    // Copy method in all classes
...

When %newobject is supplied, many language modules will arrange to take ownership of the return value. This allows the
value to be automatically garbage−collected when it is no longer in use. However, this depends entirely on the target language (a
language module may also choose to ignore the %newobject directive).

Closely related to %newobject is a special typemap. The "newfree" typemap can be used to deallocate a newly allocated return
value. It is only available on methods for which %newobject has been applied and is commonly used to clean−up string results.
For example:

%typemap(newfree) char * "free($1);";
...
%newobject strdup;
...
char *strdup(const char *s);

In this case, the result of the function is a string in the target language. Since this string is a copy of the original result, the data
returned by strdup() is no longer needed. The "newfree" typemap in the example simply releases this memory.

Compatibility note: Previous versions of SWIG had a special %new directive. However, unlike %newobject, it only applied to
the next declaration. For example:

%new char *strdup(const char *s);

For now this is still supported but is deprecated.

How to shoot yourself in the foot: The %newobject directive is not a declaration modifier like the old %new directive. Don't
write code like this:

%newobject
char *strdup(const char *s);

The results might not be what you expect.
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11.3 Features and the %feature directive

Both %exception and %newobject are examples of a more general purpose customization mechanism known as "features."
A feature is simply a user−definable property that is attached to specific declarations in an interface file. Features are attached
using the %feature directive. For example:

%feature("except") Object::allocate {
    try {
        $action
    } 
    catch (MemoryError) {
        croak("Out of memory");
    }
}

%feature("new","1") *::copy;

In fact, the %exception and %newobject directives are really nothing more than macros involving %feature:

#define %exception %feature("except")
#define %newobject %feature("new","1")

The %feature directive follows the same name matching rules as the %rename directive (which is in fact just a special form of
%feature). This means that features can be applied with pinpoint accuracy to specific declarations if needed.

When a feature is defined, it is given a name and a value. Most commonly, the value is supplied after the declaration name as
shown for the "except" example above. However, if the feature is simple, a value might be supplied as an extra argument as
shown for the "new" feature.

A feature stays in effect until it is explicitly disabled. A feature is disabled by supplying a %feature directive with no value. For
example:

%feature("except") Object::allocate;    // Removes any previously defined feature

If no declaration name is given, a global feature is defined. This feature is then attached to every declaration that follows. This is
how global exception handlers are defined. For example:

/* Define a global exception handler */
%feature("except") {
   try {
     $action
   }
   ...
}

... bunch of declarations ...

/* Disable the exception handler */
%feature("except");

The %feature directive can be used with different syntax. The following are all equivalent:

%feature("except") Object::method { $action };
%feature("except") Object::method %{ $action %};
%feature("except") Object::method " $action ";
%feature("except","$action") Object::method;

The syntax in the first variation will generate the { } delimeters used whereas the other variations will not. The %feature
directive also accepts XML style attributes in the same way that typemaps will. Any number of attributes can be specified. The
following is the generic syntax for features:
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%feature("name","value", attribute1="AttibuteValue1") symbol;
%feature("name", attribute1="AttibuteValue1") symbol {value};
%feature("name", attribute1="AttibuteValue1") symbol %{value%};
%feature("name", attribute1="AttibuteValue1") symbol "value";

More than one attribute can be specified using a comma separated list. The Java module is an example that uses attributes in
%feature("except"). The throws attribute specifies the name of a Java class to add to a proxy method's throws clause. In
the following example, MyExceptionClass is the name of the Java class for adding to the throws clause.

%feature("except", throws="MyExceptionClass") Object::method { 
   try {
     $action
   } catch (...) {
     ... code to throw a MyExceptionClass Java exception ...
   }
};

Further details can be obtained from the Java exception handling section.

11.3.1 Features and default arguments

SWIG treats methods with default arguments as separate overloaded methods as detailed in the default arguments section. Any
%feature targeting a method with default arguments will apply to all the extra overloaded methods that SWIG generates if the
default arguments are specified in the feature. If the default arguments are not specified in the feature, then the feature will match
that exact wrapper method only and not the extra overloaded methods that SWIG generates. For example:

%feature("except") void hello(int i=0, double d=0.0);
void hello(int i=0, double d=0.0);

will apply the feature to all three wrapper methods, that is:

void hello(int i, double d);
void hello(int i);
void hello();

If the default arguments are not specified in the feature:

%feature("except") void hello(int i, double d);
void hello(int i=0, double d=0.0);

then the feature will only apply to this wrapper method:

void hello(int i, double d);

and not these wrapper methods:

void hello(int i);
void hello();

If compactdefaultargs are being used, then the difference between specifying or not specifying default arguments in a feature is
not applicable as just one wrapper is generated.

Compatibility note: The different behaviour of features specified with or without default arguments was introduced in
SWIG−1.3.23 when the approach to wrapping methods with default arguments was changed.

11.3.2 Feature example

As has been shown earlier, the intended use for the %feature directive is as a highly flexible customization mechanism that can
be used to annotate declarations with additional information for use by specific target language modules. Another example is in
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the Python module. You might use %feature to rewrite proxy/shadow class code as follows:

%module example
%rename(bar_id) bar(int,double);

// Rewrite bar() to allow some nice overloading

%feature("shadow") Foo::bar(int) %{
def bar(*args):
    if len(args) == 3:
         return apply(examplec.Foo_bar_id,args)
    return apply(examplec.Foo_bar,args)
%}

class Foo {
public:
    int bar(int x);
    int bar(int x, double y);
}

Further details of %feature usage is described in the documentation for specific language modules.
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12 Contracts
The %contract directive• 
%contract and classes• 
Constant aggregation and %aggregate_check• 
Notes• 

A common problem that arises when wrapping C libraries is that of maintaining reliability and checking for errors. The fact of the
matter is that many C programs are notorious for not providing error checks. Not only that, when you expose the internals of an
application as a library, it often becomes possible to crash it simply by providing bad inputs or using it in a way that wasn't
intended.

This chapter describes SWIG's support for software contracts. In the context of SWIG, a contract can be viewed as a runtime
constraint that is attached to a declaration. For example, you can easily attach argument checking rules, check the output values of
a function and more. When one of the rules is violated by a script, a runtime exception is generated rather than having the program
continue to execute.

12.1 The %contract directive

Contracts are added to a declaration using the %contract directive. Here is a simple example:

%contract sqrt(double x) {
require:
    x >= 0;
ensure:
    sqrt >= 0;
}

...
double sqrt(double);

In this case, a contract is being added to the sqrt() function. The %contract directive must always appear before the
declaration in question. Within the contract there are two sections, both of which are optional. The require: section specifies
conditions that must hold before the function is called. Typically, this is used to check argument values. The ensure: section
specifies conditions that must hold after the function is called. This is often used to check return values or the state of the program.
In both cases, the conditions that must hold must be specified as boolean expressions.

In the above example, we're simply making sure that sqrt() returns a non−negative number (if it didn't, then it would be broken in
some way).

Once a contract has been specified, it modifies the behavior of the resulting module. For example:

>>> example.sqrt(2)
1.4142135623730951
>>> example.sqrt(−2)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
RuntimeError: Contract violation: require: (arg1>=0)
>>>

12.2 %contract and classes

The %contract directive can also be applied to class methods and constructors. For example:

%contract Foo::bar(int x, int y) {
require:
   x > 0;
ensure:
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   bar > 0;
}

%contract Foo::Foo(int a) {
require:
   a > 0;
}

class Foo {
public:
    Foo(int);
    int bar(int, int);
};

The way in which %contract is applied is exactly the same as the %feature directive. Thus, any contract that you specified
for a base class will also be attached to inherited methods. For example:

class Spam : public Foo {
public:
   int bar(int,int);    // Gets contract defined for Foo::bar(int,int)
};

In addition to this, separate contracts can be applied to both the base class and a derived class. For example:

%contract Foo::bar(int x, int) {
require:
    x > 0;
}

%contract Spam::bar(int, int y) {
require:
    y > 0;
}

class Foo {
public:
    int bar(int,int);   // Gets Foo::bar contract.
};

class Spam : public Foo {
public:
     int bar(int,int);   // Gets Foo::bar and Spam::bar contract
};

When more than one contract is applied, the conditions specified in a "require:" section are combined together using a
logical−AND operation. In other words conditions specified for the base class and conditions specified for the derived class all
must hold. In the above example, this means that both the arguments to Spam::bar must be positive.

12.3 Constant aggregation and %aggregate_check

Consider an interface file that contains the following code:

#define  UP     1
#define  DOWN   2
#define  RIGHT  3
#define  LEFT   4

void move(SomeObject *, int direction, int distance);

One thing you might want to do is impose a constraint on the direction parameter to make sure it's one of a few accepted values.
To do that, SWIG provides an easy to use macro %aggregate_check() that works like this:

%aggregate_check(int, check_direction, UP, DOWN, LEFT, RIGHT);
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This merely defines a utility function of the form

int check_direction(int x);

That checks the argument x to see if it is one of the values listed. This utility function can be used in contracts. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);

%contract move(SomeObject *, int direction, in) {
require:
     check_direction(direction);
}

#define  UP     1
#define  DOWN   2
#define  RIGHT  3
#define  LEFT   4

void move(SomeObject *, int direction, int distance);

Alternatively, it can be used in typemaps and other directives. For example:

%aggregate_check(int, check_direction, UP, DOWN, RIGHT, LEFT);

%typemap(check) int direction {
    if (!check_direction($1)) SWIG_exception(SWIG_ValueError, "Bad direction");
}

#define  UP     1
#define  DOWN   2
#define  RIGHT  3
#define  LEFT   4

void move(SomeObject *, int direction, int distance);

Regrettably, there is no automatic way to perform similar checks with enums values. Maybe in a future release.

12.4 Notes

Contract support was implemented by Songyan (Tiger) Feng and first appeared in SWIG−1.3.20.
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13 Variable Length Arguments
Introduction• 
The Problem• 
Default varargs support• 
Argument replacement using %varargs• 
Varargs and typemaps• 
Varargs wrapping with libffi• 
Wrapping of va_list• 
C++ Issues• 
Discussion• 

(a.k.a, "The horror. The horror.")

This chapter describes the problem of wrapping functions that take a variable number of arguments. For instance, generating
wrappers for the C printf() family of functions.

This topic is sufficiently advanced to merit its own chapter. In fact, support for varargs is an often requested feature that was first
added in SWIG−1.3.12. Most other wrapper generation tools have wisely chosen to avoid this issue.

13.1 Introduction

Some C and C++ programs may include functions that accept a variable number of arguments. For example, most programmers
are familiar with functions from the C library such as the following:

int printf(const char *fmt, ...)
int fprintf(FILE *, const char *fmt, ...);
int sprintf(char *s, const char *fmt, ...);

Although there is probably little practical purpose in wrapping these specific C library functions in a scripting language (what
would be the point?), a library may include its own set of special functions based on a similar API. For example:

int  traceprintf(const char *fmt, ...);

In this case, you may want to have some kind of access from the target language.

Before describing the SWIG implementation, it is important to discuss the common uses of varargs that you are likely to
encounter in real programs. Obviously, there are the printf() style output functions as shown. Closely related to this would be
scanf() style input functions that accept a format string and a list of pointers into which return values are placed. However,
variable length arguments are also sometimes used to write functions that accept a NULL−terminated list of pointers. A good
example of this would be a function like this:

int execlp(const char *path, const char *arg1, ...);
...

/* Example */
execlp("ls","ls","−l",NULL);

In addition, varargs is sometimes used to fake default arguments in older C libraries. For instance, the low level open() system
call is often declared as a varargs function so that it will accept two or three arguments:

int open(const char *path, int oflag, ...);
...

/* Examples */
f = open("foo", O_RDONLY);
g = open("bar", O_WRONLY | O_CREAT, 0644);
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Finally, to implement a varargs function, recall that you have to use the C library functions defined in <stdarg.h>. For
example:

List make_list(const char *s, ...) {
    va_list ap;
    List    *x = new List();
    ...
    va_start(ap, s);
    while (s) {
       x.append(s);
       s = va_arg(ap, const char *);
    }
    va_end(ap);
    return x;
}

13.2 The Problem

Generating wrappers for a variable length argument function presents a number of special challenges. Although C provides
support for implementing functions that receive variable length arguments, there are no functions that can go in the other
direction. Specifically, you can't write a function that dynamically creates a list of arguments and which invokes a varargs
function on your behalf.

Although it is possible to write functions that accept the special type va_list, this is something entirely different. You can't
take a va_list structure and pass it in place of the variable length arguments to another varargs function. It just doesn't work.

The reason this doesn't work has to do with the way that function calls get compiled. For example, suppose that your program has
a function call like this:

printf("Hello %s. Your number is %d\n", name, num);

When the compiler looks at this, it knows that you are calling printf() with exactly three arguments. Furthermore, it knows
that the number of arguments as well are their types and sizes is never going to change during program execution. Therefore, this
gets turned to machine code that sets up a three−argument stack frame followed by a call to printf().

In contrast, suppose you attempted to make some kind of wrapper around printf() using code like this:

int wrap_printf(const char *fmt, ...) {
   va_list ap;
   va_start(ap,fmt);
   ...
   printf(fmt,ap);
   ...
   va_end(ap);
};

Athough this code might compile, it won't do what you expect. This is because the call to printf() is compiled as a procedure
call involving only two arguments. However, clearly a two−argument configuration of the call stack is completely wrong if your
intent is to pass an arbitrary number of arguments to the real printf(). Needless to say, it won't work.

Unfortunately, the situation just described is exactly the problem faced by wrapper generation tools. In general, the number of
passed arguments will not be known until run−time. To make matters even worse, you won't know the types and sizes of
arguments until run−time as well. Needless to say, there is no obvious way to make the C compiler generate code for a function
call involving an unknown number of arguments of unknown types.

In theory, it is possible to write a wrapper that does the right thing. However, this involves knowing the underlying ABI for the
target platform and language as well as writing special purpose code that manually constructed the call stack before making a
procedure call. Unfortunately, both of these tasks require the use of inline assembly code. Clearly, that's the kind of solution you
would much rather avoid.
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With this nastiness in mind, SWIG provides a number of solutions to the varargs wrapping problem. Most of these solutions are
compromises that provide limited varargs support without having to resort to assembly language. However, SWIG can also
support real varargs wrapping (with stack−frame manipulation) if you are willing to get hands dirty. Keep reading.

13.3 Default varargs support

When variable length arguments appear in an interface, the default behavior is to drop the variable argument list entirely,
replacing them with a single NULL pointer. For example, if you had this function,

void traceprintf(const char *fmt, ...);

it would be wrapped as if it had been declared as follows:

void traceprintf(const char *fmt);

When the function is called inside the wrappers, it is called as follows:

traceprintf(arg1, NULL);

Arguably, this approach seems to defeat the whole point of variable length arguments. However, this actually provides enough
support for many simple kinds of varargs functions to still be useful. For instance, you could make function calls like this (in
Python):

>>> traceprintf("Hello World")
>>> traceprintf("Hello %s. Your number is %d\n" % (name, num))

Notice how string formatting is being done in Python instead of C.

13.4 Argument replacement using %varargs

Instead of dropping the variable length arguments, an alternative approach is to replace (...) with a set of suitable arguments.
SWIG provides a special %varargs directive that can be used to do this. For example,

%varargs(int mode = 0) open;
...
int open(const char *path, int oflags, ...);

is equivalent to this:

int open(const char *path, int oflags, int mode = 0);

In this case, %varargs is simply providing more specific information about the extra arguments that might be passed to a
function. If the parameters to a varargs function are of uniform type, %varargs can also accept a numerical argument count as
follows:

%varargs(10,char *arg = NULL) execlp;
...
int execlp(const char *path, const char *arg1, ...);

This would wrap execlp() as a function that accepted up to 10 optional arguments. Depending on the application, this may be
more than enough for practical purposes.

Argument replacement is most appropriate in cases where the types of the extra arguments is uniform and the maximum number
of arguments is known. When replicated argument replacement is used, at least one extra argument is added to the end of the
arguments when making the function call. This argument serves as a sentinel to make sure the list is properly terminated. It has
the same value as that supplied to the %varargs directive.
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Argument replacement is not as useful when working with functions that accept mixed argument types such as printf().
Providing general purpose wrappers to such functions presents special problems (covered shortly).

13.5 Varargs and typemaps

Variable length arguments may be used in typemap specifications. For example:

%typemap(in) (...) {
    // Get variable length arguments (somehow)
    ...
}

%typemap(in) (const char *fmt, ...) {
    // Multi−argument typemap
}

However, this immediately raises the question of what "type" is actually used to represent (...). For lack of a better alternative,
the type of (...) is set to void *. Since there is no way to dynamically pass arguments to a varargs function (as previously
described), the void * argument value is intended to serve as a place holder for storing some kind of information about the extra
arguments (if any). In addition, the default behavior of SWIG is to pass the void * value as an argument to the function.
Therefore, you could use the pointer to hold a valid argument value if you wanted.

To illustrate, here is a safer version of wrapping printf() in Python:

%typemap(in) (const char *fmt, ...) {
    $1 = "%s";                                /* Fix format string to %s */
    $2 = (void *) PyString_AsString($input);  /* Get string argument */
};
...
int printf(const char *fmt, ...);

In this example, the format string is implicitly set to "%s". This prevents a program from passing a bogus format string to the
extension. Then, the passed input object is decoded and placed in the void * argument defined for the (...) argument. When
the actual function call is made, the underlying wrapper code will look roughly like this:

wrap_printf() {
   char *arg1;
   void *arg2;
   int   result;

   arg1 = "%s";
   arg2 = (void *) PyString_AsString(arg2obj);
   ...
   result = printf(arg1,arg2);
   ...
}

Notice how both arguments are passed to the function and it does what you would expect.

The next example illustrates a more advanced kind of varargs typemap. Disclaimer: this requires special support in the target
language module and is not guaranteed to work with all SWIG modules at this time. It also starts to illustrate some of the more
fundamental problems with supporting varargs in more generality.

If a typemap is defined for any form of (...), many SWIG modules will generate wrappers that accept a variable number of
arguments as input and will make these arguments available in some form. The precise details of this depends on the language
module being used (consult the appropriate chapter for more details). However, suppose that you wanted to create a Python
wrapper for the execlp() function shown earlier. To do this using a typemap instead of using %varargs, you might first write
a typemap like this:

%typemap(in) (...)(char *args[10]) {
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    int i;
    int argc;
    for (i = 0; i < 10; i++) args[i] = 0;
    argc = PyTuple_Size(varargs);
    if (argc > 10) {
       PyErr_SetString(PyExc_ValueError,"Too many arguments");
       return NULL;
    }
    for (i = 0; i < argc; i++) {
       PyObject *o = PyTuple_GetItem(varargs,i);
       if (!PyString_Check(o)) {
           PyErr_SetString(PyExc_ValueError,"Expected a string");
           return NULL;
       }
       args[i] = PyString_AsString(o);
    }
    $1 = (void *) args;
}

In this typemap, the special variable varargs is a tuple holding all of the extra arguments passed (this is specific to the Python
module). The typemap then pulls this apart and sticks the values into the array of strings args. Then, the array is assigned to $1
(recall that this is the void * variable corresponding to (...)). However, this assignment is only half of the
picture−−−−clearly this alone is not enough to make the function work. To patch everything up, you have to rewrite the
underlying action code using the %feature directive like this:

%feature("action") execlp {
   char *args = (char **) arg3;
   result = execlp(arg1, arg2, args[0], args[1], args[2], args[3], args[4],
                   args[5],args[6],args[7],args[8],args[9], NULL);
}

int execlp(const char *path, const char *arg, ...);

This patches everything up and creates a function that more or less works. However, don't try explaining this to your coworkers
unless you know for certain that they've had several cups of coffee. If you really want to elevate your guru status and increase
your job security, continue to the next section.

13.6 Varargs wrapping with libffi

All of the previous examples have relied on features of SWIG that are portable and which don't rely upon any low−level
machine−level details. In many ways, they have all dodged the real issue of variable length arguments by recasting a varargs
function into some weaker variation with a fixed number of arguments of known types. In many cases, this works perfectly fine.
However, if you want more generality than this, you need to bring out some bigger guns.

One way to do this is to use a special purpose library such as libffi (http://sources.redhat.com/libffi). libffi is a library that allows
you to dynamically construct call−stacks and invoke procedures in a relatively platform independent manner. Details about the
library can be found in the libffi distribution and are not repeated here.

To illustrate the use of libffi, suppose that you really wanted to create a wrapper for execlp() that accepted any number of
arguments. To do this, you might make a few adjustments to the previous example. For example:

/* Take an arbitrary number of extra arguments and place into an array
   of strings */

%typemap(in) (...) {
   char **argv;
   int    argc;
   int    i;

   argc = PyTuple_Size(varargs);
   argv = (char **) malloc(sizeof(char *)*(argc+1));
   for (i = 0; i < argc; i++) {
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      PyObject *o = PyTuple_GetItem(varargs,i);
      if (!PyString_Check(o)) {
          PyErr_SetString(PyExc_ValueError,"Expected a string");
          free(argv);
          return NULL;
      }
      argv[i] = PyString_AsString(o);
   }
   argv[i] = NULL;
   $1 = (void *) argv;
}

/* Rewrite the function call, using libffi */    

%feature("action") execlp {
  int       i, vc;
  ffi_cif   cif;
  ffi_type  **types;
  void      **values;
  char      **args;

  vc = PyTuple_Size(varargs);
  types  = (ffi_type **) malloc((vc+3)*sizeof(ffi_type *));
  values = (void **) malloc((vc+3)*sizeof(void *));
  args   = (char **) arg3;

  /* Set up path parameter */
  types[0] = &ffi_type_pointer;
  values[0] = &arg1;

  /* Set up first argument */
  types[1] = &ffi_type_pointer;
  values[1] = &arg2;

  /* Set up rest of parameters */
  for (i = 0; i <= vc; i++) {
    types[2+i] = &ffi_type_pointer;
    values[2+i] = &args[i];
  }
  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+3,
                   &ffi_type_uint, types) == FFI_OK) {
    ffi_call(&cif, (void (*)()) execlp, &result, values);
  } else {
    PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
    free(types);
    free(values);
    free(arg3);
    return NULL;
  }
  free(types);
  free(values);
  free(arg3);
}

/* Declare the function. Whew! */
int execlp(const char *path, const char *arg1, ...);

Looking at this example, you may start to wonder if SWIG is making life any easier. Given the amount of code involved, you
might also wonder why you didn't just write a hand−crafted wrapper! Either that or you're wondering "why in the hell am I trying
to wrap this varargs function in the first place?!?" Obviously, those are questions you'll have to answer for yourself.

As a more extreme example of libffi, here is some code that attempts to wrap printf(),

/* A wrapper for printf() using libffi */

%{
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/* Structure for holding passed arguments after conversion */
  typedef struct {
    int type;
    union {
      int    ivalue;
      double dvalue;
      void   *pvalue;
    } val;
  } vtype;
  enum { VT_INT, VT_DOUBLE, VT_POINTER };
%}

%typemap(in) (const char *fmt, ...) {
  vtype *argv;
  int    argc;
  int    i;

  /* Format string */
  $1 = PyString_AsString($input);

  /* Variable length arguments */
  argc = PyTuple_Size(varargs);
  argv = (vtype *) malloc(argc*sizeof(vtype));
  for (i = 0; i < argc; i++) {
    PyObject *o = PyTuple_GetItem(varargs,i);
    if (PyInt_Check(o)) {
      argv[i].type = VT_INT;
      argv[i].val.ivalue = PyInt_AsLong(o);
    } else if (PyFloat_Check(o)) {
      argv[i].type = VT_DOUBLE;
      argv[i].val.dvalue = PyFloat_AsDouble(o);
    } else if (PyString_Check(o)) {
      argv[i].type = VT_POINTER;
      argv[i].val.pvalue = (void *) PyString_AsString(o);
    } else {
      PyErr_SetString(PyExc_ValueError,"Unsupported argument type");
      free(argv);
      return NULL;
    }
  }
  $2 = (void *) argv;
}

/* Rewrite the function call using libffi */    
%feature("action") printf {
  int       i, vc;
  ffi_cif   cif;
  ffi_type  **types;
  void      **values;
  vtype     *args;

  vc = PyTuple_Size(varargs);
  types  = (ffi_type **) malloc((vc+1)*sizeof(ffi_type *));
  values = (void **) malloc((vc+1)*sizeof(void *));
  args   = (vtype *) arg2;

  /* Set up fmt parameter */
  types[0] = &ffi_type_pointer;
  values[0] = &arg1;

  /* Set up rest of parameters */
  for (i = 0; i < vc; i++) {
    switch(args[i].type) {
    case VT_INT:
      types[1+i] = &ffi_type_uint;
      values[1+i] = &args[i].val.ivalue;
      break;
    case VT_DOUBLE:

SWIG−1.3 Documentation

13.6 Varargs wrapping with libffi 170



      types[1+i] = &ffi_type_double;
      values[1+i] = &args[i].val.dvalue;
      break;
    case VT_POINTER:
      types[1+i] = &ffi_type_pointer;
      values[1+i] = &args[i].val.pvalue;
      break;
    default:
      abort();    /* Whoa! We're seriously hosed */
      break;   
    }
  }
  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, vc+1,
                   &ffi_type_uint, types) == FFI_OK) {
    ffi_call(&cif, (void (*)()) printf, &result, values);
  } else {
    PyErr_SetString(PyExc_RuntimeError, "Whoa!!!!!");
    free(types);
    free(values);
    free(args);
    return NULL;
  }
  free(types);
  free(values);
  free(args);
}

/* The function */
int printf(const char *fmt, ...);

Much to your amazement, it even seems to work if you try it:

>>> import example
>>> example.printf("Grade: %s   %d/60 = %0.2f%%\n", "Dave", 47, 47.0*100/60)
Grade: Dave   47/60 = 78.33%
>>>

Of course, there are still some limitations to consider:

>>> example.printf("la de da de da %s", 42)
Segmentation fault (core dumped)

And, on this note, we leave further exploration of libffi to the reader as an exercise. Although Python has been used as an
example, most of the techniques in this section can be extrapolated to other language modules with a bit of work. The only details
you need to know is how the extra arguments are accessed in each target language. For example, in the Python module, we used
the special varargs variable to get these arguments. Modules such as Tcl8 and Perl5 simply provide an argument number for
the first extra argument. This can be used to index into an array of passed arguments to get values. Please consult the chapter on
each language module for more details.

13.7 Wrapping of va_list

Closely related to variable length argument wrapping, you may encounter functions that accept a parameter of type va_list.
For example:

int vfprintf(FILE *f, const char *fmt, va_list ap);

As far as we know, there is no obvious way to wrap these functions with SWIG. This is because there is no documented way to
assemble the proper va_list structure (there are no C library functions to do it and the contents of va_list are opaque). Not only
that, the contents of a va_list structure are closely tied to the underlying call−stack. It's not clear that exporting a va_list
would have any use or that it would work at all.
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13.8 C++ Issues

Wrapping of C++ member functions that accept a variable number of arguments presents a number of challenges. By far, the
easiest way to handle this is to use the %varargs directive. This is portable and it fully supports classes much like the %rename
directive. For example:

%varargs (10, char * = NULL) Foo::bar;

class Foo {
public:
     virtual void bar(char *arg, ...);   // gets varargs above
};

class Spam: public Foo {
public:
     virtual void bar(char *arg, ...);   // gets varargs above
};

%varargs also works with constructors, operators, and any other C++ programming construct that accepts variable arguments.

Doing anything more advanced than this is likely to involve a serious world of pain. In order to use a library like libffi, you will
need to know the underlying calling conventions and details of the C++ ABI. For instance, the details of how this is passed to
member functions as well as any hidden arguments that might be used to pass additional information. These details are
implementation specific and may differ between compilers and even different versions of the same compiler. Also, be aware that
invoking a member function is further complicated if it is a virtual method. In this case, invocation might require a table lookup to
obtain the proper function address (although you might be able to obtain an address by casting a bound pointer to a pointer to
function as described in the C++ ARM section 18.3.4).

If you do decide to change the underlying action code, be aware that SWIG always places the this pointer in arg1. Other
arguments are placed in arg2, arg3, and so forth. For example:

%feature("action") Foo::bar {
   ...
   result = arg1−>bar(arg2, arg3, etc.);
   ...
}

Given the potential to shoot yourself in the foot, it is probably easier to reconsider your design or to provide an alternative
interface using a helper function than it is to create a fully general wrapper to a varargs C++ member function.

13.9 Discussion

This chapter has provided a number of techniques that can be used to address the problem of variable length argument wrapping.
If you care about portability and ease of use, the %varargs directive is probably the easiest way to tackle the problem. However,
using typemaps, it is possible to do some very advanced kinds of wrapping.

One point of discussion concerns the structure of the libffi examples in the previous section. Looking at that code, it is not at all
clear that this is the easiest way to solve the problem. However, there are a number of subtle aspects of the solution to
consider−−mostly concerning the way in which the problem has been decomposed. First, the example is structured in a way that
tries to maintain separation between wrapper−specific information and the declaration of the function itself. The idea here is that
you might structure your interface like this:

%typemap(const char *fmt, ...) {
   ...
}
%feature("action") traceprintf {
   ...
}
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/* Include some header file with traceprintf in it */
%include "someheader.h"

Second, careful scrutiny will reveal that the typemaps involving (...) have nothing whatsoever to do with the libffi library. In
fact, they are generic with respect to the way in which the function is actually called. This decoupling means that it will be much
easier to consider other library alternatives for making the function call. For instance, if libffi wasn't supported on a certain
platform, you might be able to use something else instead. You could use conditional compilation to control this:

#ifdef USE_LIBFFI
%feature("action") printf {
   ...
}
#endif
#ifdef USE_OTHERFFI
%feature("action") printf {
...
}
#endif

Finally, even though you might be inclined to just write a hand−written wrapper for varargs functions, the techniques used in the
previous section have the advantage of being compatible with all other features of SWIG such as exception handling.

As a final word, some C programmers seem to have the assumption that the wrapping of variable length argument functions is an
easily solved problem. However, this section has hopefully dispelled some of these myths. All things being equal, you are better
off avoiding variable length arguments if you can. If you can't avoid them, please consider some of the simple solutions first. If
you can't live with a simple solution, proceed with caution. At the very least, make sure you carefully read the section "A7.3.2
Function Calls" in Kernighan and Ritchie and make sure you fully understand the parameter passing conventions used for varargs.
Also, be aware of the platform dependencies and reliability issues that this will introduce. Good luck.
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14 Warning Messages
Introduction• 
Warning message suppression• 
Enabling additional warnings• 
Issuing a warning message• 
Commentary• 
Warnings as errors• 
Message output format• 
Warning number reference

Deprecated features (100−199)♦ 
Preprocessor (200−299)♦ 
C/C++ Parser (300−399)♦ 
Types and typemaps (400−499)♦ 
Code generation (500−599)♦ 
Language module specific (800−899)♦ 
User defined (900−999)♦ 

• 

History• 

14.1 Introduction

During compilation, SWIG may generate a variety of warning messages. For example:

example.i:16: Warning(501): Overloaded declaration ignored.  bar(double)
example.i:15: Warning(501): Previous declaration is bar(int)

Typically, warning messages indicate non−fatal problems with the input where the generated wrapper code will probably compile,
but it may not work like you expect.

14.2 Warning message suppression

All warning messages have a numeric code that is shown in the warning message itself. To suppress the printing of a warning
message, a number of techniques can be used. First, you can run SWIG with the −w command line option. For example:

% swig −python −w501 example.i
% swig −python −w501,505,401 example.i

Alternatively, warnings can be suppressed by inserting a special preprocessor pragma into the input file:

%module example
#pragma SWIG nowarn=501
#pragma SWIG nowarn=501,505,401

Finally, code−generation warnings can be disabled on a declaration by declaration basis using the %warnfilter directive. For
example:

%module example
%warnfilter(501) foo;
...
int foo(int);
int foo(double);              // Silently ignored.

The %warnfilter directive has the same semantics as other declaration modifiers like %rename, %ignore, and %feature.
For example, if you wanted to suppress a warning for a method in a class hierarchy, you could do this:

%warnfilter(501) Object::foo;
class Object {

14 Warning Messages 174



public:
   int foo(int);
   int foo(double);      // Silently ignored
   ...
};

class Derived : public Object {
public:
   int foo(int);
   int foo(double);      // Silently ignored
   ...
};

Warnings can be suppressed for an entire class by supplying a class name. For example:

%warnfilter(501) Object;

class Object {
public:
   ...                      // All 501 warnings ignored in class
};

There is no option to suppress all SWIG warning messages. The warning messages are there for a reason−−−to tell you that
something may be broken in your interface. Ignore the warning messages at your own peril.

14.3 Enabling additional warnings

Some warning messages are disabled by default and are generated only to provide additional diagnostics. All warning messages
can be enabled using the −Wall option. For example:

% swig −Wall −python example.i

When −Wall is used, all other warning filters are disabled.

To selectively turn on extra warning messages, you can use the directives and options in the previous section−−simply add a "+"
to all warning numbers. For example:

% swig −w+309,+452 example.i

or

#pragma SWIG nowarn=+309,+452

or

%warnfilter(+309,+452) foo;

Note: selective enabling of warnings with %warnfilter overrides any global settings you might have made using −w or
#pragma.

14.4 Issuing a warning message

Warning messages can be issued from an interface file using a number of directives. The %warn directive is the most simple:

%warn "750:This is your last warning!"

All warning messages are optionally prefixed by the warning number to use. If you are generating your own warnings, make sure
you don't use numbers defined in the table at the end of this section.
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The %ignorewarn directive is the same as %ignore except that it issues a warning message whenever a matching declaration
is found. For example:

%ignorewarn("362:operator= ignored") operator=;

Warning messages can be associated with typemaps using the warning attribute of a typemap declaration. For example:

%typemap(in, warning="751:You are really going to regret this") blah * {
   ...
}

In this case, the warning message will be printed whenever the typemap is actually used.

14.5 Commentary

The ability to suppress warning messages is really only provided for advanced users and is not recommended in normal use. There
are no plans to provide symbolic names or options that identify specific types or groups of warning messages−−−the numbers
must be used explicitly.

Certain types of SWIG problems are errors. These usually arise due to parsing errors (bad syntax) or semantic problems for which
there is no obvious recovery. There is no mechanism for suppressing error messages.

14.6 Warnings as errors

Warnings can be handled as errors by using the −Werror command line option. This will cause SWIG to exit with a non
successful exit code if a warning is encountered.

14.7 Message output format

The output format for both warnings and errors can be selected for integration with your favourite IDE/editor. Editors and IDEs
can usually parse error messages and if in the appropriate format will easily take you directly to the source of the error. The
standard format is used by default except on Windows where the Microsoft format is used by default. These can be overridden
using command line options, for example:

$ swig −python −Fstandard example.i
example.i:4: Syntax error in input.
$ swig −python −Fmicrosoft example.i
example.i(4): Syntax error in input.

14.8 Warning number reference

14.8.1 Deprecated features (100−199)

101. Deprecated %extern directive.• 
102. Deprecated %val directive.• 
103. Deprecated %out directive.• 
104. Deprecated %disabledoc directive.• 
105. Deprecated %enabledoc directive.• 
106. Deprecated %doconly directive.• 
107. Deprecated %style directive.• 
108. Deprecated %localstyle directive.• 
109. Deprecated %title directive.• 
110. Deprecated %section directive.• 
111. Deprecated %subsection directive.• 
112. Deprecated %subsubsection directive.• 
113. Deprecated %addmethods directive.• 
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114. Deprecated %readonly directive.• 
115. Deprecated %readwrite directive.• 
116. Deprecated %except directive.• 
117. Deprecated %new directive.• 
118. Deprecated %typemap(except).• 
119. Deprecated %typemap(ignore).• 
120. Deprecated command line option (−c).• 
121. Deprecated %name directive.• 

14.8.2 Preprocessor (200−299)

201. Unable to find 'filename'.• 
202. Could not evaluate 'expr'.• 

14.8.3 C/C++ Parser (300−399)

301. class keyword used, but not in C++ mode.• 
302. Identifier 'name' redefined (ignored).• 
303. %extend defined for an undeclared class 'name'.• 
304. Unsupported constant value (ignored).• 
305. Bad constant value (ignored).• 
306. 'identifier' is private in this context.• 
307. Can't set default argument value (ignored)• 
308. Namespace alias 'name' not allowed here. Assuming 'name'• 
309. [private | protected] inheritance ignored.• 
310. Template 'name' was already wrapped as 'name' (ignored)• 
311. Template partial specialization not supported.• 
312. Nested classes not currently supported (ignored).• 
313. Unrecognized extern type "name" (ignored).• 
314. 'identifier' is a lang keyword.• 
315. Nothing known about 'identifier'.• 
316. Repeated %module directive.• 
317. Specialization of non−template 'name'.• 
318. Instantiation of template name is ambiguous. Using templ at file:line• 
319. No access specifier given for base class name (ignored).• 
320. Explicit template instantiation ignored.• 
321. identifier conflicts with a built−in name.• 
322. Redundant redeclaration of 'name'.• 
350. operator new ignored.• 
351. operator delete ignored.• 
352. operator+ ignored.• 
353. operator− ignored.• 
354. operator* ignored.• 
355. operator/ ignored.• 
356. operator% ignored.• 
357. operator^ ignored.• 
358. operator& ignored.• 
359. operator| ignored.• 
360. operator~ ignored.• 
361. operator! ignored.• 
362. operator= ignored.• 
363. operator< ignored.• 
364. operator> ignored.• 
365. operator+= ignored.• 
366. operator−= ignored.• 
367. operator*= ignored.• 
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368. operator/= ignored.• 
369. operator%= ignored.• 
370. operator^= ignored.• 
371. operator&= ignored.• 
372. operator|= ignored.• 
373. operator<< ignored.• 
374. operator>>ignored.• 
375. operator<<= ignored.• 
376. operator>>= ignored.• 
377. operator== ignored.• 
378. operator!= ignored.• 
379. operator<= ignored.• 
380. operator>= ignored.• 
381. operator&& ignored.• 
382. operator|| ignored.• 
383. operator++ ignored.• 
384. operator−− ignored.• 
385. operator, ignored.• 
386. operator−<* ignored.• 
387. operator−< ignored.• 
388. operator() ignored.• 
389. operator[] ignored.• 
390. operator+ ignored (unary).• 
391. operator− ignored (unary).• 
392. operator* ignored (unary).• 
393. operator& ignored (unary).• 
394. operator new[] ignored.• 
395. operator delete[] ignored.• 

14.8.4 Types and typemaps (400−499)

401. Nothing known about class 'name'. Ignored.• 
402. Base class 'name' is incomplete.• 
403. Class 'name' might be abstract.• 
450. Deprecated typemap feature ($source/$target).• 
451. Setting const char * variable may leak memory.• 
452. Reserved• 
453. Can't apply (pattern). No typemaps are defined.• 
460. Unable to use type type as a function argument.• 
461. Unable to use return type type in function name.• 
462. Unable to set variable of type type.• 
463. Unable to read variable of type type.• 
464. Unsupported constant value.• 
465. Unable to handle type type.• 
466. Unsupported variable type type.• 
467. Overloaded declaration not supported (no type checking rule for 'type')• 
468. No 'throw' typemap defined for exception type 'type'.• 

14.8.5 Code generation (500−599)

501. Overloaded declaration ignored. decl• 
502. Overloaded constructor ignored. decl• 
503. Can't wrap 'identifier' unless renamed to a valid identifier.• 
504. Function name must have a return type.• 
505. Variable length arguments discarded.• 
506. Can't wrap varargs with keyword arguments enabled.• 
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507. Adding native function name not supported (ignored).• 
508. Declaration of 'name' shadows declaration accessible via operator−>() at file:line.• 
509. Overloaded declaration is shadowed by declaration at file:line.• 
510. Friend function 'name' ignored.• 
511. Can't use keyword arguments with overloaded functions.• 
512. Overloaded declaration const ignored. Non−const method at file:line used.• 
513. Can't generate wrappers for unnamed struct/class.• 
514.• 
515.• 
516. Overloaded method declaration ignored. Method declaration at file:line used.• 

14.8.6 Language module specific (800−899)

801. Wrong name (corrected to 'name'). (Ruby).• 

810. No jni typemap defined for type (Java).• 
811. No jtype typemap defined for type (Java).• 
812. No jstype typemap defined for type (Java).• 
813. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in Java. (Java).• 
814.• 
815. No javafinalize typemap defined for type (Java).• 
816. No javabody typemap defined for type (Java).• 
817. No javaout typemap defined for type (Java).• 
818. No javain typemap defined for type (Java).• 
819. No javadirectorin typemap defined for type (Java).• 
820. No javadirectorout typemap defined for type (Java).• 
821.• 
822. Covariant return types not supported in Java. Proxy method will return basetype (Java).• 

830. No ctype typemap defined for type (C#).• 
831. No cstype typemap defined for type (C#).• 
832. No cswtype typemap defined for type (C#).• 
833. Warning for classname: Base baseclass ignored. Multiple inheritance is not supported in C#. (C#).• 
834.• 
835. No csfinalize typemap defined for type (C#).• 
836. No csbody typemap defined for type (C#).• 
837. No csout typemap defined for type (C#).• 
838. No csin typemap defined for type (C#).• 
839.• 
840.• 
841.• 
842. Covariant return types not supported in C#. Proxy method will return basetype (C#).• 

14.8.7 User defined (900−999)

These numbers can be used by your own application.

14.9 History

The ability to control warning messages was first added to SWIG−1.3.12.
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15 Working with Modules
The SWIG runtime code• 
A word of caution about static libraries• 
References• 
Reducing the wrapper file size• 

When first working with SWIG, users commonly start by creating a single module. That is, you might define a single SWIG
interface that wraps some set of C/C++ code. You then compile all of the generated wrapper code into a module and use it. For
large applications, however, this approach is problematic−−−the size of the generated wrapper code can be rather large. Moreover,
it is probably easier to manage the target language interface when it is broken up into smaller pieces.

This chapter describes the problem of using SWIG in programs where you want to create a collection of modules.

15.1 The SWIG runtime code

Many of SWIG's target languages generate a set of functions commonly known as the "SWIG runtime." These functions are
primarily related to the runtime type system which checks pointer types and performs other tasks such as proper casting of pointer
values in C++. As a general rule, the statically typed target languages, such as Java, use the language's built in static type checking
and have no need for a SWIG runtime. All the dynamically typed / interpreted languages rely on the SWIG runtime.

The runtime functions are private to each SWIG−generated module. That is, the runtime functions are declared with "static"
linkage and are visible only to the wrapper functions defined in that module. The only problem with this approach is that when
more than one SWIG module is used in the same application, those modules often need to share type information. This is
especially true for C++ programs where SWIG must collect and share information about inheritance relationships that cross
module boundaries.

To solve the problem of sharing information across modules, a pointer to the type information is stored in a global variable in the
target language namespace. During module initialization, type information is loaded into the global data structure of type
information from all modules.

This can present a problem with threads. If two modules try and load at the same time, the type information can become corrupt.
SWIG currently does not provide any locking, and if you use threads, you must make sure that modules are loaded serially. Be
careful if you use threads and the automatic module loading that some scripting languages provide. One solution is to load all
modules before spawning any threads.

15.2 A word of caution about static libraries

When working with multiple SWIG modules, you should take care not to use static libraries. For example, if you have a static
library libfoo.a and you link a collection of SWIG modules with that library, each module will get its own private copy of the
library code inserted into it. This is very often NOT what you want and it can lead to unexpected or bizarre program behavior.
When working with dynamically loadable modules, you should try to work exclusively with shared libaries.

15.3 References

Due to the complexity of working with shared libraries and multiple modules, it might be a good idea to consult an outside
reference. John Levine's "Linkers and Loaders" is highly recommended.

15.4 Reducing the wrapper file size

Using multiple modules with the %import directive is the most common approach to modularising large projects. In this way a
number of different wrapper files can be generated, thereby avoiding the generation of a single large wrapper file. There are a
couple of alternative solutions for reducing the size of a wrapper file through the use of command line options and features.
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−fcompact
This command line option will compact the size of the wrapper file without changing the code generated into the wrapper file. It
simply removes blank lines and joins lines of code together. This is useful for compilers that have a maximum file size that can be
handled.

−fvirtual
This command line option will remove the generation of superfluous virtual method wrappers. Consider the following inheritance
hierarchy:

struct Base {
  virtual void method();
  ...
};

struct Derived : Base {
  virtual void method();
  ...
};

Normally wrappers are generated for both methods, whereas this command line option will suppress the generation of a wrapper
for Derived::method. Normal polymorphic behaviour remains as Derived::method will still be called should you have a
Derived instance and call the wrapper for Base::method.

%feature("compactdefaultargs")
This feature can reduce the number of wrapper methods when wrapping methods with default arguments. The section on default
arguments discusses the feature and it's limitations.
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16 SWIG and C#
The purpose of the C# module is to offer an automated way of accessing existing C/C++ code from .NET languages. The wrapper
code implementation uses the Platform Invoke (PINVOKE) interface to access natively compiled C/C++ code. The PINVOKE
interface has been chosen over Microsoft's Managed C++ interface as it is portable to both Microsoft Windows and
non−Microsoft platforms. PINVOKE is part of the ECMA/ISO C# specification. Swig C# works equally well on non−Microsoft
operating systems such as Linux, Solaris and Apple Mac using Mono and Portable.NET.

The C# module is very similar to the Java module, so until some documentation has been written, please use the Java
documentation as a guide to using SWIG with C#. The rest of this chapter should be read in conjunction with the Java
documentation as it lists the main differences.

Director support (virtual method callbacks into C#) has not yet been implemented and is the main missing feature compared to
Java. Less of the STL is supported and there are also a few minor utility typemaps in the various.i library which are missing.

The most noteable differences to Java are the following:

When invoking SWIG use the −csharp command line option instead of −java.• 
The −package command line option does not exist.• 
The −namespace <name> commandline option will generate all code into the namespace specified by <name>.• 
The −dllimport <name> commandline option specifies the name of the DLL for the DllImport attribute for
every PInvoke method. If this commandline option is not given, the DllImport DLL name is the same as the module
name. This option is useful for when one wants to invoke SWIG multiple times on different modules, yet compile all the
resulting code into a single DLL.

• 

C/C++ variables are wrapped with C# properties and not JavaBean style getters and setters.• 
Global constants are generated into the module class. There is no constants interface.• 
There is no implementation for type unsafe enums − not deemed necessary.• 
The default enum wrapping approach is proper C# enums, not typesafe enums.
Note that %csconst(0) will be ignored when wrapping C/C++ enums with proper C# enums. This is because C# enum
items must be initialised from a compile time constant. If an enum item has an initialiser and the initialiser doesn't
compile as C# code, then the %csconstvalue directive must be used as %csconst(0) will have no effect. If it was used, it
would generate an illegal runtime initialisation via a PINVOKE call.

• 

C# doesn't support the notion of throws clauses. Therefore there is no 'throws' typemap attribute support for adding
exception classes to a throws clause. Likewise there is no need for an equivalent to %javaexception.

• 

Typemap equivalent names:

jni                         −> ctype
jtype                       −> imtype
jstype                      −> cstype
javain                      −> csin
javaout                     −> csout
javainterfaces              −> csinterfaces and csinterfaces_derived
javabase                    −> csbase
javaclassmodifiers          −> csclassmodifiers
javacode                    −> cscode
javaimports                 −> csimports
javabody                    −> csbody
javafinalize                −> csfinalize
javadestruct                −> csdestruct
javadestruct_derived        −> csdestruct_derived

• 

Additional typemaps:

csvarin                     C# code property set typemap
csvarout                    C# code property get typemap

• 

Feature equivalent names:

%javaconst                  −> %csconst
%javaconstvalue             −> %csconstvalue
%javamethodmodifiers        −> %csmethodmodifiers

• 
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Pragma equivalent names:

%pragma(java)               −> %pragma(csharp)
jniclassbase                −> imclassbase
jniclassclassmodifiers      −> imclassclassmodifiers
jniclasscode                −> imclasscode
jniclassimports             −> imclassimports
jniclassinterfaces          −> imclassinterfaces

• 

Special variable equivalent names:

$javaclassname              −> $csclassname
$javainput                  −> $csinput
$jnicall                    −> $imcall

• 

$dllimport
This is a C# only special variable that can be used in typemaps, pragmas, features etc. The special variable will get translated into
the value specified by the −dllimport commandline option if specified, otherwise it is equivalent to the $module special
variable.

The intermediary classname has PINVOKE appended after the module name instead of JNI, for example
modulenamePINVOKE.

The directory Examples/csharp has a number of simple examples. Visual Studio .NET 2003 solution and project files are
available for compiling with the Microsoft .NET C# compiler on Windows. If your SWIG installation went well on a Unix
environment and your C# compiler was detected, you should be able to type make in each example directory, then ilrun
runme (Portable.NET C# compiler) or mono runme (Mono C# compiler) to run the examples. Windows users can also get the
examples working using a Cygwin or MinGW environment for automatic configuration of the example makefiles. Any one of the
three C# compilers (Portable.NET, Mono or Microsoft) can be detected from within a Cygwin or Mingw environment if installed
in your path.
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17 SWIG and Chicken
Preliminaries

Running SWIG in C mode♦ 
Running SWIG in C++ mode♦ 

• 

Code Generation
Naming Conventions♦ 
Modules♦ 
Constants and Variables♦ 
Functions♦ 

• 

TinyCLOS• 
Compilation• 
Linkage

Shared library♦ 
Static binary♦ 

• 

Typemaps• 
Pointers• 
Unsupported features and known problems• 

This chapter describes SWIG's support of CHICKEN. CHICKEN is a Scheme−to−C compiler supporting most of the language
features as defined in the Revised^5 Report on Scheme. Its main attributes are that it

generates portable C code1. 
includes a customizable interpreter2. 
links to C libraries with a simple Foreign Function Interface3. 
supports full tail−recursion and first−class continuations4. 

When confronted with a large C library, CHICKEN users can use SWIG to generate CHICKEN wrappers for the C library.
However, the real advantages of using SWIG with CHICKEN are its support for C++ −− object−oriented code is difficult to wrap
by hand in CHICKEN −− and its typed pointer representation, essential for C and C++ libraries involving structures or classes.

17.1 Preliminaries

CHICKEN support was introduced to SWIG in version 1.3.18. SWIG relies on some recent additions to CHICKEN, which are
only present in releases of CHICKEN with version number greater than or equal to 1.40.
CHICKEN can be downloaded from http://www.call−with−current−continuation.org/ You may want to look at any of the
examples in Examples/chicken/ or Examples/GIFPlot/Chicken for the basic steps to run SWIG CHICKEN. We will generically
refer to the wrapper as the generated files.

17.1.1 Running SWIG in C mode

To run SWIG CHICKEN in C mode, use the −chicken option.

% swig −chicken example.i

To allow the wrapper to take advantage of future CHICKEN code generation improvements, part of the wrapper is direct
CHICKEN function calls (example_wrap.c) and part is CHICKEN Scheme (example.scm). The basic Scheme code must
be compiled to C using your system's CHICKEN compiler.

% chicken example.scm −output−file oexample.c

So for the C mode of SWIG CHICKEN, example_wrap.c and oexample.c are the files that must be compiled to object
files and linked into your project.
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17.1.2 Running SWIG in C++ mode

To run SWIG CHICKEN in C++ mode, use the −chicken −c++ option.

% swig −chicken −c++ example.i

This will generate example_wrap.cxx and example.scm. The basic Scheme code must be compiled to C using your
system's CHICKEN compiler.

% chicken example.scm −output−file oexample.c

So for the C++ mode of SWIG CHICKEN, example_wrap.cxx and oexample.c are the files that must be compiled to
object files and linked into your project.

17.2 Code Generation

17.2.1 Naming Conventions

Given a C variable, function or constant declaration named Foo_Bar, the declaration will be available in CHICKEN as an
identifier ending with Foo−Bar. That is, an underscore is converted to a dash.
You may control what the CHICKEN identifier will be by using the %rename SWIG directive in the SWIG interface file.

17.2.2 Modules

The name of the module must be declared one of two ways:

Placing %module example in the SWIG interface file.• 
Using −module example on the SWIG command line.• 

The generated example.scm file then exports (declare (unit modulename)). If you do not want SWIG to export the
(declare (unit modulename)), pass the −nounit option to SWIG.

CHICKEN will be able to access the module using the (declare (uses modulename)) CHICKEN Scheme form.

17.2.3 Constants and Variables

Constants may be created using any of the four constructs in the interface file:

#define MYCONSTANT1 ...1. 
%constant int MYCONSTANT2 = ...2. 
const int MYCONSTANT3 = ...3. 
enum { MYCONSTANT4 = ... };4. 

In all cases, the constants may be accessed from with CHICKEN using the form (MYCONSTANT1); that is, the constants may be
accessed using the read−only parameter form.

Variables are accessed using the full parameter form. For example, to set the C variable "int my_variable;", use the Scheme form
(my−variable 2345). To get the C variable, use (my−variable).

17.2.4 Functions

C functions declared in the SWIG interface file will have corresponding CHICKEN Scheme procedures. For example, the C
function "int sqrt(double x);" will be available using the Scheme form (sqrt 2345.0). A void return value will give
C_SCHEME_UNDEFINED as a result.
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A function may return more than one value by using the OUTPUT specifier (see Lib/chicken/typemaps.i). They will be returned as
a Scheme list if there is more than one result (that is, a non−void return value and at least one argout parameter, or a void return
value and at least two argout parameters).

17.3 TinyCLOS

The author of TinyCLOS, Gregor Kiczales, describes TinyCLOS as:

Tiny CLOS is a Scheme implementation of a `kernelized' CLOS, with a metaobject protocol. The
implementation is even simpler than the simple CLOS found in `The Art of the Metaobject Protocol,' weighing
in at around 850 lines of code, including (some) comments and documentation.

Almost all good Scheme books describe how to use metaobjects and generic procedures to implement an object−oriented Scheme
system. Please consult a Scheme book if you are unfamiliar with the concept.

CHICKEN has a modified version of TinyCLOS, which SWIG CHICKEN uses if the −proxy argument is given. If −proxy is
passed, then the generated example.scm file will contain TinyCLOS class definitions. A class named Foo is declared as <Foo>,
and each member variable is allocated a slot. Member functions are exported as generic functions.

Primitive symbols and functions (the interface that would be presented if −proxy was not passed) are hidden and no longer
accessable. If the −unhideprimitive command line argument is passed to SWIG, then the primitive symbols will be available, but
each will be prefixed by the string "primitive:"

The exported symbol names can be controlled with the −closprefix and −useclassprefix arguments. If −useclassprefix is passed to
SWIG, every member function will be generated with the class name as a prefix. If the −closprefix mymod: argument is passed to
SWIG, then the exported functions will be prefixed by the string "mymod:". If −useclassprefix is passed, −closprefix is ignored.

17.4 Compilation

Please refer to CHICKEN − A practical and portable Scheme system − User's manual for detailed help on how to compile C code
for use in a CHICKEN program. Briefly, to compile C code, be sure to add `chicken−config −cflags` or
`chicken−config −shared −cflags` to your compiler options. Use the −shared option if you want to create a
dynamically loadable module. You might also want to use the much simpler csc or csc.bat.

17.5 Linkage

Please refer to CHICKEN − A practical and portable Scheme system − User's manual for detailed help on how to link object files
to create a CHICKEN Scheme program. Briefly, to link object files, be sure to add `chicken−config −extra−libs
−libs` or `chicken−config −shared −extra−libs −libs`to your linker options. Use the −shared option if you
want to create a dynamically loadable module.

17.5.1 Shared library

The easiest way to use SWIG and CHICKEN is to use the csc compiler wrapper provided by CHICKEN. Assume you have a
SWIG interface file in example.i and the C functions being wrapped are in example_impl.c.

   $ swig −chicken example.i
   $ csc −svk example.scm example_impl.c example_wrap.c
   $ csi example.so test_script.scm

You must be careful not to name the example_impl.c file example.c because when compiling example.scm, csc compiles that into
example.c!

The test_script.scm should have (load−library 'example "example.so") and (declare (uses example)).
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As well, the path to example.so should be accessable to the loader. You might need to set LD_LIBRARY_PATH.

17.5.2 Static binary

Again, we can easily use csc to build a binary.

   $ swig −chicken example.i
   $ csc −vk example.scm example_impl.c example_wrap.c test_script.scm −o example
   $ ./example

17.6 Typemaps

The Chicken module handles all types via typemaps. This information is read from Lib/chicken/typemaps.i and
Lib/chicken/chicken.swg.

17.7 Pointers

For pointer types, SWIG uses CHICKEN tagged pointers. A tagged pointer is an ordinary CHICKEN pointer with an extra slot for
a void *. With SWIG CHICKEN, this void * is a pointer to a type−info structure. So each pointer used as input or output from the
SWIG−generated CHICKEN wrappers will have type information attached to it. This will let the wrappers correctly determine
which method should be called according to the object type hierarchy exposed in the SWIG interface files.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(void *ptr,
swig_type_info *type, int owner), The function that calls SWIG_NewPointerObj must have a variable declared
C_word *known_space = C_alloc(C_SIZEOF_SWIG_POINTER); It is ok to call SWIG_NewPointerObj more
than once, just make sure known_space has enough space for all the created pointers.

To get the pointer represented by a CHICKEN tagged pointer, the wrapper code calls the function
SWIG_ConvertPtr(C_word s, void **result, swig_type_info *type, int flags), passing a pointer to
a struct representing the expected pointer type.

17.8 Unsupported features and known problems

No exception handling.• 
No director support.• 
No support for c++ standard types like std::vector.• 
No support for automatic garbage collection of wrapped classes and structures. (Planned on adding in SWIG version
1.3.25)

• 

Importing multiple SWIG modules not working with TinyCLOS. (Planned on fixing for 1.3.25)• 
Problems with complicated function overloading. (Planned on fixing for 1.3.25)• 
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18 SWIG and Guile
Meaning of "Module"• 
Using the SCM or GH Guile API• 
Linkage

Simple Linkage♦ 
Passive Linkage♦ 
Native Guile Module Linkage♦ 
Old Auto−Loading Guile Module Linkage♦ 
Hobbit4D Linkage♦ 

• 

Underscore Folding• 
Typemaps• 
Representation of pointers as smobs

GH Smobs♦ 
SCM Smobs♦ 
Garbage Collection♦ 

• 

Exception Handling• 
Procedure documentation• 
Procedures with setters• 
GOOPS Proxy Classes

Naming Issues♦ 
Linking♦ 

• 

This section details guile−specific support in SWIG.

18.1 Meaning of "Module"

There are three different concepts of "module" involved, defined separately for SWIG, Guile, and Libtool. To avoid horrible
confusion, we explicitly prefix the context, e.g., "guile−module".

18.2 Using the SCM or GH Guile API

The guile module can currently export wrapper files that use the guile GH interface or the SCM interface. This is controlled by an
argument passed to swig. The "−gh" argument causes swig to output GH code, and the "−scm" argument causes swig to output
SCM code. Right now the "−scm" argument is the default. The "−scm" wrapper generation assumes a guile version >= 1.6 and has
several advantages over the "−gh" wrapper generation including garbage collection and GOOPS support. The "−gh" wrapper
generation can be used for older versions of guile. The guile GH wrapper code generation is depreciated and the SCM interface is
the default. The SCM and GH interface differ greatly in how they store pointers and have completely different run−time code. See
below for more info.

The GH interface to guile is deprecated. Read more about why in the Guile manual. The idea of the GH interface was to provide a
high level API that other languages and projects could adopt. This was a good idea, but didn't pan out well for general
development. But for the specific, minimal uses that the SWIG typemaps put the GH interface to use is ideal for using a high level
API. So even though the GH interface is depreciated, SWIG will continue to use the GH interface and provide mappings from the
GH interface to whatever API we need. We can maintain this mapping where guile failed because SWIG uses a small subset of all
the GH functions which map easily. All the guile typemaps like typemaps.i and std_vector.i will continue to use the GH functions
to do things like create lists of values, convert strings to integers, etc. Then every language module will define a mapping between
the GH interface and whatever custom API the language uses. This is currently implemented by the guile module to use the SCM
guile API rather than the GH guile API. For example, here are some of the current mapping file for the SCM API

#define gh_append2(a, b) scm_append(scm_listify(a, b, SCM_UNDEFINED)) 
#define gh_apply(a, b) scm_apply(a, b, SCM_EOL) 
#define gh_bool2scm SCM_BOOL 
#define gh_boolean_p SCM_BOOLP 
#define gh_car SCM_CAR 
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#define gh_cdr SCM_CDR 
#define gh_cons scm_cons 
#define gh_double2scm scm_make_real 
...

This file is parsed by SWIG at wrapper generation time, so every reference to a gh_ function is replaced by a scm_ function in the
wrapper file. Thus the gh_ function calls will never be seen in the wrapper; the wrapper will look exactly like it was generated for
the specific API. Currently only the guile language module has created a mapping policy from gh_ to scm_, but there is no reason
other languages (like mzscheme or chicken) couldn't also use this. If that happens, there is A LOT less code duplication in the
standard typemaps.

18.3 Linkage

Guile support is complicated by a lack of user community cohesiveness, which manifests in multiple shared−library usage
conventions. A set of policies implementing a usage convention is called a linkage.

18.3.1 Simple Linkage

The default linkage is the simplest; nothing special is done. In this case the function SWIG_init() is exported. Simple linkage
can be used in several ways:

Embedded Guile, no modules. You want to embed a Guile interpreter into your program; all bindings made by SWIG
shall show up in the root module. Then call SWIG_init() in the inner_main() function. See the "simple" and
"matrix" examples under Examples/guile.

• 

Dynamic module mix−in. You want to create a Guile module using define−module, containing both Scheme code
and bindings made by SWIG; you want to load the SWIG modules as shared libraries into Guile.

(define−module (my module))
(define my−so (dynamic−link "./example.so"))
(dynamic−call "SWIG_init" my−so) ; make SWIG bindings
;; Scheme definitions can go here

Newer Guile versions provide a shorthand for dynamic−link and dynamic−call:

(load−extension "./example.so" "SWIG_init")

You need to explicitly export those bindings made by SWIG that you want to import into other modules:

(export foo bar)

In this example, the procedures foo and bar would be exported. Alternatively, you can export all bindings with the
following module−system hack:

(module−map (lambda (sym var)
              (module−export! (current−module) (list sym)))
            (current−module))

SWIG can also generate this Scheme stub (from define−module up to export) semi−automagically if you pass it
the command−line argument −scmstub. The code will be exported in a file called module.scm in the directory
specified by −outdir or the current directory if −outdir is not specified. Since SWIG doesn't know how to load your
extension module (with dynamic−link or load−extension), you need to supply this information by including a
directive like this in the interface file:

%scheme %{ (load−extension "./example.so" "SWIG_init") %}

(The %scheme directive allows to insert arbitrary Scheme code into the generated file module.scm; it is placed
between the define−module form and the export form.)

• 
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If you want to include several SWIG modules, you would need to rename SWIG_init via a preprocessor define to avoid symbol
clashes. For this case, however, passive linkage is available.

18.3.2 Passive Linkage

Passive linkage is just like simple linkage, but it generates an initialization function whose name is derived from the module and
package name (see below).

You should use passive linkage rather than simple linkage when you are using multiple modules.

18.3.3 Native Guile Module Linkage

SWIG can also generate wrapper code that does all the Guile module declarations on its own if you pass it the −Linkage
module command−line option. This requires Guile 1.5.0 or later.

The module name is set with the −package and −module command−line options. Suppose you want to define a module with
name (my lib foo); then you would have to pass the options −package my/lib −module foo. Note that the last part of
the name can also be set via the SWIG directive %module.

You can use this linkage in several ways:

Embedded Guile with SWIG modules. You want to embed a Guile interpreter into your program; the SWIG bindings
shall be put into different modules. Simply call the function scm_init_my_modules_foo_module in the
inner_main() function.

• 

Dynamic Guile modules. You want to load the SWIG modules as shared libraries into Guile; all bindings are
automatically put in newly created Guile modules.

(define my−so (dynamic−link "./foo.so"))
;; create new module and put bindings there:
(dynamic−call "scm_init_my_modules_foo_module" my−so) 

Newer Guile versions have a shorthand procedure for this:

(load−extension "./foo.so" "scm_init_my_modules_foo_module")

• 

18.3.4 Old Auto−Loading Guile Module Linkage

Guile used to support an autoloading facility for object−code modules. This support has been marked deprecated in version 1.4.1
and is going to disappear sooner or later. SWIG still supports building auto−loading modules if you pass it the −Linkage
ltdlmod command−line option.

Auto−loading worked like this: Suppose a module with name (my lib foo) is required and not loaded yet. Guile will then
search all directories in its search path for a Scheme file my/modules/foo.scm or a shared library
my/modules/libfoo.so (or my/modules/libfoo.la; see the GNU libtool documentation). If a shared library is found that
contains the symbol scm_init_my_modules_foo_module, the library is loaded, and the function at that symbol is called
with no arguments in order to initialize the module.

When invoked with the −Linkage ltdlmod command−line option, SWIG generates an exported module initialization
function with an appropriate name.

18.3.5 Hobbit4D Linkage

The only other linkage supported at this time creates shared object libraries suitable for use by hobbit's (hobbit4d link)
guile module. This is called the "hobbit" linkage, and requires also using the "−package" command line option to set the part of
the module name before the last symbol. For example, both command lines:
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swig −guile −package my/lib foo.i
swig −guile −package my/lib −module foo foo.i

would create module (my lib foo) (assuming in the first case foo.i declares the module to be "foo"). The installed files are
my/lib/libfoo.so.X.Y.Z and friends. This scheme is still very experimental; the (hobbit4d link) conventions are not well
understood.

18.4 Underscore Folding

Underscores are converted to dashes in identifiers. Guile support may grow an option to inhibit this folding in the future, but no
one has complained so far.

You can use the SWIG directives %name and %rename to specify the Guile name of the wrapped functions and variables (see
CHANGES).

18.5 Typemaps

The Guile module handles all types via typemaps. This information is read from Lib/guile/typemaps.i. Some
non−standard typemap substitutions are supported:

$descriptor expands to a type descriptor for use with the SWIG_NewPointerObj() and SWIG_ConvertPtr
functions.

• 

For pointer types, $*descriptor expands to a descriptor for the direct base type (i.e., one pointer is stripped),
whereas $basedescriptor expands to a descriptor for the base type (i.e., all pointers are stripped).

• 

A function returning void (more precisely, a function whose out typemap returns SCM_UNSPECIFIED) is treated as returning
no values. In argout typemaps, one can use the macro GUILE_APPEND_RESULT in order to append a value to the list of
function return values.

Multiple values can be passed up to Scheme in one of three ways:

Multiple values as lists. By default, if more than one value is to be returned, a list of the values is created and returned; to
switch back to this behavior, use

%values_as_list;

• 

Multiple values as vectors. By issuing

%values_as_vector;

vectors instead of lists will be used.

• 

Multiple values for multiple−value continuations. This is the most elegant way. By issuing

%multiple_values;

multiple values are passed to the multiple−value continuation, as created by call−with−values or the convenience
macro receive. The latter is available if you issue (use−modules (srfi srfi−8)). Assuming that your
divide function wants to return two values, a quotient and a remainder, you can write:

(receive (quotient remainder)
    (divide 35 17)

body...)

In body, the first result of divide will be bound to the variable quotient, and the second result to remainder.

• 

See also the "multivalue" example.
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18.6 Representation of pointers as smobs

For pointer types, SWIG uses Guile smobs. SWIG smobs print like this: #<swig struct xyzzy * 0x1234affe> Two of
them are equal? if and only if they have the same type and value.

To construct a Scheme object from a C pointer, the wrapper code calls the function SWIG_NewPointerObj(), passing a
pointer to a struct representing the pointer type. The type index to store in the upper half of the CAR is read from this struct. To
get the pointer represented by a smob, the wrapper code calls the function SWIG_ConvertPtr(), passing a pointer to a struct
representing the expected pointer type. See also The run−time type checker. If the Scheme object passed was not a SWIG smob
representing a compatible pointer, a wrong−type−arg exception is raised.

18.6.1 GH Smobs

In earlier versions of SWIG, C pointers were represented as Scheme strings containing a hexadecimal rendering of the pointer
value and a mangled type name. As Guile allows registering user types, so−called "smobs" (small objects), a much cleaner
representation has been implemented now. The details will be discussed in the following.

A smob is a cons cell where the lower half of the CAR contains the smob type tag, while the upper half of the CAR and the whole
CDR are available. SWIG_Guile_Init() registers a smob type named "swig" with Guile; its type tag is stored in the variable
swig_tag. The upper half of the CAR store an index into a table of all C pointer types seen so far, to which new types seen are
appended. The CDR stores the pointer value.

18.6.2 SCM Smobs

The SCM interface (using the "−scm" argument to swig) uses common.swg. The whole type system, when it is first initialized,
creates two smobs named "swig" and "collected_swig". The swig smob is used for non−garbage collected smobs, while the
collected_swig smob is used as described below. Each smob has the same format, which is a double cell created by
SCM_NEWSMOB2() The first word of data is the pointer to the object and the second word of data is the swig_type_info *
structure describing this type. This is a lot easier than the GH interface above because we can store a pointer to the type info
structure right in the type. With the GH interface, there was not enough room in the smob to store two whole words of data so we
needed to store part of the "swig_type_info address" in the smob tag. If a generated GOOPS module has been loaded, smobs will
be wrapped by the corresponding GOOPS class.

18.6.3 Garbage Collection

Garbage collection is a feature of the new SCM interface, and it is automatically included if you pass the "−scm" flag to swig.
Thus the swig garbage collection support requires guile >1.6. Garbage collection works like this. Every swig_type_info structure
stores in its clientdata field a pointer to the destructor for this type. The destructor is the generated wrapper around the delete
function. So swig still exports a wrapper for the destructor, it just does not call scm_c_define_gsubr() for the wrapped delete
function. So the only way to delete an object is from the garbage collector, since the delete function is not available to scripts.
How swig determines if a type should be garbage collected is exactly like described in Object ownership and %newobject in the
SWIG manual. All typemaps use an $owner var, and the guile module replaces $owner with 0 or 1 depending on feature:new.

18.7 Exception Handling

SWIG code calls scm_error on exception, using the following mapping:

      MAP(SWIG_MemoryError,     "swig−memory−error");
      MAP(SWIG_IOError,         "swig−io−error");
      MAP(SWIG_RuntimeError,    "swig−runtime−error");
      MAP(SWIG_IndexError,      "swig−index−error");
      MAP(SWIG_TypeError,       "swig−type−error");
      MAP(SWIG_DivisionByZero,  "swig−division−by−zero");
      MAP(SWIG_OverflowError,   "swig−overflow−error");
      MAP(SWIG_SyntaxError,     "swig−syntax−error");
      MAP(SWIG_ValueError,      "swig−value−error");
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      MAP(SWIG_SystemError,     "swig−system−error");

The default when not specified here is to use "swig−error". See Lib/exception.i for details.

18.8 Procedure documentation

If invoked with the command−line option −procdoc file, SWIG creates documentation strings for the generated wrapper
functions, describing the procedure signature and return value, and writes them to file. You need Guile 1.4 or later to make use of
the documentation files.

SWIG can generate documentation strings in three formats, which are selected via the command−line option −procdocformat
format:

guile−1.4 (default): Generates a format suitable for Guile 1.4.• 
plain: Generates a format suitable for Guile 1.4.1 and later.• 
texinfo: Generates texinfo source, which must be run through texinfo in order to get a format suitable for Guile 1.4.1
and later.

• 

You need to register the generated documentation file with Guile like this:

(use−modules (ice−9 documentation))
(set! documentation−files 
      (cons "file" documentation−files))

Documentation strings can be configured using the Guile−specific typemap argument doc. See Lib/guile/typemaps.i for
details.

18.9 Procedures with setters

For global variables, SWIG creates a single wrapper procedure (variable :optional value), which is used for both getting
and setting the value. For struct members, SWIG creates two wrapper procedures (struct−member−get pointer) and
(struct−member−set pointer value).

If invoked with the command−line option −emit−setters (recommended), SWIG will additionally create procedures with
setters. For global variables, the procedure−with−setter variable is created, so you can use (variable) to get the value and
(set! (variable) value) to set it. For struct members, the procedure−with−setter struct−member is created, so you can use
(struct−member pointer) to get the value and (set! (struct−member pointer) value) to set it.

If invoked with the command−line option −only−setters, SWIG will only create procedures with setters, i.e., for struct
members, the procedures (struct−member−get pointer) and (struct−member−set pointer value) are not
generated.

18.10 GOOPS Proxy Classes

SWIG can also generate classes and generic functions for use with Guile's Object−Oriented Programming System (GOOPS).
GOOPS is a sophisticated object system in the spirit of the Common Lisp Object System (CLOS).

GOOPS support is only available with the new SCM interface (enabled with the −scm command−line option of SWIG). To
enable GOOPS support, pass the −proxy argument to swig. This will export the GOOPS wrapper definitions into the
module.scm file in the directory specified by −outdir or the current directory. GOOPS support requires either passive or
module linkage.

The generated file will contain definitions of GOOPS classes mimicking the C++ class hierarchy.

Enabling GOOPS support implies −emit−setters.
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If −emit−slot−accessors is also passed as an argument, then the generated file will contain accessor methods for all the
slots in the classes and for global variables. The input class

  class Foo {
    public:
      Foo(int i) : a(i) {}
      int a;
      int getMultBy(int i) { return a * i; }
      Foo getFooMultBy(int i) { return Foo(a * i); }
  }; 
  Foo getFooPlus(int i) { return Foo(a + i); }

will produce (if −emit−slot−accessors is not passed as a parameter)

(define−class <Foo> (<swig>)
  (a #:allocation #:swig−virtual 
     #:slot−ref primitive:Foo−a−get 
     #:slot−set! primitive:Foo−a−set)
  #:metaclass <swig−metaclass>
  #:new−function primitive:new−Foo
)
(define−method (getMultBy (swig_smob <Foo>) i)
  (primitive:Foo−getMultBy  (slot−ref swig_smob 'smob) i))
(define−method (getFooMultBy (swig_smob <Foo>) i)
  (make <Foo> #:init−smob (primitive:Foo−getFooMultBy  (slot−ref swig_smob 'smob) i)))

(define−method (getFooPlus i)
  (make <Foo> #:init−smob (primitive:getFooPlus i)))

(export <Foo> getMultBy getFooMultBy getFooPlus )

and will produce (if −emit−slot−accessors is passed as a parameter)

(define−class <Foo> (<swig>)
  (a #:allocation #:swig−virtual 
     #:slot−ref primitive:Foo−a−get 
     #:slot−set! primitive:Foo−a−set 

#:accessor a)
  #:metaclass <swig−metaclass>
  #:new−function primitive:new−Foo
)
(define−method (getMultBy (swig_smob <Foo>) i)
  (primitive:Foo−getMultBy  (slot−ref swig_smob 'smob) i))
(define−method (getFooMultBy (swig_smob <Foo>) i)
  (make <Foo> #:init−smob (primitive:Foo−getFooMultBy  (slot−ref swig_smob 'smob) i)))

(define−method (getFooPlus i)
  (make <Foo> #:init−smob (primitive:getFooPlus i)))

(export <Foo> a getMultBy getFooMultBy getFooPlus )

which can then be used by this code

;; not using getters and setters
(define foo (make <Foo> #:args '(45)))
(slot−ref foo 'a)
(slot−set! foo 'a 3)
(getMultBy foo 4)
(define foo2 (getFooMultBy foo 7))
(slot−ref foo 'a)
(slot−ref (getFooPlus foo 4) 'a)

;; using getters and setters
(define foo (make <Foo> #:args '(45)))
(a foo)
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(set! (a foo) 5)
(getMultBy foo 4)
(a (getFooMultBy foo 7))

Notice that constructor arguments are passed as a list after the #:args keyword. Hopefully in the future the following will be
valid (make <Foo> #:a 5 #:b 4)

Also note that the order the declarations occur in the .i file make a difference. For example,

%module test

%{ #include "foo.h" %}

%inline %{
  int someFunc(Foo &a) {
    ...
  }
%}

%include "foo.h"

This is a valid SWIG file it will work as you think it will for primitive support, but the generated GOOPS file will be broken.
Since the someFunc definition is parsed by SWIG before all the declarations in foo.h, the generated GOOPS file will contain the
definition of someFunc() before the definition of <Foo>. The generated GOOPS file would look like

;;...

(define−method (someFunc (swig_smob <Foo>))
  (primitive:someFunc (slot−ref swig_smob 'smob)))

;;...

(define−class <Foo> (<swig>)
  ;;...
)

;;...

Notice that <Foo> is used before it is defined. The fix is to just put the %import "foo.h" before the %inline block.

18.10.1 Naming Issues

As you can see in the example above, there are potential naming conflicts. The default exported accessor for the Foo::a variable
is named a. The name of the wrapper global function is getFooPlus. If the −useclassprefix option is passed to swig, the
name of all accessors and member functions will be prepended with the class name. So the accessor will be called Foo−a and the
member functions will be called Foo−getMultBy. Also, if the −goopsprefix goops: argument is passed to swig, every
identifier will be prefixed by goops:

Two guile−modules are created by SWIG. The first module contains the primitive definitions of all the wrapped functions and
variables, and is located either in the _wrap.cxx file (with −Linkage module) or in the scmstub file (if −Linkage
passive −scmstub). The name of this guile−module is the swig−module name (given on the command line with the −module
argument or with the %module directive) concatenated with the string "−primitive". For example, if %module Test is set in the
swig interface file, the name of the guile−module in the scmstub or −Linkage module will be Test−primitive. Also, the
scmstub file will be named Test−primitive.scm. The string "primitive" can be changed by the −primsuffix swig
argument. So the same interface, with the −primsuffix base will produce a module called Test−base. The second
generated guile−module contains all the GOOPS class definitions and is located in a file named module.scm in the directory
specified with −outdir or the current directory. The name of this guile−module is the name of the swig−module (given on the
command line or with the %module directive). In the previous example, the GOOPS definitions will be in a file named Test.scm.

Because of the naming conflicts, you can't in general use both the −primitive and the GOOPS guile−modules at the same
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time. To do this, you need to rename the exported symbols from one or both guile−modules. For example,

(use−modules ((Test−primitive) #:renamer (symbol−prefix−proc 'primitive:)))
(use−modules ((Test) #:renamer (symbol−prefix−proc 'goops:)))

TODO: Renaming class name prefixes?

18.10.2 Linking

The guile−modules generated above all need to be linked together. GOOPS support requires either passive or module linkage. The
exported GOOPS guile−module will be the name of the swig−module and should be located in a file called Module.scm. This
should be installed on the autoload path for guile, so that (use−modules (Package Module)) will load everything
needed. Thus, the top of the GOOPS guile−module will contain code to load everything needed by the interface (the shared
library, the scmstub module, etc.). The %goops directive inserts arbitrary code into the generated GOOPS guile−module, and
should be used to load the dependent libraries.

This breaks up into three cases

Passive Linkage without −scmstub: Note that this linkage style has the potential for naming conflicts, since the
primitive exported function and variable names are not wrapped in a guile−module and might conflict with names from
the GOOPS guile−module (see above). Pass the −goopsprefix argument to solve this problem. If the
−exportprimitive option is passed to SWIG the (export ...) code that would be exported into the scmstub
file is exported at the bottom of the generated GOOPS guile−module. The %goops directive should contain code to load
the .so library.

%goops %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile−module (with the −package my/modules
−module foo command line arguments)

(define−module (my modules foo))

;; %goops directive goes here
(load−extension "./foo.so" "scm_init_my_modules_foo_module") 

(use−modules (oop goops) (Swig common))

• 

Passive Linkage with −scmstub: Here, the name of the scmstub file should be Module−primitive.scm (with
primitive replaced with whatever is given with the −primsuffix argument. The code to load the .so library should be
located in the %scheme directive, which will then be added to the scmstub file. Swig will automatically generate the line
(use−modules (Package Module−primitive)) into the GOOPS guile−module. So if Module−primitive.scm
is on the autoload path for guile, the %goops directive can be empty. Otherwise, the %goops directive should contain
whatever code is needed to load the Module−primitive.scm file into guile.

%scheme %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}
// only include the following definition if (my modules foo) cannot
// be loaded automatically
%goops %{ 
  (primitive−load "/path/to/foo−primitive.scm") 
  (primitive−load "/path/to/Swig/common.scm")
%}

Produces the following code at the top of the generated GOOPS guile−module

(define−module (my modules foo))

;; %goops directive goes here (if any)
(primitive−load "/path/to/foo−primitive.scm")
(primitive−load "/path/to/Swig/common.scm")

(use−modules (oop goops) (Swig common))

• 
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(use−modules ((my modules foo−primitive) :renamer (symbol−prefix−proc
                                                       'primitive:)))

Module Linkage: This is very similar to passive linkage with a scmstub file. Swig will also automatically generate the
line (use−modules (Package Module−primitive)) into the GOOPS guile−module. Again the %goops
directive should contain whatever code is needed to get that module loaded into guile.

%goops %{ (load−extension "./foo.so" "scm_init_my_modules_foo_module") %}

Produces the following code at the top of the generated GOOPS guile−module

(define−module (my modules foo))

;; %goops directive goes here (if any)
(load−extension "./foo.so" "scm_init_my_modules_foo_module") 

(use−modules (oop goops) (Swig common))
(use−modules ((my modules foo−primitive) :renamer (symbol−prefix−proc
                                                         'primitive:)))

• 

(Swig common): The generated GOOPS guile−module also imports definitions from the (Swig common) guile−module. This
module is included with SWIG and should be installed by SWIG into the autoload path for guile (based on the configure script
and whatever arguments are passed). If it is not, then the %goops directive also needs to contain code to load the common.scm
file into guile. Also note that if you are trying to install the generated wrappers on a computer without SWIG installed, you will
need to include the common.swg file along with the install.

Multiple Modules: Type dependencies between modules is supported. For example, if mod1 includes definitions of some classes,
and mod2 includes some classes derived from classes in mod1, the generated GOOPS file for mod2 will declare the correct
superclasses. The only problem is that since mod2 uses symbols from mod1, the mod2 GOOPS file must include a
(use−modules (mod2)). Currently, SWIG does not automatically export this line; it must be included in the %goops
directive of mod2. Maybe in the future SWIG can detect dependencies and export this line. (how do other language modules
handle this problem?)
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This chapter describes SWIG's support of Java. It covers most SWIG features, but certain low−level details are covered in less
depth than in earlier chapters.

19.1 Overview

The 100% Pure Java effort is a commendable concept, however in the real world programmers often either need to re−use their
existing code or in some situations want to take advantage of Java but are forced into using some native (C/C++) code. The Java
extension to SWIG makes it very easy to plumb in existing C/C++ code for access from Java, as SWIG writes the Java Native
Interface (JNI) code for you. It is different to using the 'javah' tool as SWIG will wrap existing C/C++ code, whereas javah takes
'native' Java function declarations and creates C/C++ function prototypes. SWIG wraps C/C++ code using Java proxy classes and
is very useful if you want to have access to large amounts of C/C++ code from Java. If only one or two JNI functions are needed
then using SWIG may be overkill. SWIG enables a Java program to easily call into C/C++ code from Java. Historically, SWIG
was not able to generate any code to call into Java code from C++. However, SWIG now supports full cross language
polymorphism and code is generated to call up from C++ to Java when wrapping C++ virtual methods.

Java is one of the few non−scripting language modules in SWIG. As SWIG utilizes the type safety that the Java language offers, it
takes a somewhat different approach to that used for scripting languages. In particular runtime type checking and the runtime
library are not used by Java. This should be borne in mind when reading the rest of the SWIG documentation. This chapter on
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Java is relatively self contained and will provide you with nearly everything you need for using SWIG and Java. However, the
"SWIG Basics" chapter will be a useful read in conjunction with this one.

This chapter starts with a few practicalities on running SWIG and compiling the generated code. If you are looking for the
minimum amount to read, have a look at the sections up to and including the tour of basic C/C++ wrapping section which explains
how to call the various C/C++ code constructs from Java. Following this section are details of the C/C++ code and Java classes
that SWIG generates. Due to the complexities of C and C++ there are different ways in which C/C++ code could be wrapped and
called from Java. SWIG is a powerful tool and the rest of the chapter details how the default code wrapping can be tailored.
Various customisation tips and techniques using SWIG directives are covered. The latter sections cover the advanced techniques
of using typemaps for complete control of the wrapping process.

19.2 Preliminaries

SWIG 1.1 works with JDKs from JDK 1.1 to JDK1.4 (Java 2 SDK1.4) and should also work with any later versions. Given the
choice, you should probably use the latest version of Sun's JDK. The SWIG Java module is known to work using Sun's JVM on
Solaris, Linux and the various flavours of Microsoft Windows including Cygwin. The Kaffe JVM is known to give a few
problems and at the time of writing was not a fully fledged JVM with full JNI support. The generated code is also known to work
on vxWorks using WindRiver's PJava 3.1. The best way to determine whether your combination of operating system and JDK
will work is to test the examples and test−suite that comes with SWIG. Run make −k check from the SWIG root directory
after installing SWIG on Unix systems.

The Java module requires your system to support shared libraries and dynamic loading. This is the commonly used method to load
JNI code so your system will more than likely support this.

19.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{
#include "header.h"
%}
int fact(int n);

To build a Java module, run SWIG using the −java option :

%swig −java example.i

If building C++, add the −c++ option:

$ swig −c++ −java example.i

This creates two different files; a C/C++ source file example_wrap.c or example_wrap.cxx and numerous Java files. The
generated C/C++ source file contains the JNI wrapper code that needs to be compiled and linked with the rest of your C/C++
application.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option. It is also possible to change the output
directory that the Java files are generated into using −outdir.

19.2.2 Additional Commandline Options

The following table list the additional commandline options available for the Java module. They can also be seen by using:

swig −java −help 
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Java specific options

−package <name> set name of the Java package to <name>

−noproxy generate the low−level functional interface instead of proxy classes

Their use will become clearer by the time you have finished reading this section on SWIG and Java.

19.2.3 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the jni.h and jni_md.h header files which are part of the JDK.
They are usually in directories like this:

/usr/java/include
/usr/java/include/<operating_system>

The exact location may vary on your machine, but the above locations are typical.

19.2.4 Compiling a dynamic module

The JNI code exists in a dynamic module or shared library (DLL on Windows) and gets loaded by the JVM. To build a shared
library file, you need to compile your module in a manner similar to the following (shown for Solaris):

$ swig −java example.i
$ gcc −c example_wrap.c  −I/usr/java/include −I/usr/java/include/solaris
$ ld −G example_wrap.o  −o libexample.so

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is
installed. Therefore, you may want to start with one of the examples in the Examples/java directory. If that doesn't work, you
will need to read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki
for additional information.

The name of the shared library output file is important. If the name of your SWIG module is "example", the name of the
corresponding shared library file should be "libexample.so" (or equivalent depending on your machine, see Dynamic linking
problems for more information). The name of the module is specified using the %module directive or −module command line
option.

19.2.5 Using your module

To load your shared native library module in Java, simply use Java's System.loadLibrary method in a Java class:

// main.java

public class main {
  static {
    System.loadLibrary("example");
  }

  public static void main(String argv[]) {
    System.out.println(example.fact(4));
  }
}

Compile all the Java files and run:

$ javac *.java
$ java main
24
$
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If it doesn't work have a look at the following section which discusses problems loading the shared library.

19.2.6 Dynamic linking problems

As shown in the previous section the code to load a native library (shared library) is System.loadLibrary("name"). This
can fail with an UnsatisfiedLinkError exception and can be due to a number of reasons.

You may get an exception similar to this:

$ java main
Exception in thread "main" java.lang.UnsatisfiedLinkError: no example in java.library.path
        at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)
        at java.lang.Runtime.loadLibrary0(Runtime.java:749)
        at java.lang.System.loadLibrary(System.java:820)
        at main.<clinit>(main.java:5)

The most common cause for this is an incorrect naming of the native library for the name passed to the loadLibrary function.
The string passed to the loadLibrary function must not include the file extension name in the string, that is .dll or .so. The
string must be name and not libname for all platforms. On Windows the native library must then be called name.dll and on most
Unix systems it must be called libname.so. If you are debugging using java −debug, then the native library must be called
name_g.dll on Windows and libname_g.so on Unix.

Another common reason for the native library not loading is because it is not in your path. On Windows make sure the path
environment variable contains the path to the native library. On Unix make sure that your LD_LIBRARY_PATH contains the path
to the native library. Adding paths to LD_LIBRARY_PATH can slow down other programs on your system so you may want to
consider alternative approaches. For example you could recompile your native library with extra path information using −rpath
if you're using GNU, see the GNU linker documentation (ld man page). You could use a command such as ldconfig (Linux)
or crle (Solaris) to add additional search paths to the default system configuration (this requires root access and you will need to
read the man pages).

The native library will also not load if there are any unresolved symbols in the compiled C/C++ code. The following exception is
indicative of this:

$ java main
Exception in thread "main" java.lang.UnsatisfiedLinkError: libexample.so: undefined
symbol: fact
        at java.lang.ClassLoader$NativeLibrary.load(Native Method)
        at java.lang.ClassLoader.loadLibrary0(ClassLoader.java, Compiled Code)
        at java.lang.ClassLoader.loadLibrary(ClassLoader.java, Compiled Code)
        at java.lang.Runtime.loadLibrary0(Runtime.java, Compiled Code)
        at java.lang.System.loadLibrary(System.java, Compiled Code)
        at main.<clinit>(main.java:5)
$

This error usually indicates that you forgot to include some object files or libraries in the linking of the native library file. Make
sure you compile both the SWIG wrapper file and the code you are wrapping into the native library file. Also make sure you pass
all of the required libraries to the linker. The java −verbose:jni commandline switch is also a great way to get more
information on unresolved symbols. One last piece of advice is to beware of the common faux pas of having more than one native
library version in your path.

In summary, ensure that you are using the correct C/C++ compiler and linker combination and options for successful native
library loading. If you are using the examples that ship with SWIG, then the Examples/Makefile must have these set up correctly
for your system. The SWIG installation package makes a best attempt at getting these correct but does not get it right 100% of the
time. The SWIG Wiki also has some settings for commonly used compiler and operating system combinations. The following
section also contains some C++ specific linking problems and solutions.

SWIG−1.3 Documentation

19.2.6 Dynamic linking problems 202

http://swig.cs.uchicago.edu/cgi-bin/wiki.pl


19.2.7 Compilation problems and compiling with C++

On most machines, shared library files should be linked using the C++ compiler. For example:

% swig −c++ −java example.i
% g++ −c −fpic example.cxx
% g++ −c −fpic example_wrap.cxx −I/usr/java/j2sdk1.4.1/include −I/usr/java/
j2sdk1.4.1/include/linux
% g++ −shared example.o example_wrap.o −o libexample.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −java example.i
% CC −c example.cxx
% CC −c example_wrap.cxx −I/usr/java/include −I/usr/java/include/solaris
% CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o libexample.so −lCrun

If you aren't entirely sure about the linking for C++, you might look at an existing C++ program. On many Unix machines, the
ldd command will list library dependencies. This should give you some clues about what you might have to include when you
link your shared library. For example:

$ ldd swig
        libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
        libm.so.6 => /lib/libm.so.6 (0x4005b000)
        libc.so.6 => /lib/libc.so.6 (0x40077000)
        /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

Finally make sure the version of JDK header files matches the version of Java that you are running as incompatibilities could lead
to compilation problems or unpredictable behaviour.

19.2.8 Building on Windows

Building on Windows is roughly similar to the process used with Unix. You will want to produce a DLL that can be loaded by the
Java Virtual Machine. This section covers the process of using SWIG with Microsoft Visual C++ 6 although the procedure may
be similar with other compilers. In order for everything to work, you will need to have a JDK installed on your machine in order
to read the JNI header files.

19.2.8.1 Running SWIG from Visual Studio

If you are developing your application within Microsoft Visual studio, SWIG can be invoked as a custom build option. The
Examples\java directory has a few Windows Examples containing Visual Studio project (.dsp) files. The process to re−create the
project files for a C project are roughly:

Open up a new workspace and use the AppWizard to select a DLL project.• 
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Don't worry if the wrapper file doesn't exist yet−−Visual Studio will keep a
reference to it.

• 

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.• 
Enter "SWIG" in the description field.• 
Enter "swig −java −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field"

• 

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".• 
Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category . Add the include
directories to the JNI header files under "Additional include directories", eg "C:\jdk1.3\include,C:\jdk1.3\include\win32".

• 

Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the
output file to match the name of your Java module (ie. example.dll).

• 
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Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab in
the project settings. Disabling precompiled headers for these files will overcome any precompiled header errors while
building.

• 

Finally, add the java compilation as a post build rule in the Post−build step tab in project settings, eg, "c:\jdk1.3\bin\javac
*.java"

• 

Build your project.• 

Note: If using C++, choose a C++ suffix for the wrapper file, for example example_wrap.cxx. Use _wrap.cxx instead of
_wrap.c in the instructions above and add −c++ when invoking swig.

Now, assuming all went well, SWIG will be automatically invoked when you build your project. When doing a build, any changes
made to the interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file.

The Java classes that SWIG output should also be compiled into .class files. To run the native code in the DLL (example.dll),
make sure that it is in your path then run your Java program which uses it, as described in the previous section. If the library fails
to load have a look at Dynamic linking problems.

19.2.8.2 Using NMAKE

Alternatively, a Makefile for use by NMAKE can be written. Make sure the environment variables for MSVC++ are available and
the MSVC++ tools are in your path. Now, just write a short Makefile like this :

# Makefile for using SWIG and Java for C code

SRCS          = example.c
IFILE         = example
INTERFACE     = $(IFILE).i
WRAPFILE      = $(IFILE)_wrap.c

# Location of the Visual C++ tools (32 bit assumed)

TOOLS         = c:\msdev
TARGET        = example.dll
CC            = $(TOOLS)\bin\cl.exe
LINK          = $(TOOLS)\bin\link.exe
INCLUDE32     = −I$(TOOLS)\include
MACHINE       = IX86

# C Library needed to build a DLL

DLLIBC        = msvcrt.lib oldnames.lib  

# Windows libraries that are apparently needed
WINLIB        = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib winspool.lib

# Libraries common to all DLLs
LIBS          = $(DLLIBC) $(WINLIB) 

# Linker options
LOPT      = −debug:full −debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO \
             /MACHINE:$(MACHINE) −entry:_DllMainCRTStartup@12 −dll

# C compiler flags

CFLAGS        = /Z7 /Od /c /nologo
JAVA_INCLUDE    = −ID:\jdk1.3\include −ID:\jdk1.3\include\win32

java::
        swig −java −o $(WRAPFILE) $(INTERFACE)
        $(CC) $(CFLAGS) $(JAVA_INCLUDE) $(SRCS) $(WRAPFILE)
        set LIB=$(TOOLS)\lib
        $(LINK) $(LOPT) −out:example.dll $(LIBS) example.obj example_wrap.obj
        javac *.java
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To build the DLL and compile the java code, run NMAKE (you may need to run vcvars32 first). This is a pretty simplistic
Makefile, but hopefully its enough to get you started. Of course you may want to make changes for it to work for C++ by adding
in the −c++ command line switch for swig and replacing .c with .cxx.

19.3 A tour of basic C/C++ wrapping

By default, SWIG attempts to build a natural Java interface to your C/C++ code. Functions are wrapped as functions, classes are
wrapped as classes, variables are wrapped with JavaBean type getters and setters and so forth. This section briefly covers the
essential aspects of this wrapping.

19.3.1 Modules, packages and generated Java classes

The SWIG %module directive specifies the name of the Java module. When you specify `%module example', the module
name determines the name of some of the generated files in the module. The generated code consists of a module class file
example.java, an intermediary JNI class file, exampleJNI.java as well as numerous other Java proxy class files. Each
proxy class is named after the structs, unions and classes you are wrapping. You may also get a constants interface file if you are
wrapping any unnamed enumerations or constants, for example exampleConstants.java. When choosing a module name,
make sure you don't use the same name as one of the generated proxy class files nor a Java keyword. Sometimes a C/C++ type
cannot be wrapped by a proxy class, for example a pointer to a primitive type. In these situations a type wrapper class is
generated. Wrapping an enum generates an enum class, either a proper Java enum or a Java class that simulates the enums pattern.
Details of all these generated classes will unfold as you read this section.

The JNI (C/C++) code is generated into a file which also contains the module name, for example example_wrap.cxx or
example_wrap.c. These C or C++ files complete the contents of the module.

The generated Java classes can be placed into a Java package by using the −package commandline option. This is often
combined with the −outdir to specify a package directory for generating the Java files.

swig −java −package com.bloggs.swig −outdir com/bloggs/swig example.i

SWIG won't create the directory, so make sure it exists beforehand.

19.3.2 Functions

There is no such thing as a global Java function so global C functions are wrapped as static methods in the module class. For
example,

%module example
int fact(int n);

creates a static function that works exactly like you think it might:

public class example {
  public static int fact(int n) {
    // makes call using JNI to the C function
  }
}

The Java class example is the module class. The function can be used as follows from Java:

System.out.println(example.fact(4));

19.3.3 Global variables

C/C++ global variables are fully supported by SWIG. Java does not allow the overriding of the dot operator so all variables are
accessed through getters and setters. Again because there is no such thing as a Java global variable, access to C/C++ global

SWIG−1.3 Documentation

19.3 A tour of basic C/C++ wrapping 205



variables is done through static getter and setter functions in the module class.

// SWIG interface file with global variables
%module example
...
extern int My_variable;
extern double density;
...

Now in Java :

// Print out value of a C global variable
System.out.println("My_variable = " + example.getMy_variable());
// Set the value of a C global variable
example.setDensity(0.8442);

The value returned by the getter will always be up to date even if the value is changed in C. Note that the getters and setters
produced follow the JavaBean property design pattern. That is the first letter of the variable name is capitalized and preceded with
set or get. If you have the misfortune of wrapping two variables that differ only in the capitalization of their first letters, use
%rename to change one of the variable names. For example:

%rename Clash RenamedClash;
float Clash;
int clash;

If a variable is declared as const, it is wrapped as a read−only variable. That is only a getter is produced.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%immutable path;
...
extern char *path;      // Read−only (due to %immutable)

19.3.4 Constants

C/C++ constants are wrapped as Java static final variables. To create a constant, use #define or the %constant directive. For
example:

#define PI 3.14159
#define VERSION "1.0"
%constant int FOO = 42;
%constant const char *path = "/usr/local";

By default the generated static final variables are initialized by making a JNI call to get their value. The constants are generated
into the constants interface and look like this:

public interface exampleConstants {
  public final static double PI = exampleJNI.get_PI();
  public final static String VERSION = exampleJNI.get_VERSION();
  public final static int FOO = exampleJNI.get_FOO();
  public final static String path = exampleJNI.get_path();
}
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Note that SWIG has inferred the C type and used an appropriate Java type that will fit the range of all possible values for the C
type. By default SWIG generates runtime constants. They are not compiler constants that can, for example, be used in a switch
statement. This can be changed by using the %javaconst(flag) directive. It works like all the other %feature directives. The
default is %javaconst(0). It is possible to initialize all wrapped constants from pure Java code by placing a
%javaconst(1) before SWIG parses the constants. Putting it at the top of your interface file would ensure this. Here is an
example:

%javaconst(1);
%javaconst(0) BIG;
%javaconst(0) LARGE;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

generates:

public interface exampleConstants {
  public final static int EXPRESSION = (0x100+5);
  public final static long BIG = exampleJNI.get_BIG();
  public final static java.math.BigInteger LARGE = exampleJNI.get_LARGE();
}

Note that SWIG has inferred the C long long type from BIG and used an appropriate Java type (long) as a Java long is the
smallest sized Java type that will take all possible values for a C long long. Similarly for LARGE.

Be careful using the %javaconst(1) directive as not all C code will compile as Java code. For example neither the 1000LL
value for BIG nor 2000ULL for LARGE above would generate valid Java code. The example demonstrates how you can target
particular constants (BIG and LARGE) with %javaconst. SWIG doesn't use %javaconst(1) as the default as it tries to
generate code that will always compile. However, using a %javaconst(1) at the top of your interface file is strongly
recommended as the preferred compile time constants will be generated and most C constants will compile as Java code and in
anycase the odd constant that doesn't can be fixed using %javaconst(0).

There is an alternative directive which can be used for these rare constant values that won't compile as Java code. This is the
%javaconstvalue(value) directive, where value is a Java code replacement for the C constant and can be either a string
or a number. This is useful if you do not want to use either the parsed C value nor a JNI call, such as when the C parsed value will
not compile as Java code and a compile time constant is required. The same example demonstrates this:

%javaconst(1);
%javaconstvalue("new java.math.BigInteger(\"2000\")") LARGE;
%javaconstvalue(1000) BIG;

#define EXPRESSION (0x100+5)
#define BIG 1000LL
#define LARGE 2000ULL

Note the string quotes for "2000" are escaped. The following is then generated:

public interface exampleConstants {
  public final static int EXPRESSION = (0x100+5);
  public final static long BIG = 1000;
  public final static java.math.BigInteger LARGE = new java.math.BigInteger("2000");
}

Note: declarations declared as const are wrapped as read−only variables and will be accessed using a getter as described in the
previous section. They are not wrapped as constants.

Compatibility Note: In SWIG−1.3.19 and earlier releases, the constants were generated into the module class and the constants
interface didn't exist. Backwards compatibility is maintained as the module class implements the constants interface (even though
some consider this type of interface implementation to be bad practice):

SWIG−1.3 Documentation

19.3.4 Constants 207



public class example implements exampleConstants {
}

You thus have the choice of accessing these constants from either the module class or the constants interface, for example,
example.EXPRESSION or exampleConstants.EXPRESSION. Or if you decide this practice isn't so bad and your own
class implements exampleConstants, you can of course just use EXPRESSION.

19.3.5 Enumerations

SWIG handles both named and unnamed (anonymous) enumerations. There is a choice of approaches to wrapping named C/C++
enums. This is due to historical reasons as SWIG's initial support for enums was limited and Java did not originally have support
for enums. Each approach has advantages and disadvantages and it is important for the user to decide which is the most
appropriate solution. There are four approaches of which the first is the default approach based on the so called Java typesafe
enum pattern. The second generates proper Java enums. The final two approaches use simple integers for each enum item. Before
looking at the various approaches for wrapping named C/C++ enums, anonymous enums are considered.

19.3.5.1 Anonymous enums

There is no name for anonymous enums and so they are handled like constants. For example:

enum { ALE, LAGER=10, STOUT, PILSNER };

is wrapped into the constants interface, in a similar manner as constants (see previous section):

public interface exampleConstants {
  public final static int ALE = exampleJNI.get_ALE();
  public final static int LAGER = exampleJNI.get_LAGER();
  public final static int STOUT = exampleJNI.get_STOUT();
  public final static int PILSNER = exampleJNI.get_PILSNER();
}

The %javaconst(flag) and %javaconst(value) directive introduced in the previous section on constants can also be
used with enums. As is the case for constants, the default is %javaconst(0) as not all C values will compile as Java code.
However, it is strongly recommended to add in a %javaconst(1) directive at the top of your interface file as it is only on very
rare occasions that this will produce code that won't compile under Java. Using %javaconst(1) will ensure compile time
constants are generated, thereby allowing the enum values to be used in Java switch statements. Example usage:

%javaconst(1);
%javaconst(0) PILSNER;
enum { ALE, LAGER=10, STOUT, PILSNER };

generates:

public interface exampleConstants {
  public final static int ALE = 0;
  public final static int LAGER = 10;
  public final static int STOUT = LAGER+1;
  public final static int PILSNER = exampleJNI.get_PILSNER();
}

As in the case of constants, you can access them through either the module class or the constants interface, for example,
example.ALE or exampleConstants.ALE.

19.3.5.2 Typesafe enums

This is the default approach to wrapping named enums. The typesafe enum pattern is a relatively well known construct to work
around the lack of enums in versions of Java prior to Java 2 SDK 1.5. It basically defines a class for the enumeration and permits a
limited number of final static instances of the class. Each instance equates to an enum item within the enumeration. The
implementation is in the "enumtypesafe.swg" file. Let's look at an example:
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%include "enumtypesafe.swg" // optional as typesafe enums are the default
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

public final class Beverage {
  public final static Beverage ALE = new Beverage("ALE");
  public final static Beverage LAGER = new Beverage("LAGER", exampleJNI.get_LAGER());
  public final static Beverage STOUT = new Beverage("STOUT");
  public final static Beverage PILSNER = new Beverage("PILSNER");
  [... additional support methods omitted for brevity ...]
}

See Typesafe enum classes to see the omitted support methods. Note that the enum item with an initializer (LAGER) is initialized
with the enum value obtained via a JNI call. However, as with anonymous enums and constants, use of the %javaconst
directive is strongly recommended to change this behaviour:

%include "enumtypesafe.swg" // optional as typesafe enums are the default
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

will generate:

public final class Beverage {
  public final static Beverage ALE = new Beverage("ALE");
  public final static Beverage LAGER = new Beverage("LAGER", 10);
  public final static Beverage STOUT = new Beverage("STOUT");
  public final static Beverage PILSNER = new Beverage("PILSNER");
  [... additional support methods omitted for brevity ...]
}

The generated code is easier to read and more efficient as a true constant is used instead of a JNI call. As is the case for constants,
the default is %javaconst(0) as not all C values will compile as Java code. However, it is recommended to add in a
%javaconst(1) directive at the top of your interface file as it is only on very rare occasions that this will produce code that
won't compile under Java. The %javaconstvalue(value) directive can also be used for typesafe enums. Note that global
enums are generated into a Java class within whatever package you are using. C++ enums defined within a C++ class are
generated into a static final inner Java class within the Java proxy class.

Typesafe enums have their advantages over using plain integers in that they they can be used in a typesafe manner. However,
there are limitations. For example, they cannot be used in switch statements and serialization is an issue. Please look at the
following references for further information: Replace Enums with Classes in Effective Java Programming on the Sun website,
Create enumerated constants in Java JavaWorld article, Java Tip 133: More on typesafe enums and Java Tip 122: Beware of Java
typesafe enumerations JavaWorld tips.

Note that the syntax required for using typesafe enums is the same as that for proper Java enums. This is useful during the period
that a project has to support legacy versions of Java. When upgrading to J2SDK 1.5 or later, proper Java enums could be used
instead, without users having to change their code. The following section details proper Java enum generation.

19.3.5.3 Proper Java enums

Proper Java enums were only introduced in Java 2 SDK 1.5 so this approach is only compatible with more recent versions of Java.
Java enums have been designed to overcome all the limitations of both typesafe and type unsafe enums and should be the choice
solution, provided older versions of Java do not have to be supported. In this approach, each named C/C++ enum is wrapped by a
Java enum. Java enums, by default, do not support enums with initializers. Java enums are in many respects similar to Java classes
in that they can be customised with additional methods. SWIG takes advantage of this feature to facilitate wrapping C/C++ enums
that have initializers. In order to wrap all possible C/C++ enums using proper Java enums, the "enums.swg" file must be used.
Let's take a look at an example.

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };
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will generate:

public enum Beverage {
  ALE,
  LAGER(10),
  STOUT,
  PILSNER;
  [... additional support methods omitted for brevity ...]
}

See Proper Java enum classes to see the omitted support methods. The generated Java enum has numerous additional methods to
support enums with initializers, such as LAGER above. Note that as with the typesafe enum pattern, enum items with initializers
are by default initialized with the enum value obtained via a JNI call. However, this is not the case above as we have used the
recommended %javaconst(1) to avoid the JNI call. The %javaconstvalue(value) directive covered in the Constants
section can also be used for proper Java enums. The additional support methods need not be generated if none of the enum items
have initializers and this is covered later in the Simpler Java enums for enums without initializers section.

19.3.5.4 Type unsafe enums

In this approach each enum item in a named enumeration is wrapped as a static final integer in a class named after the C/C++
enum name. This is a commonly used pattern in Java to simulate C/C++ enums, but it is not typesafe. However, the main
advantage over the typesafe enum pattern is enum items can be used in switch statements. In order to use this approach, the
"enumtypeunsafe.swg" file must be used. Let's take a look at an example.

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

will generate:

public final class Beverage {
  public final static int ALE = 0;
  public final static int LAGER = 10;
  public final static int STOUT = LAGER + 1;
  public final static int PILSNER = STOUT + 1;
}

As is the case previously, the default is %javaconst(0) as not all C/C++ values will compile as Java code. However, again it
is recommended to add in a %javaconst(1) directive. and the %javaconstvalue(value) directive covered in the
Constants section can also be used for type unsafe enums. Note that global enums are generated into a Java class within whatever
package you are using. C++ enums defined within a C++ class are generated into a static final inner Java class within the Java
proxy class.

Note that unlike typesafe enums, this approach requires users to mostly use different syntax compared with proper Java enums.
Thus the upgrade path to proper enums provided in J2SDK 1.5 is more painful.

19.3.5.5 Simple enums

This approach is similar to the type unsafe approach. Each enum item is also wrapped as a static final integer. However, these
integers are not generated into a class named after the C/C++ enum. Instead, global enums are generated into the constants
interface. Also, enums defined in a C++ class have their enum items generated directly into the Java proxy class rather than an
inner class within the Java proxy class. In fact, this approach is effectively wrapping the enums as if they were anonymous enums
and the resulting code is as per anonymous enums. The implementation is in the "enumsimple.swg" file.

Compatibility Note: SWIG−1.3.21 and earlier versions wrapped all enums using this approach. The type unsafe approach is
preferable to this one and this simple approach is only included for backwards compatibility with these earlier versions of SWIG.
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19.3.6 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Java. For example:

SWIGTYPE_p_FILE f = example.fopen("junk","w");
example.fputs("Hello World\n", f);
example.fclose(f);

C pointers in the Java module are stored in a Java long and cross the JNI boundary held within this 64 bit number. Many other
SWIG language modules use an encoding of the pointer in a string. These scripting languages use the SWIG runtime type checker
for dynamic type checking as they do not support static type checking by a compiler. In order to implement static type checking of
pointers within Java, they are wrapped by a simple Java class. In the example above the FILE * pointer is wrapped with a type
wrapper class called SWIGTYPE_p_FILE.

Once obtained, a type wrapper object can be freely passed around to different C functions that expect to receive an object of that
type. The only thing you can't do is dereference the pointer from Java. Of course, that isn't much of a concern in this example.

As much as you might be inclined to modify a pointer value directly from Java, don't. The value is not necessarily the same as the
logical memory address of the underlying object. The value will vary depending on the native byte−ordering of the platform (i.e.,
big−endian vs. little−endian). Most JVMs are 32 bit applications so any JNI code must also be compiled as 32 bit. The net result is
pointers in JNI code are also 32 bits and are stored in the high order 4 bytes on big−endian machines and in the low order 4 bytes
on little−endian machines. By design it is also not possible to manually cast a pointer to a new type by using Java casts as it is
particularly dangerous especially when casting C++ objects. If you need to cast a pointer or change its value, consider writing
some helper functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
   return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
   return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
    return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return a NULL pointer if the conversion can't be performed.

19.3.7 Structures

If you wrap a C structure, it is wrapped by a Java class with getters and setters for access to the member variables. For example,

struct Vector {
        double x,y,z;
};
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is used as follows:

Vector v = new Vector();
v.setX(3.5);
v.setY(7.2);
double x = v.getX();
double y = v.getY();

The variable setters and getters are also based on the JavaBean design pattern already covered under the Global variables section.
Similar access is provided for unions and the public data members of C++ classes.

This object is actually an instance of a Java class that has been wrapped around a pointer to the C structure. This instance doesn't
actually do anything−−it just serves as a proxy. The pointer to the C object is held in the Java proxy class in much the same way
as pointers are held by type wrapper classes. Further details about Java proxy classes are covered a little later.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
   ...
   %immutable;
   int x;        /* Read−only members */
   char *name;
   %mutable;
   ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
    int  x[16];
};

If accessed in Java, you will see behavior like this:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

Bar b = new Bar();
SWIGTYPE_p_int x = b.getX();
Bar c = new Bar();
c.setX(x);                    // Copy contents of b.x to c.x

For array assignment (setters not getters), SWIG copies the entire contents of the array starting with the data pointed to by b.x. In
this example, 16 integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad
pointer, you may get a segmentation fault or access violation. Array access can be changed from this default to use Java arrays
and this is covered later.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:
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struct Foo {
   int a;
};

struct Bar {
   Foo f;
};

Now, suppose that you access the f member of Bar like this:

Bar b = new Bar();
Foo x = b.getF();

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f;       /* Points inside b */

Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For
example:

Bar b = new Bar();
b.getF().setA(3);   // Modify b.f.a
Foo x = b.getF();                   
x.setA(3);          // Modify x.a − this is the same as b.f.a

19.3.8 C++ classes

C++ classes are wrapped by Java classes as well. For example, if you have this class,

class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
};

you can use it in Java like this:

List l = new List();
l.insert("Ale");
l.insert("Stout");
l.insert("Lager");
String item = l.get(2);
int length = l.getLength();

Class data members are accessed in the same manner as C structures.

Static class members are unsurprisingly wrapped as static members of the Java class:

class Spam {
public:
   static void foo();
   static int bar;
};

The static members work like any other Java static member:
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Spam.foo();
int bar = Spam.getBar();

19.3.9 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

those classes are wrapped into a hierarchy of Java classes that reflect the same inheritance structure:

Bar b = new Bar();
Class c = b.getClass();
System.out.println(c.getSuperclass().getName());

will of course display:

Foo

Furthermore, if you have functions like this

void spam(Foo *f);

then the Java function spam() accepts instances of Foo or instances of any other proxy classes derived from Foo.

Note that Java does not support multiple inheritance so any multiple inheritance in the C++ code is not going to work. A warning
is given when multiple inheritance is detected and only the first base class is used.

19.3.10 Pointers, references, arrays and pass by value

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x);      // Pass by pointer
void spam2(Foo &x);      // Pass by reference
void spam3(Foo x);       // Pass by value
void spam4(Foo x[]);     // Array of objects

In Java, there is no detailed distinction like this−−specifically, there are only instances of classes. There are no pointers nor
references. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually had the
above functions, it is perfectly legal to do this from Java:

Foo f = new Foo();  // Create a Foo
example.spam1(f);   // Ok. Pointer
example.spam2(f);   // Ok. Reference
example.spam3(f);   // Ok. Value.
example.spam4(f);   // Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo  spam7();
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then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Java will release this memory when the returned object's finalizer is
run by the garbage collector).

19.3.10.1 Null pointers

Working with null pointers is easy. A Java null can be used whenever a method expects a proxy class or typewrapper class.
However, it is not possible to pass null to C/C++ functions that take parameters by value or by reference. If you try you will get a
NullPointerException.

example.spam1(null);   // Pointer − ok
example.spam2(null);   // Reference − NullPointerException
example.spam3(null);   // Value − NullPointerException
example.spam4(null);   // Array − ok

For spam1 and spam4 above the Java null gets translated into a NULL pointer for passing to the C/C++ function. The
converse also occurs, that is, NULL pointers are translated into null Java objects when returned from a C/C++ function.

19.3.11 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

%module example

void foo(int);
void foo(char *c);

You can use them in Java in a straightforward manner:

example.foo(3);           // foo(int)
example.foo("Hello");     // foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
    Foo();
    Foo(const Foo &);
    ...
};

you can write Java code like this:

Foo f = new Foo();        // Create a Foo
Foo g = new Foo(f);       // Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG cannot disambiguate as there can
be more than one C++ type mapping onto a single Java type. For example:

void spam(int);
void spam(unsigned short);

Here both int and unsigned short map onto a Java int. Here is another example:

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:
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example.i:12: Warning(515): Overloaded method spam(unsigned short) ignored.
Method spam(int) at example.i:11 used.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);    
void spam(short);   // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);    
void spam(short);   // Ignored

19.3.12 C++ default arguments

Any function with a default argument is wrapped by generating an additional function for each argument that is defaulted. For
example, if we have the following C++:

%module example

void defaults(double d=10.0, int i=0);

The following methods are generated in the Java module class:

public class example {
  public static void defaults(double d, int i) { ... }
  public static void defaults(double d) { ... }
  public static void defaults() { ... }
}

It is as if SWIG had parsed three separate overloaded methods. The same approach is taken for static methods, constructors and
member methods.

Compatibility note: Versions of SWIG prior to SWIG−1.3.23 wrapped these with a single wrapper method and so the default
values could not be taken advantage of from Java. Further details on default arguments and how to restore this approach are given
in the more general Default arguments section.

19.3.13 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
   int fact(int n);
   struct Vector {
       double x,y,z;
   };
};

it works in Java as follows:

int f = example.fact(3);
Vector v = new Vector();
v.setX(3.4);
double y = v.getY();
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If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
    int spam();
}

namespace Bar {
    int spam();
}

If you have more than one namespace and you want to keep their symbols separate, consider wrapping them as separate SWIG
modules. Each SWIG module can be placed into a separate package.

19.3.14 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
   typedef T1 first_type;
   typedef T2 second_type;
   T1 first;
   T2 second;
   pair();
   pair(const T1&, const T2&);
  ~pair();
};

%template(pairii) pair<int,int>;

In Java:

pairii p = new pairii(3,4);
int first = p.getFirst();
int second = p.getSecond();

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter.

19.3.15 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
   ...
   T *operator−>();
   ...
}

Then, if you have a class like this,

class Foo {
public:
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     int x;
     int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo();   // Created somehow (not shown)
...
p−>x = 3;                        // Foo::x
int y = p−>bar();                // Foo::bar

To wrap this in Java, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Java, everything should just "work":

SmartPtrFoo p = example.CreateFoo(); // Create a smart−pointer somehow
p.setX(3);                           // Foo::x
int y = p.bar();                     // Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

Foo f = p.__deref__();               // Returns underlying Foo *

19.4 Further details on the generated Java classes

In the previous section, a high−level view of Java wrapping was presented. A key component of this wrapping is that structures
and classes are wrapped by Java proxy classes and type wrapper classes are used in situations where no proxies are generated.
This provides a very natural, type safe Java interface to the C/C++ code and fits in with the Java programing paradigm. However,
a number of low−level details were omitted. This section provides a brief overview of how the proxy classes work and then covers
the type wrapper classes. Finally enum classes are covered. First, the crucial intermediary JNI class is considered.

19.4.1 The intermediary JNI class

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a global function and class like this

class Foo {
public:
     int x;
     int spam(int num, Foo* foo);
};
void egg(Foo* chips);

then SWIG transforms the class into a set of low−level procedural wrappers. These procedural wrappers essentially perform the
equivalent of this C++ code:

Foo *new_Foo() {
    return new Foo();
}
void delete_Foo(Foo *f) {
    delete f;
}
int Foo_x_get(Foo *f) {
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    return f−>x;
}
void Foo_x_set(Foo *f, int value) {
    f−>x = value;
}
int Foo_spam(Foo *f, int num, Foo* foo) {
    return f−>spam(num, foo);
}

These procedural function names don't actually exist, but their functionality appears inside the generated JNI functions. The JNI
functions have to follow a particular naming convention so the function names are actually:

JNIEXPORT jlong JNICALL Java_exampleJNI_new_1Foo(JNIEnv *jenv, jclass jcls);
JNIEXPORT void JNICALL Java_exampleJNI_delete_1Foo(JNIEnv *jenv, jclass jcls,
                                                   jlong jarg1);
JNIEXPORT void JNICALL Java_exampleJNI_set_1Foo_1x(JNIEnv *jenv, jclass jcls,
                                                   jlong jarg1, jint jarg2);
JNIEXPORT jint JNICALL Java_exampleJNI_get_1Foo_1x(JNIEnv *jenv, jclass jcls,
                                                   jlong jarg1);
JNIEXPORT jint JNICALL Java_exampleJNI_Foo_1spam(JNIEnv *jenv, jclass jcls,
                                                 jlong jarg1, jint jarg2, jlong jarg3);
JNIEXPORT void JNICALL Java_exampleJNI_egg(JNIEnv *jenv, jclass jcls, jlong jarg1);

For every JNI C function there has to be a static native Java function. These appear in the intermediary JNI class:

class exampleJNI {
  public final static native long new_Foo();
  public final static native void delete_Foo(long jarg1);
  public final static native void set_Foo_x(long jarg1, int jarg2);
  public final static native int get_Foo_x(long jarg1);
  public final static native int Foo_spam(long jarg1, int jarg2, long jarg3);
  public final static native void egg(long jarg1);
}

This class contains the complete Java − C/C++ interface so all function calls go via this class. As this class acts as a go−between
for all JNI calls to C/C++ code from the Java proxy classes, type wrapper classes and module class, it is known as the
intermediary JNI class.

You may notice that SWIG uses a Java long wherever a pointer or class object needs traversing the Java−C/C++ boundary. This
approach leads to minimal JNI code which makes for better performance as JNI code involves a lot of string manipulation. SWIG
uses Java code wherever possible as it is compiled into byte code which requires fewer string operations.

The functions in the intermediary JNI class cannot be accessed outside of its package. Access to them is gained through the
module class for globals otherwise the appropriate proxy class.

The name of the intermediary JNI class can be changed from its default, that is, the module name with JNI appended after it. The
module directive attribute jniclassname is used to achieve this:

%module (jniclassname="name") modulename

If name is the same as modulename then the module class name gets changed from modulename to modulenameModule.

19.4.1.1 The intermediary JNI class pragmas

The intermediary JNI class can be tailored through the use of pragmas, but is not commonly done. The pragmas for this class are:

Pragma Description

jniclassbase Base class for the intermediary JNI class

jniclassclassmodifiersClass modifiers and class type for the intermediary JNI class

jniclasscode Java code is copied verbatim into the intermediary JNI class
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jniclassimports Java code, usually one or more import statements, placed before the intermediary JNI class definition

jniclassinterfaces Comma separated interface classes for the intermediary JNI class

The pragma code appears in the generated intermediary JNI class where you would expect:

[ jniclassimports pragma ]
[ jniclassmodifiers pragma ] jniclassname extends [ jniclassbase pragma ]
                                          implements [ jniclassinterfaces pragma ] {
[ jniclasscode pragma ]
... SWIG generated native methods ...
}

The jniclasscode pragma is quite useful for adding in a static block for loading the shared library / dynamic link library and
demonstrates how pragmas work:

%pragma(java) jniclasscode=%{
  static {
    try {
        System.loadLibrary("example");
    } catch (UnsatisfiedLinkError e) {
      System.err.println("Native code library failed to load. \n" + e);
      System.exit(1);
    }
  }
%}

Pragmas will take either "" or %{ %} as delimeters. For example, let's change the intermediary JNI class access to public.

%pragma(java) jniclassclassmodifiers="public class"

All the methods in the intermediary JNI class will then be callable outside of the package as the method modifiers are public by
default.

19.4.2 The Java module class

All global functions and variable getters/setters appear in the module class. For our example, there is just one function:

public class example {
  public static void egg(Foo chips) {
    exampleJNI.egg(Foo.getCPtr(chips));
  }
}

The module class is necessary as there is no such thing as a global in Java so all the C globals are put into this class. They are
generated as static functions and so must be accessed as such by using the module name in the static function call:

example.egg(new Foo());

The primary reason for having the module class wrapping the calls in the intermediary JNI class is to implement static type
checking. In this case only a Foo can be passed to the egg function, whereas any long can be passed to the egg function in the
intermediary JNI class.

19.4.2.1 The Java module class pragmas

The module class can be tailored through the use of pragmas, in the same manner as the intermediary JNI class. The pragmas are
similarly named and are used in the same way. The complete list follows:

Pragma Description

modulebase Base class for the module class
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moduleclassmodifiers Class modifiers and class type for the module class

modulecode Java code is copied verbatim into the module class

moduleimports
Java code, usually one or more import statements, placed before the module class
definition

moduleinterfaces Comma separated interface classes for the module class

The pragma code appears in the generated module class like this:

[ moduleimports pragma ]
[ modulemodifiers pragma ] modulename extends [ modulebase pragma ]
                                      implements [ moduleinterfaces pragma ] {
[ modulecode pragma ]
... SWIG generated wrapper functions ...
}

See The intermediary JNI class pragmas section for further details on using pragmas.

19.4.3 Java proxy classes

A Java proxy class is generated for each structure, union or C++ class that is wrapped. The default proxy class for our previous
example looks like this:

public class Foo {
  private long swigCPtr;
  protected boolean swigCMemOwn;

  protected Foo(long cPtr, boolean cMemoryOwn) {
    swigCMemOwn = cMemoryOwn;
    swigCPtr = cPtr;
  }

  protected static long getCPtr(Foo obj) {
    return obj.swigCPtr;
  }

  protected void finalize() {
    delete();
  }

  public void delete() {
    if(swigCPtr != 0 && swigCMemOwn) {
      exampleJNI.delete_Foo(swigCPtr);
      swigCMemOwn = false;
    }
    swigCPtr = 0;
  }

  public void setX(int x) {
    exampleJNI.set_Foo_x(swigCPtr, x);
  }

  public int getX() {
    return exampleJNI.get_Foo_x(swigCPtr);
  }

  public int spam(int num, Foo foo) {
    return exampleJNI.Foo_spam(swigCPtr, num, Foo.getCPtr(foo));
  }

  public Foo() {
    this(exampleJNI.new_Foo(), true);
  }
}
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This class merely holds a pointer to the underlying C++ object (swigCPtr). It also contains all the methods in the C++ class it is
proxying plus getters and setters for public member variables. These functions call the native methods in the intermediary JNI
class. The advantage of having this extra layer is the type safety that the proxy class functions offer. It adds static type checking
which leads to fewer surprises at runtime. For example, you can see that if you attempt to use the spam() function it will only
compile when the parameters passed are an int and a Foo. From a user's point of view, it makes the class work as if it were a
Java class:

Foo f = new Foo();
f.setX(3);
int y = f.spam(5, new Foo());

19.4.3.1 Memory management

Each proxy class has an ownership flag swigCMemOwn. The value of this flag determines who is responsible for deleting the
underlying C++ object. If set to true, the proxy class's finalizer will destroy the C++ object when the proxy class is garbage
collected. If set to false, then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Java automatically takes ownership of the result. On the other
hand, when pointers or references are returned to Java, there is often no way to know where they came from. Therefore, the
ownership is set to false. For example:

class Foo {
public:
    Foo();
    Foo bar1();
    Foo &bar2();
    Foo *bar2();
};

In Java:

Foo f = new Foo();   //  f.swigCMemOwn = true
Foo f1 = f.bar1();   // f1.swigCMemOwn = true
Foo f2 = f.bar2();   // f2.swigCMemOwn = false
Foo f3 = f.bar3();   // f3.swigCMemOwn = false

This behavior for pointers and references is especially important for classes that act as containers. For example, if a method
returns a pointer to an object that is contained inside another object, you definitely don't want Java to assume ownership and
destroy it!

For the most part, memory management issues remain hidden. However, there are situations where you might have to manually
change the ownership of an object. For instance, consider code like this:

class Obj {};
class Node {
   Obj *value;
public:
   void set_value(Obj *v) { value = v; }
};

Now, consider the following Java code:

Node n = new Node();    // Create a node
{
  Obj o = new Obj();    // Create an object
  n.set_value(o);       // Set value
}                       // o goes out of scope

In this case, the Node n is holding a reference to o internally. However, SWIG has no way to know that this has occurred. The
Java proxy class still thinks that it has ownership of o. As o has gone out of scope, it could be garbage collected in which case the
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C++ destructor will be invoked and n will then be holding a stale−pointer to o. If you're lucky, you will only get a segmentation
fault.

To work around this, the ownership flag of o needs changing to false. The ownership flag is a private member variable of the
proxy class so this is not possible without some customization of the proxy class. This is achieved using a typemap to add pure
Java code to the proxy class and is detailed later in the section on typemaps.

Sometimes a function will create memory and return a pointer to a newly allocated object. SWIG has no way of knowing this so
by default the proxy class does not manage the returned object. However, you can tell the proxy class to manage the memory if
you specify the %newobject directive. Consider:

class Obj {...};
class Factory {
public:
    static Obj *createObj() { return new Obj(); }
};

If we call the factory function, then we have to manually delete the memory:

Obj obj = Factory.createObj();   // obj.swigCMemOwn = false
...
obj.delete();

Now add in the %newobject directive:

%newobject Factory::createObj();

class Obj {...};
class Factory {
public:
    static Obj *createObj() { return new Obj(); }
};

A call to delete() is no longer necessary as the garbage collector will make the C++ destructor call because swigCMemOwn is
now true.

Obj obj = Factory.createObj();   // obj.swigCMemOwn = true;
...

19.4.3.2 Inheritance

Java proxy classes will mirror C++ inheritance chains. For example, given the base class Base and its derived class Derived:

class Base {
public:
  virtual double foo();
};

class Derived : public Base {
public:
  virtual double foo();
};

The base class is generated much like any other proxy class seen so far:

public class Base {
  private long swigCPtr;
  protected boolean swigCMemOwn;

  protected Base(long cPtr, boolean cMemoryOwn) {
    swigCMemOwn = cMemoryOwn;
    swigCPtr = cPtr;
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  }

  protected static long getCPtr(Base obj) {
    return obj.swigCPtr;
  }

  protected void finalize() {
    delete();
  }

  public void delete() {
    if(swigCPtr != 0 && swigCMemOwn) {
      exampleJNI.delete_Base(swigCPtr);
      swigCMemOwn = false;
    }
    swigCPtr = 0;
  }

  public double foo() {
    return exampleJNI.Base_foo(swigCPtr);
  }

  public Base() {
    this(exampleJNI.new_Base(), true);
  }
}

The Derived class extends Base mirroring the C++ class inheritance hierarchy.

public class Derived extends Base {
  private long swigCPtr;

  protected Derived(long cPtr, boolean cMemoryOwn) {
    super(exampleJNI.SWIGDerivedUpcast(cPtr), cMemoryOwn);
    swigCPtr = cPtr;
  }

  protected static long getCPtr(Derived obj) {
    return obj.swigCPtr;
  }

  protected void finalize() {
    delete();
  }

  public void delete() {
    if(swigCPtr != 0 && swigCMemOwn) {
      exampleJNI.delete_Derived(swigCPtr);
      swigCMemOwn = false;
    }
    swigCPtr = 0;
    super.delete();
  }

  public double foo() {
    return exampleJNI.Derived_foo(swigCPtr);
  }

  public Derived() {
    this(exampleJNI.new_Derived(), true);
  }
}

Note the memory ownership is controlled by the base class. However each class in the inheritance hierarchy has its own pointer
value which is obtained during construction. The SWIGDerivedUpcast() call converts the pointer from a Derived * to a
Base *. This is a necessity as C++ compilers are free to implement pointers in the inheritance hierarchy with different values.
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It is of course possible to extend Base using your own Java classes. If Derived is provided by the C++ code, you could for
example add in a pure Java class Extended derived from Base. There is a caveat and that is any C++ code will not know about
your pure Java class Extended so this type of derivation is restricted. However, true cross language polymorphism can be
achieved using the directors feature.

19.4.3.3 Proxy classes and garbage collection

By default each proxy class has a delete() and a finalize() method. The finalize() method calls delete() which
frees any malloc'd memory for wrapped C structs or calls the C++ class destructors. The idea is for delete() to be called when
you have finished with the C/C++ object. Ideally you need not call delete(), but rather leave it to the garbage collector to call
it from the finalizer. The unfortunate thing is that Sun, in their wisdom, do not guarantee that the finalizers will be called. When a
program exits, the garbage collector does not always call the finalizers. Depending on what the finalizers do and which operating
system you use, this may or may not be a problem.

If the delete() call into JNI code is just for memory handling, there is not a problem when run on most operating systems, for
example Windows and Unix. Say your JNI code creates memory on the heap which your finalizers should clean up, the finalizers
may or may not be called before the program exits. In Windows and Unix all memory that a process uses is returned to the system
on exit, so this isn't a problem. This is not the case in some operating systems like vxWorks. If however, your finalizer calls into
JNI code invoking the C++ destructor which in turn releases a TCP/IP socket for example, there is no guarantee that it will be
released. Note that with long running programs the garbage collector will eventually run, thereby calling any unreferenced object's
finalizers.

Some not so ideal solutions are:

Call the System.runFinalizersOnExit(true) or
Runtime.getRuntime().runFinalizersOnExit(true) to ensure the finalizers are called before the
program exits. The catch is that this is a deprecated function call as the documenation says:

This method is inherently unsafe. It may result in finalizers being called on live objects while other
threads are concurrently manipulating those objects, resulting in erratic behavior or deadlock.

In many cases you will be lucky and find that it works, but it is not to be advocated. Have a look at Sun's Java web site
and search for runFinalizersOnExit.

1. 

From jdk1.3 onwards a new function, addShutdownHook(), was introduced which is guaranteed to be called when
your program exits. You can encourage the garbage collector to call the finalizers, for example, add this static block to
the class that has the main() function:

  static {
    Runtime.getRuntime().addShutdownHook( 
      new Thread() {
        public void run() { System.gc(); System.runFinalization(); }
      }
    );
  }

Although this usually works, the documentation doesn't guarantee that runFinalization() will actually call the
finalizers. As the the shutdown hook is guaranteed you could also make a JNI call to clean up any resources that are
being tracked by the C/C++ code.

2. 

Call the delete() function manually which will immediately invoke the C++ destructor. As a suggestion it may be a
good idea to set the object to null so that should the object be inadvertantly used again a Java null pointer exception is
thrown, the alternative would crash the JVM by using a null C pointer. For example given a SWIG generated class A:

A myA = new A();
// use myA ...
myA.delete();
// any use of myA here would crash the JVM 
myA=null;
// any use of myA here would cause a Java null pointer exception to be thrown

3. 

SWIG−1.3 Documentation

19.4.3.3 Proxy classes and garbage collection 225

http://java.sun.com


The SWIG generated code ensures that the memory is not deleted twice, in the event the finalizers get called in addition
to the manual delete() call.
Write your own object manager in Java. You could derive all SWIG classes from a single base class which could track
which objects have had their finalizers run, then call the rest of them on program termination. The section on Java
typemaps details how to specify a pure Java base class.

4. 

19.4.4 Type wrapper classes

The generated type wrapper class, for say an int *, looks like this:

public class SWIGTYPE_p_int {
  private long swigCPtr;

  protected SWIGTYPE_p_int(long cPtr, boolean bFutureUse) {
    swigCPtr = cPtr;
  }

  protected SWIGTYPE_p_int() {
    swigCPtr = 0;
  }

  protected static long getCPtr(SWIGTYPE_p_int obj) {
    return obj.swigCPtr;
  }
}

The methods do not have public access, so by default it is impossible to do anything with objects of this class other than pass them
around. The methods in the class are part of the inner workings of SWIG. If you need to mess around with pointers you will have
to use some typemaps specific to the Java module to achieve this. The section on Java typemaps details how to modify the
generated code.

Note that if you use a pointer or reference to a proxy class in a function then no type wrapper class is generated because the proxy
class can be used as the function parameter. If however, you need anything more complicated like a pointer to a pointer to a proxy
class then a typewrapper class is generated for your use.

Note that SWIG generates a type wrapper class and not a proxy class when it has not parsed the definition of a type that gets used.
For example, say SWIG has not parsed the definition of class Snazzy because it is in a header file that you may have
forgotten to use the %include directive on. Should SWIG parse Snazzy * being used in a function parameter, it will then
generates a type wrapper class around a Snazzy pointer. Also recall from earlier that SWIG will use a pointer when a class is
passed by value or by reference:

void spam(Snazzy *x, Snazzy &y, Snazzy z);

Should SWIG not know anything about Snazzy then a SWIGTYPE_p_Snazzy must be used for all 3 parameters in the spam
function. The Java function generated is:

public static void spam(SWIGTYPE_p_Snazzy x, SWIGTYPE_p_Snazzy y, SWIGTYPE_p_Snazzy z) {
 ...
}

Note that typedefs are tracked by SWIG and the typedef name is used to construct the type wrapper class name. For example,
consider the case where Snazzy is a typedef to an int which SWIG does parse:

typedef int Snazzy;
void spam(Snazzy *x, Snazzy &y, Snazzy z);

Because the typedefs have been tracked the Java function generated is:

public static void spam(SWIGTYPE_p_int x, SWIGTYPE_p_int y, int z) { ... }

SWIG−1.3 Documentation

19.4.4 Type wrapper classes 226



19.4.5 Enum classes

SWIG can generate three types of enum classes. The Enumerations section discussed these but omitted all the details. The
following sub−sections detail the various types of enum classes that can be generated.

19.4.5.1 Typesafe enum classes

The following example demonstrates the typesafe enum classes which SWIG generates:

%include "enumtypesafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

The following is what SWIG generates:

public final class Beverage {
  public final static Beverage ALE = new Beverage("ALE");
  public final static Beverage LAGER = new Beverage("LAGER", 10);
  public final static Beverage STOUT = new Beverage("STOUT");
  public final static Beverage PILSNER = new Beverage("PILSNER");

  public final int swigValue() {
    return swigValue;
  }

  public String toString() {
    return swigName;
  }

  public static Beverage swigToEnum(int swigValue) {
    if (swigValue < swigValues.length && swigValues[swigValue].swigValue == swigValue)
      return swigValues[swigValue];
    for (int i = 0; i < swigValues.length; i++)
      if (swigValues[i].swigValue == swigValue)
        return swigValues[i];
    throw new IllegalArgumentException("No enum " + Beverage.class + " with value " +
                                                                         swigValue);
  }

  private Beverage(String swigName) {
    this.swigName = swigName;
    this.swigValue = swigNext++;
  }

  private Beverage(String swigName, int swigValue) {
    this.swigName = swigName;
    this.swigValue = swigValue;
    swigNext = swigValue+1;
  }

  private static Beverage[] swigValues = { ALE, LAGER, STOUT, PILSNER };
  private static int swigNext = 0;
  private final int swigValue;
  private final String swigName;
}

As can be seen, there a fair number of support methods for the typesafe enum pattern. The typesafe enum pattern involves creating
a fixed number of static instances of the enum class. The constructors are private to enforce this. Two constructors are available −
one for C/C++ enums with an initializer and one for those without an initializer. In order to use one of these typesafe enums, the
swigToEnum static method must be called to return a reference to one of the static instances. The JNI layer returns the enum
value from the C/C++ world as an integer and this method is used to find the appropriate Java enum static instance. The
swigValue method is used for marshalling in the other direction. The toString method is overridden so that the enum name
is available.
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19.4.5.2 Proper Java enum classes

The following example demonstrates the Java enums approach:

%include "enums.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

SWIG will generate the following Java enum:

public enum Beverage {
  ALE,
  LAGER(10),
  STOUT,
  PILSNER;

  public final int swigValue() {
    return swigValue;
  }

  public static Beverage swigToEnum(int swigValue) {
    Beverage[] swigValues = Beverage.class.getEnumConstants();
    if (swigValue < swigValues.length && swigValues[swigValue].swigValue == swigValue)
      return swigValues[swigValue];
    for (Beverage swigEnum : swigValues)
      if (swigEnum.swigValue == swigValue)
        return swigEnum;
    throw new IllegalArgumentException("No enum " + Beverage.class +
                                       " with value " + swigValue);
  }

  private Beverage() {
    this.swigValue = SwigNext.next++;
  }

  private Beverage(int swigValue) {
    this.swigValue = swigValue;
    SwigNext.next = swigValue+1;
  }

  private final int swigValue;

  private static class SwigNext {
    private static int next = 0;
  }
}

The enum items appear first. Like the typesafe enum pattern, the constructors are private. The constructors are required to handle
C/C++ enums with initializers. The next variable is in the SwigNext inner class rather than in the enum class as static
primitive variables cannot be modified from within enum constructors. Marshalling between Java enums and the C/C++ enum
integer value is handled via the swigToEnum and swigValue methods. All the constructors and methods in the Java enum are
required just to handle C/C++ enums with initializers. These needn't be generated if the enum being wrapped does not have any
initializers and the Simpler Java enums for enums without initializers section describes how typemaps can be used to achieve this.

19.4.5.3 Type unsafe enum classes

The following example demonstrates type unsafe enums:

%include "enumtypeunsafe.swg"
%javaconst(1);
enum Beverage { ALE, LAGER=10, STOUT, PILSNER };

SWIG will generate the following simple class:
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public final class Beverage {
  public final static int ALE = 0;
  public final static int LAGER = 10;
  public final static int STOUT = LAGER + 1;
  public final static int PILSNER = STOUT + 1;
}

19.5 Cross language polymorphism using directors (experimental)

Proxy classes provide a natural, object−oriented way to wrap C++ classes. as described earlier, each proxy instance has an
associated C++ instance, and method calls from Java to the proxy are passed to the C++ instance transparently via C wrapper
functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance
chain from C++ to Java. In particular, if a C++ class has been extended in Java (by deriving from the proxy class), these classes
will not be visible from C++ code. Virtual method calls from C++ are thus not able to access the lowest implementation in the
inheritance chain.

SWIG can address this problem and make the relationship between C++ classes and proxy classes more symmetric. To achieve
this goal, new classes called directors are introduced at the bottom of the C++ inheritance chain. The job of the directors is to
route method calls correctly, either to C++ implementations higher in the inheritance chain or to Java implementations lower in
the inheritance chain. The upshot is that C++ classes can be extended in Java and from C++ these extensions look exactly like
native C++ classes. Neither C++ code nor Java code needs to know where a particular method is implemented: the combination of
proxy classes, director classes, and C wrapper functions transparently takes care of all the cross−language method routing.

19.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the
"directors" option to the %module directive, like this:

%module(directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG
which classes and methods should get directors. The %feature directive can be applied globally, to specific classes, and to specific
methods, like this:

// generate directors for all classes that have virtual methods
%feature("director");         

// genarate directors for all virtual methods in class Foo
%feature("director") Foo;      

// generate a director for just Foo::bar()
%feature("director") Foo::bar; 

You can use the %feature("nodirector") directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for all virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles the
methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
    virtual void one();
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    virtual void two();
};

class Bar: public Foo {
public:
    virtual void three();
};

19.5.2 Director classes

For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special
Swig::Director class. These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of
the Java proxy classes. The director classes store a pointer to their underlying Java proxy classes.

For simplicity let's ignore the Swig::Director class and refer to the original C++ class as the director's base class. By default,
a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modify
this behavior). Thus all virtual method calls, whether they originate in C++ or in Java via proxy classes, eventually end up in at
the implementation in the director class. The job of the director methods is to route these method calls to the appropriate place in
the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its Java
derived classes were seamlessly integrated. That seamless integration is exactly what the director classes provide, transparently
skipping over all the messy JNI glue code that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Java. Once this decision is made, the rest is fairly easy.
If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called
explicitly. If the correct implementation is in Java, the Java API is used to call the method of the underlying Java object (after
which the usual virtual method resolution in Java automatically finds the right implementation).

19.5.3 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This
alone can generate a lot of code bloat for large hierarchies. Method arguments that require complex conversions to and from Java
types can result in large director methods. For this reason it is recommended that directors are selectively enabled only for specific
classes that are likely to be extended in Java and used in C++.

Although directors make it natural to mix native C++ objects with Java objects (as director objects), one should be aware of the
obvious fact that method calls to Java objects from C++ will be much slower than calls to C++ objects. Additionally, compared to
classes that do not use directors, the call routing in the director methods adds a small overhead. This situation can be optimized by
selectively enabling director methods (using the %feature directive) for only those methods that are likely to be extended in Java.

19.5.4 Simple directors example

Consider the following SWIG interface file:

%module(directors="1") example;

%feature("director") DirectorBase;

class DirectorBase {
public:
  virtual ~DirectorBase() {}
  virtual void upcall_method() {}
};

void callup(DirectorBase *director) {
  director−>upcall_method();
}

The following directorDerived Java class is derived from the Java proxy class DirectorBase and overrides
upcall_method(). When C++ code invokes upcall_method(), the SWIG−generated C++ code redirects the call via JNI
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to the Java directorDerived subclass. Naturally, the SWIG generated C++ code and the generated Java intermediate class
marshall and convert arguments between C++ and Java when needed.

public class directorDerived extends DirectorBase {
  public directorDerived() {
  }

  public void upcall_method() {
    System.out.println("directorDerived::upcall_method() invoked.");
  }
}

Running the following Java code

directorDerived director = new directorDerived();
example.callup(director);

will result in the following being output:

directorDerived::upcall_method() invoked.

19.6 Common customization features

An earlier section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get
an interface that mimics the behavior described. However, sometimes this isn't enough to produce a nice module. Certain types of
functionality might be missing or the interface to certain functions might be awkward. This section describes some common
SWIG features that are used to improve the interface to existing C/C++ code.

19.6.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

typedef struct Image {...};
void set_transform(Image *im, double m[4][4]);

it would be accessible from Java, but there may be no easy way to call it. The problem here is that a type wrapper class is
generated for the two dimensional array parameter so there is no easy way to construct and manipulate a suitable double
[4][4] value. To fix this, you can write some extra C helper functions. Just use the %inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {
   return (double (*)[4]) malloc(16*sizeof(double));
}
void free_mat44(double (*x)[4]) {
   free(x);
}
void mat44_set(double x[4][4], int i, int j, double v) {
   x[i][j] = v;
}
double mat44_get(double x[4][4], int i, int j) {
   return x[i][j];
}
%}

From Java, you could then write code like this:

Image im = new Image();
SWIGTYPE_p_a_4__double a = example.new_mat44();
example.mat44_set(a,0,0,1.0);
example.mat44_set(a,1,1,1.0);
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example.mat44_set(a,2,2,1.0);
...
example.set_transform(im,a);
example.free_mat44(a);

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible to
improve on this using Java code, typemaps, and other customization features as covered in later sections, but sometimes helper
functions are a quick and easy solution to difficult cases.

19.6.2 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods or constructors. Here
is a simple example:

%module example
%{
#include "someheader.h"
%}

struct Vector {
   double x,y,z;
};

%extend Vector {
   char *toString() {
       static char tmp[1024];
       sprintf(tmp,"Vector(%g,%g,%g)", self−>x,self−>y,self−>z);
       return tmp;
   }
   Vector(double x, double y, double z) {
       Vector *v = (Vector *) malloc(sizeof(Vector));
       v−>x = x;
       v−>y = y;
       v−>z = z;
       return v;
   }
};

Now, in Java

Vector v = new Vector(2,3,4);
System.out.println(v);

will display

Vector(2,3,4)

%extend works with both C and C++ code. It does not modify the underlying object in any way−−−the extensions only show up
in the Java interface.

19.6.3 Exception handling with %exception and %javaexception

If a C or C++ function throws an error, you may want to convert that error into a Java exception. To do this, you can use the
%exception directive. The %exception directive simply lets you rewrite part of the generated wrapper code to include an
error check. It is detailed in full in the Exception handling with %exception section.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a
simple example of how you might handle that:

%exception malloc {
  $action
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  if (!result) {
    jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/OutOfMemoryError");
    (*jenv)−>ThrowNew(jenv, clazz, "Not enough memory");
    return $null;
  }
}
void *malloc(size_t nbytes);

In Java,

SWIGTYPE_p_void a = example.malloc(2000000000);

will produce a familiar looking Java exception:

Exception in thread "main" java.lang.OutOfMemoryError: Not enough memory
        at exampleJNI.malloc(Native Method)
        at example.malloc(example.java:16)
        at main.main(main.java:112)

If a library provides some kind of general error handling framework, you can also use that. For example:

%exception malloc {
  $action
  if (err_occurred()) {
    jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/OutOfMemoryError");
    (*jenv)−>ThrowNew(jenv, clazz, "Not enough memory");
    return $null;
  }
}
void *malloc(size_t nbytes);

No declaration name is given to %exception, it is applied to all wrapper functions. The $action is a SWIG special variable
and is replaced by the C/C++ function call being wrapped. The return $null; handles all native method return types, namely
those that have a void return and those that do not. This is useful for typemaps that will be used in native method returning all
return types. See the section on Java special variables for further explanation.

C++ exceptions are also easy to handle. We can catch the C++ exception and rethrow it as a Java exception like this:

%exception getitem {
  try {
     $action
  } catch (std::out_of_range &e) {
    jclass clazz = jenv−>FindClass("java/lang/Exception");
    jenv−>ThrowNew(clazz, "Range error");
    return $null;
   }
}

class FooClass {
public:
     FooClass *getitem(int index);      // Might throw std::out_of_range exception
     ...
};

In the example above, java.lang.Exception is a checked exception class and so ought to be declared in the throws clause
of getitem. Classes can be specified for adding to the throws clause using %javaexception(classes) instead of
%exception, where classes is a string containing one or more comma separated Java classes. The %nojavaexception
feature is the equivalent to %noexception and clears previously declared exception handlers.

%javaexception("java.lang.Exception") getitem {
  try {
     $action
  } catch (std::out_of_range &e) {
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    jclass clazz = jenv−>FindClass("java/lang/Exception");
    jenv−>ThrowNew(clazz, "Range error");
    return $null;
   }
}

class FooClass {
public:
     FooClass *getitem(int index);      // Might throw std::out_of_range exception
     ...
};

The generated proxy method now generates a throws clause containing java.lang.Exception:

public class FooClass {
  ...
  public FooClass getitem(int index) throws java.lang.Exception { ... }
  ...
}

The examples above first use the C JNI calling syntax then the C++ JNI calling syntax. The C++ calling syntax will not compile
as C and also visa versa. It is however possible to write JNI calls which will compile under both C and C++ and is covered in the
Typemaps for both C and C++ compilation section.

The language−independent exception.i library file can also be used to raise exceptions. See the SWIG Library chapter. The
typemap example Handling C++ exception specifications as Java exceptions provides further exception handling capabilities.

19.6.4 Method access with %javamethodmodifiers

A Java feature called %javamethodmodifiers can be used to change the method modifiers from the default public. It
applies to both module class methods and proxy class methods. For example:

%javamethodmodifiers protect_me() "protected";
void protect_me();

Will produce the method in the module class with protected access.

protected static void protect_me() {
  exampleJNI.protect_me();
}

19.7 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples
include dealing with output parameters, strings and arrays. This chapter discusses the common techniques for solving these
problems.

19.7.1 Input and output parameters using primitive pointers and references

A common problem in some C programs is handling parameters passed as simple pointers or references. For example:

void add(int x, int y, int *result) {
   *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
   return *x−*y;
}
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The typemaps.i library file will help in these situations. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int  sub(int *INPUT, int *INPUT);

In Java, this allows you to pass simple values. For example:

int result = example.sub(7,4);
System.out.println("7 − 4 = " + result);
int[] sum = {0};
example.add(3,4,sum);
System.out.println("3 + 4 = " + sum[0]);

Which will display:

7 − 4 = 3
3 + 4 = 7

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter will
return the result in the first element of the integer array.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};

void add(int x, int y, int *result);
int  sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
   *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Java, the input parameter is the first element in a 1 element array and is replaced by the output of the function. For example:

int[] neg = {3};
example.negate(neg);
System.out.println("Negative of 3 = " + neg[0]);

And no prizes for guessing the output:

Negative of 3 = −3

These typemaps can also be applied to C++ references. The above examples would work the same if they had been defined using
references instead of pointers. For example, the Java code to use the negate function would be the same if it were defined either
as it is above:
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void negate(int *INOUT);

or using a reference:

void negate(int &INOUT);

Note: Since most Java primitive types are immutable and are passed by value, it is not possible to perform in−place modification
of a type passed as a parameter.

Be aware that the primary purpose of the typemaps.i file is to support primitive datatypes. Writing a function like this

void foo(Bar *OUTPUT);

will not have the intended effect since typemaps.i does not define an OUTPUT rule for Bar.

19.7.2 Simple pointers

If you must work with simple pointers such as int * or double * another approach to using typemaps.i is to use the
cpointer.i pointer library file. For example:

%module example
%include "cpointer.i"

extern void add(int x, int y, int *result);
%pointer_functions(int, intp);

The %pointer_functions(type,name) macro generates five helper functions that can be used to create, destroy, copy,
assign, and dereference a pointer. In this case, the functions are as follows:

int  *new_intp();
int  *copy_intp(int *x);
void  delete_intp(int *x);
void  intp_assign(int *x, int value);
int   intp_value(int *x);

In Java, you would use the functions like this:

SWIGTYPE_p_int intPtr = example.new_intp();
example.add(3,4,intPtr);
int result = example.intp_value(intPtr);
System.out.println("3 + 4 = " + result);

If you replace %pointer_functions(int,intp) by %pointer_class(int,intp), the interface is more class−like.

intp intPtr = new intp();
example.add(3,4,intPtr.cast());
int result = intPtr.value();
System.out.println("3 + 4 = " + result);

See the SWIG Library chapter for further details.

19.7.3 Wrapping C arrays with Java arrays

SWIG can wrap arrays in a more natural Java manner than the default by using the arrays_java.i library file. Let's consider
an example:

%include "arrays_java.i";
int array[4];
void populate(int x[]) {
    int i;
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    for (i=0; i

These one dimensional arrays can then be used as if they were Java arrays:

int[] array = new int[4];
example.populate(array);

System.out.print("array: ");
for (int i=0; i<array.length; i++)
    System.out.print(array[i] + " ");

example.setArray(array);

int[] global_array = example.getArray();

System.out.print("\nglobal_array: ");
for (int i=0; i<array.length; i++)
    System.out.print(global_array[i] + " ");

Java arrays are always passed by reference, so any changes a function makes to the array will be seen by the calling function. Here
is the output after running this code:

array: 100 101 102 103
global_array: 100 101 102 103

Note that for assigning array variables the length of the C variable is used, so it is possible to use a Java array that is bigger than
the C code will cope with. Only the number of elements in the C array will be used. However, if the Java array is not large enough
then you are likely to get a segmentation fault or access violation, just like you would in C. When arrays are used in functions like
populate, the size of the C array passed to the function is determined by the size of the Java array.

Please be aware that the typemaps in this library are not efficient as all the elements are copied from the Java array to a C array
whenever the array is passed to and from JNI code. There is an alternative approach using the SWIG array library and this is
covered in the next.

19.7.4 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
    int i, sum = 0;
    for (i = 0; i < nitems; i++) {
        sum += first[i];
    }
    return sum;
}

One of the ways to wrap this is to apply the Java array typemaps that come in the arrays_java.i library file:

%include "arrays_java.i"
%apply int[] {int *};

The ANY size will ensure the typemap is applied to arrays of all sizes. You could narrow the typemap matching rules by
specifying a particular array size. Now you can use a pure Java array and pass it to the C code:

int[] array = new int[10000000];          // Array of 10−million integers
for (int i=0; i<array.length; i++) {      // Set some values
  array[i] = i;
}
int sum = example.sumitems(array,10000);
System.out.println("Sum = " + sum);
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and the sum would be displayed:

Sum = 49995000

This approach is probably the most natural way to use arrays. However, it suffers from performance problems when using large
arrays as a lot of copying of the elements occurs in transferring the array from the Java world to the C++ world. An alternative
approach to using Java arrays for C arrays is to use an alternative SWIG library file carrays.i. This approach can be more
efficient for large arrays as the array is accessed one element at a time. For example:

%include "carrays.i"
%array_functions(int, intArray);

The %array_functions(type,name) macro generates four helper functions that can be used to create and destroy arrays
and operate on elements. In this case, the functions are as follows:

int *new_intArray(int nelements);
void delete_intArray(int *x);
int intArray_getitem(int *x, int index);
void intArray_setitem(int *x, int index, int value);

In Java, you would use the functions like this:

SWIGTYPE_p_int array = example.new_intArray(10000000);  // Array of 10−million integers
for (int i=0; i

If you replace %array_functions(int,intp) by %array_class(int,intp), the interface is more class−like and a
couple more helper functions are available for casting between the array and the type wrapper class.

%include "carrays.i"
%array_class(int, intArray);

The %array_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a
simple pointer like int * or double *. For instance, you will be able to do this in Java:

intArray array = new intArray(10000000);  // Array of 10−million integers
for (int i=0; i

The array "object" created by %array_class() does not encapsulate pointers inside a special array object. In fact, there is no
bounds checking or safety of any kind (just like in C). Because of this, the arrays created by this library are extremely low−level
indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if you
want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all
applications. On the other hand, this low−level approach is extremely efficient and well suited for applications in which you need
to create buffers, package binary data, etc.

19.8 Java typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. You are advised to be familiar with the the material in the "Typemaps" chapter. While not absolutely essential
knowledge, this section assumes some familiarity with the Java Native Interface (JNI). JNI documentation can be consulted either
online at Sun's Java web site or from a good JNI book. The following two books are recommended:

Title: 'Essential JNI: Java Native Interface.' Author: Rob Gordon. Publisher: Prentice Hall. ISBN: 0−13−679895−0.• 
Title: 'The Java Native Interface: Programmer's Guide and Specification.' Author: Sheng Liang. Publisher:
Addison−Wesley. ISBN: 0−201−32577−2.

• 

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the generated code.
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19.8.1 Default primitive type mappings

The following table lists the default type mapping from Java to C/C++.

C/C++ type Java type
JNI
type

bool
const bool &

boolean jboolean

char
const char &

char jchar

signed char
const signed char &

byte jbyte

unsigned char
const unsigned char &

short jshort

short
const short &

short jshort

unsigned short
const unsigned short &

int jint

int
const int &

int jint

unsigned int
const unsigned int &

long jlong

long
const long &

int jint

unsigned long
const unsigned long &

long jlong

long long
const long long &

long jlong

unsigned long long
const unsigned long long &

java.math.BigIntegerjobject

float
const float &

float jfloat

double
const double &

double jdouble

char *
char []

String jstring

Note that SWIG wraps the C char type as a character. Pointers and arrays of this type are wrapped as strings. The signed
char type can be used if you want to treat char as a signed number rather than a character. Also note that all const references to
primitive types are treated as if they are passed by value.

Given the following C function:

void func(unsigned short a, char *b, const long &c, unsigned long long d);

The module class method would be:

public static void func(int a, String b, int c, java.math.BigInteger d) {...}

The intermediary JNI class would use the same types:

public final static native void func(int jarg1, String jarg2, int jarg3,
                                     java.math.BigInteger jarg4);
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and the JNI function would look like this:

JNIEXPORT void JNICALL Java_exampleJNI_func(JNIEnv *jenv, jclass jcls,
                jint jarg1, jstring jarg2, jint jarg3, jobject jarg4) {...}

The mappings for C int and C long are appropriate for 32 bit applications which are used in the 32 bit JVMs. There is no
perfect mapping between Java and C as Java doesn't support all the unsigned C data types. However, the mappings allow the full
range of values for each C type from Java.

19.8.2 Sixty four bit JVMs

If you are using a 64 bit JVM you may have to override the C long, but probably not C int default mappings. Mappings will be
system dependent, for example long will need remapping on Unix LP64 systems (long, pointer 64 bits, int 32 bits), but not on
Microsoft 64 bit Windows which will be using a P64 IL32 (pointer 64 bits and int, long 32 bits) model. This may be automated in
a future version of SWIG. Note that the Java write once run anywhere philosophy holds true for all pure Java code when moving
to a 64 bit JVM. Unfortunately it won't of course hold true for JNI code.

19.8.3 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Java to C, you might define a typemap like this:

%module example

%typemap(in) int {
  $1 = $input;
  printf("Received an integer : %d\n",  $1);
}
extern int fact(int nonnegative);

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is a
placeholder for a local variable of type int. The $input variable contains the Java data, the JNI jint in this case.

When this example is compiled into a Java module, it can be used as follows:

System.out.println(example.fact(6));

and the output will be:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int nonnegative {
  $1 = $input;
  printf("Received an integer : %d\n",  $1);
}

extern int fact(int nonnegative);

In this case, the typemap code is only attached to arguments that exactly match int nonnegative.
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The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG C++ type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int nonnegative {
  $1 = $input;
  printf("Received an integer : %d\n",  $1);
}
typedef int Integer;
extern int fact(Integer nonnegative);    // Above typemap is applied

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
...
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Java parameter. This allows the
function to be used like this (notice how the length parameter is omitted):

int c = example.count('e',"Hello World");

19.8.4 Typemaps for mapping C/C++ types to Java types

The typemaps available to the Java module include the common typemaps listed in the main typemaps section. There are a
number of additional typemaps which are necessary for using SWIG with Java. The most important of these implement the
mapping of C/C++ types to Java types:

Typemap Description

jni
JNI C types. These provide the default mapping of types from C/C++ to JNI for use in the JNI (C/C++)
code.

jtype
Java intermediary types. These provide the default mapping of types from C/C++ to Java for use in the
native functions in the intermediary JNI class. The type must be the equivalent Java type for the JNI C
type specified in the "jni" typemap.

jstype
Java types. These provide the default mapping of types from C/C++ to Java for use in the Java module
class, proxy classes and type wrapper classes.

javain

Conversion from jstype to jtype. These are Java code typemaps which transform the type used in the Java
module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to the type
used in the Java intermediary JNI class (as specified in the "jtype" typemap). In other words the typemap
provides the conversion to the native method call parameter types.

javaout

Conversion from jtype to jstype. These are Java code typemaps which transform the type used in the Java
intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java module class,
proxy classes and type wrapper classes (as specified in the "jstype" typemap). In other words the typemap
provides the conversion from the native method call return type.

javadirectorin

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the
type used in the Java intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in
the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). This
typemap provides the conversion for the parameters in the director methods when calling up from C++ to
Java. See Director typemaps.

javadirectorout
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Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the
type used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype"
typemap) to the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). This
typemap provides the conversion for the return type in the director methods when returning from the C++
to Java upcall. See Director typemaps.

directorin
Conversion from C++ type to jni type for director methods. These are C++ typemaps which converts the
parameters used in the C++ director method to the appropriate JNI intermediary type. The conversion is
done in JNI code prior to calling the Java function from the JNI code. See Director typemaps.

If you are writing your own typemaps to handle a particular type, you will normally have to write a collection of them. The default
typemaps are in "java.swg" and so might be a good place for finding typemaps to base any new ones on.

The "jni", "jtype" and "jstype" typemaps are usually defined together to handle the Java to C/C++ type mapping. An "in" typemap
should be accompanied by a "javain" typemap and likewise an "out" typemap by a "javaout" typemap. If an "in" typemap is
written, a "freearg" and "argout" typemap may also need to be written as some types have a default "freearg" and/or "argout"
typemap which may need overriding. The "freearg" typemap sometimes releases memory allocated by the "in" typemap. The
"argout" typemap sometimes sets values in function parameters which are passed by reference in Java.

The default code generated by SWIG for the Java module comes from the typemaps in the "java.swg" library file which
implements the Default primitive type mappings covered earlier. There are other type mapping typemaps in the Java library.
These are listed below:

C Type Typemap File Kind Java Type Function

primitive pointers and
references

INPUT typemaps.i input
Java basic
types

Allows values to be used for C
functions taking pointers for data
input.

primitive pointers and
references

OUTPUT typemaps.i output
Java basic
type arrays

Allows values held within an
array to be used for C functions
taking pointers for data output.

primitive pointers and
references

INOUT typemaps.i
input
output

Java basic
type arrays

Allows values held within an
array to be used for C functions
taking pointers for data input
and output.

string
wstring

[unnamed] std_string.i
input
output

String
Use for std::string mapping to
Java String.

arrays of primitive types[unnamed] arrays_java.i
input
output

arrays of
primitive Java
types

Use for mapping C arrays to
Java arrays.

arrays of
classes/structs/unions

JAVA_ARRAYSOFCLASSES
macro

arrays_java.i
input
output

arrays of
proxy classes

Use for mapping C arrays to
Java arrays.

arrays of enums ARRAYSOFENUMS arrays_java.i
input
output

int[]

Use for mapping C arrays to
Java arrays (typeunsafe and
simple enum wrapping
approaches only).

char * BYTE various.i input byte[] Java byte array is converted to
char array

char ** STRING_ARRAY various.i
input
output

String[]
Use for mapping NULL
terminated arrays of C strings to
Java String arrays
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19.8.5 Java typemap attributes

There is an additional typemap attribute that the Java module supports. This is the 'throws' attribute. The throws attribute is
optional and specified after the typemap name and contains one or more comma separated classes for adding to the throws clause
for any methods that use that typemap. It is analogous to the %javaexception feature's throws attribute.

%typemap(typemapname, throws="ExceptionClass1, ExceptionClass2") type { ... }

The attribute is necessary for supporting Java checked exceptions and can be added to just about any typemap. The list of
typemaps include all the C/C++ (JNI) typemaps in the "Typemaps" chapter and the Java specific typemaps listed in the previous
section, barring the "jni", "jtype" and "jstype" typemaps as they could never contain code to throw an exception.

The throws clause is generated for the proxy method as well as the JNI method in the JNI intermediary class. If a method uses
more than one typemap and each of those typemaps have classes specified in the throws clause, the union of the exception classes
is added to the throws clause ensuring there are no duplicate classes. See the NaN exception example for further usage.

19.8.6 Java special variables

The standard SWIG special variables are available for use within typemaps as described in the Typemaps documentation, for
example $1, $input,$result etc.

The Java module uses a few additional special variables:

$javaclassname
$javaclassname is similar to $1_type. It expands to the class name for use in Java. When wrapping a union, struct or class,
it expands to the Java proxy class name. Otherwise it expands to the type wrapper class name. For example, $javaclassname
is replaced by Foo when the wrapping a struct Foo or struct Foo * and SWIGTYPE_p_unsigned_short is used
for unsigned short *.

$null
Used in input typemaps to return early from JNI functions that have either void or a non−void return type. Example:

%typemap(check) int * %{ 
  if (error) {
    SWIG_exception(SWIG_IndexError, "Array element error");
    return $null;
  }
%}

If the typemap gets put into a function with void as return, $null will expand to nothing:

JNIEXPORT void JNICALL Java_jnifn(...) {
    if (error) {
      SWIG_exception(SWIG_IndexError, "Array element error");
      return ;
    }
  ...
}

otherwise $null expands to NULL

JNIEXPORT jobject JNICALL Java_jnifn(...) {
    if (error) {
      SWIG_exception(SWIG_IndexError, "Array element error");
      return NULL;
    }
  ...
}
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$javainput, $jnicall and $owner
The $javainput special variable is used in "javain" typemaps and $jnicall and $owner are used in "javaout" typemaps. $jnicall is
analogous to $action in %exception. It is replaced by the call to the native method in the intermediary JNI class. $owner is
replaced by either true if %newobject has been used, otherwise false. $javainput is analogous to the $input special variable. It
is replaced by the parameter name.

Here is an example:

%typemap(javain) Class "Class.getCPtr($javainput)"
%typemap(javain) unsigned short "$javainput"
%typemap(javaout) Class * {
    return new Class($jnicall, $owner);
  }

%inline %{
    class Class {...};
    Class * bar(Class cls, unsigned short ush) { return new Class(); };
%}

The generated proxy code is then:

public static Class bar(Class cls, int ush) {
  return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), false);
}

Here $javainput has been replaced by cls and ush. $jnicall has been replaced by the native method call,
exampleJNI.bar(...) and $owner has been replaced by false. If %newobject is used by adding the following at the
beginning of our example:

%newobject bar(Class cls, unsigned short ush);

The generated code constructs the return type using true indicating the proxy class Class is responsible for destroying the C++
memory allocated for it in bar:

public static Class bar(Class cls, int ush) {
  return new Class(exampleJNI.bar(Class.getCPtr(cls), ush), true);
}

$static
This special variable expands to either static or nothing depending on whether the class is an inner Java class or not. It is used in
the "javaclassmodifiers" typemap so that global classes can be wrapped as Java proxy classes and nested C++ classes/enums can
be wrapped with the Java equivalent, that is, static inner proxy classes.

$jniinput, $javacall and $packagepath
These special variables are used in the directors typemaps. See Director specific typemaps for details.

$module
This special variable expands to the module name, as specified by %module or the −module commandline option. Useful for
constructing the intermediary classname, which is just $moduleJNI.

19.8.7 Typemaps for both C and C++ compilation

JNI calls must be written differently depending on whether the code is being compiled as C or C++. For example C compilation
requires the pointer to a function pointer struct member syntax like

const jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/String");

whereas C++ code compilation of the same function call is a member function call using a class pointer like
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const jclass clazz = jenv−>FindClass("java/lang/String");

To enable typemaps to be used for either C or C++ compilation, a set of JCALLx macros have been defined in
Lib/java/javahead.swg, where x is the number of arguments in the C++ version of the JNI call. The above JNI calls would be
written in a typemap like this

const jclass clazz = JCALL1(FindClass, jenv, "java/lang/String");

Note that the SWIG preprocessor expands these into the appropriate C or C++ JNI calling convention. The C calling convention is
emitted by default and the C++ calling convention is emitted when using the −c++ SWIG commandline option. If you do not
intend your code to be targeting both C and C++ then your typemaps can use the appropriate JNI calling convention and need not
use the JCALLx macros.

19.8.8 Java code typemaps

Most of SWIG's typemaps are used for the generation of C/C++ code. The typemaps in this section are used solely for the
generation of Java code. Elements of proxy classes and type wrapper classes come from the following typemaps (the defaults).

%typemap(javabase)

base (extends) for Java class: empty default

%typemap(javabody)

the essential support body for proxy classes (proxy base classes only), typewrapper classes and enum classes.
Default contains extra constructors, memory ownership control member variables (swigCMemOwn,
swigCPtr), the getCPtr method etc.

%typemap(javabody_derived)

the essential support body for proxy classes (derived classes only). Same as "javabody" typemap, but only used
for proxy derived classes.

%typemap(javaclassmodifiers)

class modifiers for the Java class: default is "public class"

%typemap(javacode)

Java code is copied verbatim to the Java class: empty default

%typemap(javadestruct, methodname="delete")

destructor wrapper − the delete() method (proxy classes only), used for all proxy classes except those which
have a base class : default calls C++ destructor (or frees C memory) and resets swigCPtr and swigCMemOwn
flags

Note that the delete() method name is configurable and is specified by the methodname attribute.

%typemap(javadestruct_derived, methodname="delete")

destructor wrapper − the delete() method (proxy classes only), same as "javadestruct" but only used for
derived proxy classes : default calls C++ destructor (or frees C memory) and resets swigCPtr and
swigCMemOwn flags

Note that the delete() method name is configurable and is specified by the methodname attribute.

SWIG−1.3 Documentation

19.8.8 Java code typemaps 245



%typemap(javaimports)

import statements for Java class: empty default

%typemap(javainterfaces)

interfaces (extends) for Java class: empty default

%typemap(javafinalize)

the finalize() method (proxy classes only): default calls the delete() method

Compatibility Note: In SWIG−1.3.21 and earlier releases, typemaps called "javagetcptr" and "javaptrconstructormodifiers" were
available. These are deprecated and the "javabody" typemap can be used instead.

In summary the contents of the typemaps make up a proxy class like this:

[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
                                             implements [ javainterfaces typemap ] {
[ javabody or javabody_derived typemap ]
[ javafinalize typemap ]
public void delete() [ javadestruct OR javadestruct_derived typemap ]
[ javacode typemap ]
... proxy functions ...
}

Note the delete() methodname is configurable, see "javadestruct" and "javadestruct_derived" typemaps above.

The type wrapper class is similar in construction:

[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
                                             implements [ javainterfaces typemap ] {
[ javabody typemap ]
[ javacode typemap ]
}

The enum class is also similar in construction:

[ javaimports typemap ]
[ javaclassmodifiers typemap ] javaclassname extends [ javabase typemap ]
                                             implements [ javainterfaces typemap ] {
... Enum values ...
[ javabody typemap ]
[ javacode typemap ]
}

The "javaimports" typemap is ignored if the enum class is wrapped by an inner Java class, that is when wrapping an enum
declared within a C++ class.

The defaults can be overridden to tailor these classes. Here is an example which will change the getCPtr method and
constructor from the default protected access to public access. This has a practical application if you are invoking SWIG more
than once and generating the wrapped classes into different packages in each invocation. If the classes in one package are using
the classes in another package, then these methods need to be public.

%typemap(javabody) SWIGTYPE %{
  private long swigCPtr;
  protected boolean swigCMemOwn;

  public $javaclassname(long cPtr, boolean cMemoryOwn) {
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    swigCMemOwn = cMemoryOwn;
    swigCPtr = cPtr;
  }

  public static long getCPtr($javaclassname obj) {
    return (obj == null) ? 0 : obj.swigCPtr;
  }
%}

The typemap code is the same that is in "java.swg", barring the two method modifiers. Note that SWIGTYPE will target all
proxy classes, but not the type wrapper classes. Also the above typemap is only used for proxy classes that are potential base
classes. To target proxy classes that are derived from a wrapped class as well, the "javabody_derived" typemap should also be
overridden.

For the typemap to be used in all type wrapper classes, all the different types that type wrapper classes could be used for should be
targeted:

%typemap(javabody) SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], SWIGTYPE (CLASS::*) %{
  private long swigCPtr;

  public $javaclassname(long cPtr, boolean bFutureUse) {
    swigCPtr = cPtr;
  }

  protected $javaclassname() {
    swigCPtr = 0;
  }

  public static long getCPtr($javaclassname obj) {
    return (obj == null) ? 0 : obj.swigCPtr;
  }
%}

Again this is the same that is in "java.swg", barring the method modifier for getCPtr.

19.8.9 Director specific typemaps

The Java directors feature requires the "javadirectorin", "javadirectorout" and the "directorin" typemaps in order to work properly.
The "javapackage" typemap is an optional typemap used to identify the Java package path for individual SWIG generated proxy
classes.

%typemap(directorin)

The "directorin" typemap is used for converting arguments in the C++ director class to the appropriate JNI type
before the upcall to Java. This typemap also specifies the JNI field descriptor for the type in the "descriptor"
attribute. For example, integers are converted as follows:

%typemap(directorin,descriptor="I") int "$input = (jint) $1;"

$input is the SWIG name of the JNI temporary variable passed to Java in the upcall. The
descriptor="I" will put an I into the JNI field descriptor that identifies the Java method that will be called
from C++. For more about JNI field descriptors and their importance, refer to the JNI documentation mentioned
earlier. A typemap for C character strings is:

%typemap(directorin,descriptor="Ljava/lang/String;") char *
  %{ $input = jenv−>NewStringUTF($1); %}

User−defined types have the default "descriptor" attribute "L$packagepath/$javaclassname;" where
$packagepath is the package name passed from the SWIG command line and $javaclassname is the
Java proxy class' name. If the −package commandline option is not used to specify the package, then
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'$packagepath/' will be removed from the resulting output JNI field descriptor. Do not forget the terminating
';' for JNI field descriptors starting with 'L'. If the ';' is left out, Java will generate a "method not found"
runtime error.

%typemap(javadirectorin)

Conversion from jtype to jstype for director methods. These are Java code typemaps which transform the type
used in the Java intermediary JNI class (as specified in the "jtype" typemap) to the Java type used in the Java
module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap). This typemap
provides the conversion for the parameters in the director methods when calling up from C++ to Java. For
primitive types, this typemap is usually specified as:

%typemap(javadirectorin) int "$jniinput"

The $jniinput special variable is analogous to $javainput special variable. It is replaced by the input
parameter name.

%typemap(javadirectorout)

Conversion from jstype to jtype for director methods. These are Java code typemaps which transform the type
used in the Java module class, proxy classes and type wrapper classes (as specified in the "jstype" typemap) to
the type used in the Java intermediary JNI class (as specified in the "jtype" typemap). This typemap provides the
conversion for the return type in the director methods when returning from the C++ to Java upcall. For primitive
types, this typemap is usually specified as:

%typemap(javadirectorout) int "$javacall"

The $javacall special variable is analogous to the $jnicall special variable. It is replaced by the call to
the target Java method. The target method is the method in the Java proxy class which overrides the virtual C++
method in the C++ base class.

%typemap(javapackage)

The "javapackage" typemap is optional; it serves to identify a class's Java package. This typemap should be
used in conjunction with classes that are defined outside of the current SWIG interface file. For example:

// class Foo is handled in a different interface file:
%import "Foo.i"

%feature("director") Example;

%inline {
  class Bar { };

  class Example {
  public:
    virtual ~Example();
    void     ping(Foo *arg1, Bar *arg2);
  };
}

Assume that the Foo class is part of the Java package com.wombat.foo but the above interface file is part of the
Java package com.wombat.example. Without the "javapackage" typemap, SWIG will assume that the Foo class
belongs to com.wombat.example class. The corrected interface file looks like:

// class Foo is handled in a different interface file:
%import "Foo.i"
%typemap("javapackage") Foo, Foo *, Foo & "com.wombat.foo";
%feature("director") Example;
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%inline {
  class Bar { };

  class Example {
  public:
    virtual ~Example();
    void     ping(Foo *arg1, Bar *arg2);
  };
}

SWIG looks up the package based on the actual type (plain Foo, Foo pointer and Foo reference), so it is
important to associate all three types with the desired package. Practically speaking, you should create a
separate SWIG interface file, which is %import−ed into each SWIG interface file, when you have multiple Java
packages. Note the helper macros below, OTHER_PACKAGE_SPEC and ANOTHER_PACKAGE_SPEC, which
reduce the amount of extra typing. "TYPE..." is useful when passing templated types to the macro, since
multiargument template types appear to the SWIG preprocessor as multiple macro arguments.

%typemap("javapackage") SWIGTYPE, SWIGTYPE *, SWIGTYPE &
                                            "package.for.most.classes";

%define OTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.other.classes";
%enddef

%define ANOTHER_PACKAGE_SPEC(TYPE...)
%typemap("javapackage") TYPE, TYPE *, TYPE & "package.for.another.set";
%enddef

OTHER_PACKAGE_SPEC(Package_2_class_one)
ANOTHER_PACKAGE_SPEC(Package_3_class_two)
/* etc */

The basic strategy here is to provide a default package typemap for the majority of the classes, only providing
"javapackage" typemaps for the exceptions.

19.9 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "java.swg" and
"typemaps.i" in the SWIG library.

19.9.1 Simpler Java enums for enums without initializers

The default Proper Java enums approach to wrapping enums is somewhat verbose. This is to handle all possible C/C++ enums, in
particular enums with initializers. The generated code can be simplified if the enum being wrapped does not have any initializers.
The following shows how to remove the support methods that are generated by default and instead use the methods in the Java
enum base class java.lang.Enum and java.lang.Class for marshalling enums between C/C++ and Java. The type used
for the typemaps below is enum SWIGTYPE which is the default type used for all enums. The "enums.swg" file should be
examined in order to see the original overridden versions of the typemaps.

%include "enums.swg"

%typemap(javain) enum SWIGTYPE "$javainput.ordinal()"
%typemap(javaout) enum SWIGTYPE {
    return $javaclassname.class.getEnumConstants()[$jnicall];
  }
%typemap(javabody) enum SWIGTYPE ""

%inline %{
  enum HairType { blonde, ginger, brunette };
  void setHair(HairType h);
  HairType getHair();
%}
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SWIG will generate the following Java enum, which is somewhat simpler than the default:

public enum HairType {
  blonde,
  ginger,
  brunette;
}

and the two Java proxy methods will be:

public static void setHair(HairType h) {
  exampleJNI.setHair(h.ordinal());
}

public static HairType getHair() {
  return HairType.class.getEnumConstants()[exampleJNI.getHair()];
}/

For marshalling Java enums to C/C++ enums, the ordinal method is used to convert the Java enum into an integer value for
passing to the JNI layer, see the "javain" typemap. For marshalling C/C++ enums to Java enums, the C/C++ enum value is cast to
an integer in the C/C++ typemaps (not shown). This integer value is then used to index into the array of enum constants that the
Java language provides. See the getEnumConstants method in the "javaout" typemap.

These typemaps can often be used as the default for wrapping enums as in many cases there won't be any enum initializers. In fact
a good strategy is to always use these typemaps and to specifically handle enums with initializers using %apply. This would be
done by using the original versions of these typemaps in "enums.swg" under another typemap name for applying using %apply.

19.9.2 Handling C++ exception specifications as Java exceptions

This example demonstrates various ways in which C++ exceptions can be tailored and converted into Java exceptions. Let's
consider a simple file class SimpleFile and an exception class FileException which it may throw on error:

%include "std_string.i" // for std::string typemaps
#include <string>

class FileException {
  std::string message;
public:
  FileException(const std::string& msg) : message(msg) {}
  std::string what() {
    return message;
  }
};

class SimpleFile {
  std::string filename;
public:
  SimpleFile(const std::string& filename) : filename(filename) {}
  void open() throw(FileException) {
  ...
  }
};

As the open method has a C++ exception specification, SWIG will parse this and know that the method can throw an exception.
The "throws" typemap is then used when SWIG encounters an exception specification. The default generic "throws" typemap
looks like this:

%typemap(throws) SWIGTYPE, SWIGTYPE &, SWIGTYPE *, SWIGTYPE [ANY] %{
  SWIG_JavaThrowException(jenv, SWIG_JavaRuntimeException,
                          "C++ $1_type exception thrown");
  return $null;
%}
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Basically SWIG will generate a C++ try catch block and the body of the "throws" typemap constitutes the catch block. The above
typemap calls a SWIG supplied method which throws a java.lang.RuntimeException. This exception class is a runtime
exception and therefore not a checked exception. If, however, we wanted to throw a checked exception, say
java.io.IOException, then we could use the following typemap:

%typemap(throws, throws="java.io.IOException") FileException {
  jclass excep = jenv−>FindClass("java/io/IOException");
  if (excep)
    jenv−>ThrowNew(excep, $1.what().c_str());
  return $null;
}

Note that this typemap uses the 'throws' typemap attribute to ensure a throws clause is generated. The generated proxy method
then specifies the checked exception by containing java.io.IOException in the throws clause:

public class SimpleFile {
  ...
  public void open() throws java.io.IOException { ... }
}

Lastly, if you don't want to map your C++ exception into one of the standard Java exceptions, the C++ class can be wrapped and
turned into a custom Java exception class. If we go back to our example, the first thing we must do is get SWIG to wrap
FileException and ensure that it derives from java.lang.Exception. Additionally, we might want to override the
java.lang.Exception.getMessage() method. The typemaps to use then are as follows:

%typemap(javabase) FileException "java.lang.Exception";
%typemap(javacode) FileException %{
  public String getMessage() {
    return what();
  }
%}

This generates:

public class FileException extends java.lang.Exception {
  ...
  public String getMessage() {
    return what();
  }

  public FileException(String msg) { ... }

  public String what() {
    return exampleJNI.FileException_what(swigCPtr);
  }
}

We could alternatively have used %rename to rename what() into getMessage().

19.9.3 NaN Exception − exception handling for a particular type

A Java exception can be thrown from any Java or JNI code. Therefore, as most typemaps contain either Java or JNI code, just
about any typemap could throw an exception. The following example demonstrates exception handling on a type by type basis by
checking for 'Not a number' (NaN) whenever a parameter of type float is wrapped.

Consider the following C++ code:

bool calculate(float first, float second);

To validate every float being passed to C++, we could preceed the code being wrapped by the following typemap which throws
a runtime exception whenever the float is 'Not a Number':
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%module example
%typemap(javain) float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
  /** Simply returns the input value unless it is not a number,
      whereupon an exception is thrown. */
  static protected float CheckForNaN(float num) {
    if (Float.isNaN(num))
      throw new RuntimeException("Not a number");
    return num;
  }
%}

Note that the CheckForNaN support method has been added to the module class using the modulecode pragma. The
following shows the generated code of interest:

public class example {
  ...

  /** Simply returns the input value unless it is not a number,
      whereupon an exception is thrown. */
  static protected float CheckForNaN(float num) {
    if (Float.isNaN(num))
      throw new RuntimeException("Not a number");
    return num;
  }

  public static boolean calculate(float first, float second) {
    return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
  }
}

Note that the "javain" typemap is used for every occurrence of a float being used as an input. Of course, we could have
targetted the typemap at a particular parameter by using float first, say, instead of just float. If we decide that what we
actually want is a checked exception instead of a runtime exception, we can change this easily enough. The proxy method that
uses float as an input, must then add the exception class to the throws clause. SWIG can handle this as it supports the 'throws'
typemap attribute for specifying classes for the throws clause. Thus we can modify the pragma and the typemap for the throws
clause:

%typemap(javain, throws="java.lang.Exception") float "$module.CheckForNaN($javainput)"
%pragma(java) modulecode=%{
  /** Simply returns the input value unless it is not a number,
      whereupon an exception is thrown. */
  static protected float CheckForNaN(float num) throws java.lang.Exception {
    if (Float.isNaN(num))
      throw new RuntimeException("Not a number");
    return num;
  }
%}

The calculate method now has a throws clause and even though the typemap is used twice for both float first and
float second, the throws clause contains a single instance of java.lang.Exception:

public class example {
  ...

  /** Simply returns the input value unless it is not a number,
      whereupon an exception is thrown. */
  static protected float CheckForNaN(float num) throws java.lang.Exception {
    if (Float.isNaN(num))
      throw new RuntimeException("Not a number");
    return num;
  }

  public static boolean calculate(float first, float second) throws java.lang.Exception {
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    return exampleJNI.calculate(example.CheckForNaN(first), example.CheckForNaN(second));
  }
}

If we were a martyr to the JNI cause, we could replace the succinct code within the "javain" typemap with a few pages of JNI
code. If we had, we would have put it in the "in" typemap which, like all JNI and Java typemaps, also supports the 'throws'
attribute.

19.9.4 Converting Java String arrays to char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Java String array to be used as a char ** object.

%module example

/* This tells SWIG to treat char ** as a special case when used as a parameter
   in a function call */
%typemap(in) char ** (jint size) {
    int i = 0;
    size = (*jenv)−>GetArrayLength(jenv, $input);
    $1 = (char **) malloc((size+1)*sizeof(char *));
    /* make a copy of each string */
    for (i = 0; i<size; i++) {
        jstring j_string = (jstring)(*jenv)−>GetObjectArrayElement(jenv, $input, i);
        const char * c_string = (*jenv)−>GetStringUTFChars(jenv, j_string, 0);
        $1[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
        strcpy($1[i], c_string);
        (*jenv)−>ReleaseStringUTFChars(jenv, j_string, c_string);
        (*jenv)−>DeleteLocalRef(jenv, j_string);
    }
    $1[i] = 0;
}

/* This cleans up the memory we malloc'd before the function call */
%typemap(freearg) char ** {
    int i;
    for (i=0; i<size$argnum−1; i++)
      free($1[i]);
    free($1);
}

/* This allows a C function to return a char ** as a Java String array */
%typemap(out) char ** {
    int i;
    int len=0;
    jstring temp_string;
    const jclass clazz = (*jenv)−>FindClass(jenv, "java/lang/String");

    while ($1[len]) len++;    
    jresult = (*jenv)−>NewObjectArray(jenv, len, clazz, NULL);
    /* exception checking omitted */

    for (i=0; i<len; i++) {
      temp_string = (*jenv)−>NewStringUTF(jenv, *result++);
      (*jenv)−>SetObjectArrayElement(jenv, jresult, i, temp_string);
      (*jenv)−>DeleteLocalRef(jenv, temp_string);
    }
}

/* These 3 typemaps tell SWIG what JNI and Java types to use */
%typemap(jni) char ** "jobjectArray"
%typemap(jtype) char ** "String[]"
%typemap(jstype) char ** "String[]"

/* These 2 typemaps handle the conversion of the jtype to jstype typemap type
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   and visa versa */
%typemap(javain) char ** "$javainput"
%typemap(javaout) char ** {
    return $jnicall;
  }

/* Now a few test functions */
%inline %{

int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i, argv[i]);
         i++;
    }
    return i;
}

char **get_args() {
  static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
  return &values[0];
}

%}

Note that the 'C' JNI calling convention is used. Checking for any thrown exceptions after JNI function calls has been omitted.
When this module is compiled, our wrapped C functions can be used by the following Java program:

// File main.java

public class main {

  static {
    try {
     System.loadLibrary("example");
    } catch (UnsatisfiedLinkError e) {
      System.err.println("Native code library failed to load. " + e);
      System.exit(1);
    }
  }

  public static void main(String argv[]) {
    String animals[] = {"Cat","Dog","Cow","Goat"};
    example.print_args(animals);
    String args[] = example.get_args();
    for (int i=0; i<args.length; i++)
        System.out.println(i + ":" + args[i]);
  }
}

When compiled and run we get:

$ java main
argv[0] = Cat
argv[1] = Dog
argv[2] = Cow
argv[3] = Goat
0:Dave
1:Mike
2:Susan
3:John
4:Michelle

In the example, a few different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
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this memory after the execution of the C function. The "out" typemap is used for function return values. Lastly the "jni", "jtype"
and "jstype" typemaps are also required to specify what Java types to use.

19.9.5 Expanding a Java object to multiple arguments

Suppose that you had a collection of C functions with arguments such as the following:

int foo(int argc, char **argv);

In the previous example, a typemap was written to pass a Java String array as the char **argv. This allows the function to be
used from Java as follows:

example.foo(4, new String[]{"red", "green", "blue", "white"});

Although this works, it's a little awkward to specify the argument count. To fix this, a multi−argument typemap can be defined.
This is not very difficult−−you only have to make slight modifications to the previous example's typemaps:

%typemap(in) (int argc, char **argv) {
    int i = 0;
    $1 = (*jenv)−>GetArrayLength(jenv, $input);
    $2 = (char **) malloc(($1+1)*sizeof(char *));
    /* make a copy of each string */
    for (i = 0; i<$1; i++) {
        jstring j_string = (jstring)(*jenv)−>GetObjectArrayElement(jenv, $input, i);
        const char * c_string = (*jenv)−>GetStringUTFChars(jenv, j_string, 0);
        $2[i] = malloc(strlen((c_string)+1)*sizeof(const char *));
        strcpy($2[i], c_string);
        (*jenv)−>ReleaseStringUTFChars(jenv, j_string, c_string);
        (*jenv)−>DeleteLocalRef(jenv, j_string);
    }
    $2[i] = 0;
}

%typemap(freearg) (int argc, char **argv) {
    int i;
    for (i=0; i<$1−1; i++)
      free($2[i]);
    free($2);
}

%typemap(jni) (int argc, char **argv) "jobjectArray"
%typemap(jtype) (int argc, char **argv) "String[]"
%typemap(jstype) (int argc, char **argv) "String[]"

%typemap(javain) (int argc, char **argv) "$javainput"

When writing a multiple−argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code
simply fills in the appropriate values from the supplied Java parameter.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by
the typemap code. For example:

example.foo(new String[]{"red", "green", "blue", "white"});

19.9.6 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in function parameters rather than in the return value of a
function. The typemaps.i file defines INPUT, OUTPUT and INOUT typemaps which can be used to solve some instances of
this problem. This library file uses an array as a means of moving data to and from Java when wrapping a C function that takes
non const pointers or non const references as parameters.
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Now we are going to outline an alternative approach to using arrays for C pointers. The INOUT typemap uses a double[] array
for receiving and returning the double* parameters. In this approach we are able to use a Java class myDouble instead of
double[] arrays where the C pointer double* is required.

Here is our example function:

/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2);

If we define a structure MyDouble containing a double member variable and use some typemaps we can solve this problem.
For example we could put the following through SWIG:

%module example

/* Define a new structure to use instead of double * */
%inline %{
typedef struct {
    double value;
} MyDouble;
%}

%{
/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2) {
  int status = 1;
  *out1 = a*10.0;
  *out2 = b*100.0;
  return status;
};
%}

/* 
This typemap will make any double * function parameters with name OUTVALUE take an
argument of MyDouble instead of double *. This will 
allow the calling function to read the double * value after returning from the function.
*/
%typemap(in) double *OUTVALUE {
    jclass clazz = jenv−>FindClass("MyDouble");
    jfieldID fid = jenv−>GetFieldID(clazz, "swigCPtr", "J");
    jlong cPtr = jenv−>GetLongField($input, fid);
    MyDouble *pMyDouble = NULL;
    *(MyDouble **)&pMyDouble = *(MyDouble **)&cPtr;
    $1 = &pMyDouble−>value;
}

%typemap(jtype) double *OUTVALUE "MyDouble"
%typemap(jstype) double *OUTVALUE "MyDouble"
%typemap(jni) double *OUTVALUE "jobject"

%typemap(javain) double *OUTVALUE "$javainput"

/* Now we apply the typemap to the named variables */
%apply double *OUTVALUE { double *out1, double *out2 };
int spam(double a, double b, double *out1, double *out2);

Note that the C++ JNI calling convention has been used this time and so must be compiled as C++ and the −c++ commandline
must be passed to SWIG. JNI error checking has been omitted for clarity.

What the typemaps do are make the named double* function parameters use our new MyDouble wrapper structure. The "in"
typemap takes this structure, gets the C++ pointer to it, takes the double value member variable and passes it to the C++
spam function. In Java, when the function returns, we use the SWIG created getValue() function to get the output value. The
following Java program demonstrates this:
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// File: main.java

public class main {

  static {
    try {
      System.loadLibrary("example");
    } catch (UnsatisfiedLinkError e) {
      System.err.println("Native code library failed to load. " + e);
      System.exit(1);
    }
  }

  public static void main(String argv[]) {
    MyDouble out1 = new MyDouble();
    MyDouble out2 = new MyDouble();
    int ret = example.spam(1.2, 3.4, out1, out2);
    System.out.println(ret + "  " + out1.getValue() + "  " + out2.getValue());
  }
}

When compiled and run we get:

$ java main
1 12.0  340.0

19.9.7 Adding Java downcasts to polymorphic return types

SWIG support for polymorphism works in that the appropriate virtual function is called. However, the default generated code
does not allow for downcasting. Let's examine this with the follow code:

%include "std_string.i"

#include <iostream>
using namespace std;
class Vehicle {
public:
    virtual void start() = 0;
...
};

class Ambulance : public Vehicle {
    string vol;
public:
    Ambulance(string volume) : vol(volume) {}
    virtual void start() {
        cout << "Ambulance started" << endl;
    }
    void sound_siren() {
        cout << vol << " siren sounded!" << endl;
    }
...
};

Vehicle *vehicle_factory() {
    return new Ambulance("Very loud");
}

If we execute the following Java code:

Vehicle vehicle = example.vehicle_factory();
vehicle.start();

Ambulance ambulance = (Ambulance)vehicle;
ambulance.sound_siren();
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We get:

Ambulance started
java.lang.ClassCastException
        at main.main(main.java:16)

Even though we know from examination of the C++ code that vehicle_factory returns an object of type Ambulance, we
are not able to use this knowledge to perform the downcast in Java. This occurs because the runtime type information is not
completely passed from C++ to Java when returning the type from vehicle_factory(). Usually this is not a problem as
virtual functions do work by default, such as in the case of start(). There are a few solutions to getting downcasts to work.

The first is not to use a Java cast but a call to C++ to make the cast. Add this to your code:

%exception Ambulance::dynamic_cast(Vehicle *vehicle) {
    $action
    if (!result) {
        jclass excep = jenv−>FindClass("java/lang/ClassCastException");
        if (excep) {
            jenv−>ThrowNew(excep, "dynamic_cast exception");
        }
    }
}
%extend Ambulance {
    static Ambulance *dynamic_cast(Vehicle *vehicle) {
        return dynamic_cast<Ambulance *>(vehicle);
    }
};

It would then be used from Java like this

Ambulance ambulance = Ambulance.dynamic_cast(vehicle);
ambulance.sound_siren();

Should vehicle not be of type ambulance then a Java ClassCastException is thrown. The next solution is a purer
solution in that Java downcasts can be performed on the types. Add the following before the definition of vehicle_factory:

%typemap(out) Vehicle * {
    Ambulance *downcast = dynamic_cast<Ambulance *>($1);
    *(Ambulance **)&$result = downcast;
}

%typemap(javaout) Vehicle * {
    return new Ambulance($jnicall, $owner);
  }

Here we are using our knowledge that vehicle_factory always returns type Ambulance so that the Java proxy is created as
a type Ambulance. If vehicle_factory can manufacture any type of Vehicle and we want to be able to downcast using
Java casts for any of these types, then a different approach is needed. Consider expanding our example with a new Vehicle type
and a more flexible factory function:

class FireEngine : public Vehicle {
public:
    FireEngine() {}
    virtual void start() {
        cout << "FireEngine started" << endl;
    }
    void roll_out_hose() {
        cout << "Hose rolled out" << endl;
    }
 ...
};
Vehicle *vehicle_factory(int vehicle_number) {
    if (vehicle_number == 0)
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        return new Ambulance("Very loud");
    else
        return new FireEngine();
}

To be able to downcast with this sort of Java code:

FireEngine fireengine = (FireEngine)example.vehicle_factory(1);
fireengine.roll_out_hose();
Ambulance ambulance = (Ambulance)example.vehicle_factory(0);
ambulance.sound_siren();

the following typemaps targeted at the vehicle_factory function will achieve this. Note that in this case, the Java class is
constructed using JNI code rather than passing a pointer across the JNI boundary in a Java long for construction in Java code.

%typemap(jni) Vehicle *vehicle_factory "jobject"
%typemap(jtype) Vehicle *vehicle_factory "Vehicle"
%typemap(jstype) Vehicle *vehicle_factory "Vehicle"
%typemap(javaout) Vehicle *vehicle_factory {
    return $jnicall;
  }

%typemap(out) Vehicle *vehicle_factory {
    Ambulance *ambulance = dynamic_cast<Ambulance *>($1);
    FireEngine *fireengine = dynamic_cast<FireEngine *>($1);
    if (ambulance) {
        // call the Ambulance(long cPtr, boolean cMemoryOwn) constructor
        jclass clazz = jenv−>FindClass("Ambulance");
        if (clazz) {
            jmethodID mid = jenv−>GetMethodID(clazz, "<init>", "(JZ)V");
            if (mid) {
                jlong cptr = 0;
                *(Ambulance **)&cptr = ambulance; 
                $result = jenv−>NewObject(clazz, mid, cptr, false);
            }
        }
    } else if (fireengine) {
        // call the FireEngine(long cPtr, boolean cMemoryOwn) constructor
        jclass clazz = jenv−>FindClass("FireEngine");
        if (clazz) {
            jmethodID mid = jenv−>GetMethodID(clazz, "<init>", "(JZ)V");
            if (mid) {
                jlong cptr = 0;
                *(FireEngine **)&cptr = fireengine; 
                $result = jenv−>NewObject(clazz, mid, cptr, false);
            }
        }
    }
    else {
        cout << "Unexpected type " << endl;
    }

    if (!$result)
        cout << "Failed to create new java object" << endl;
}

Better error handling would need to be added into this code. There are other solutions to this problem, but this last example
demonstrates some more involved JNI code. SWIG usually generates code which constructs the proxy classes using Java code as
it is easier to handle error conditions and is faster. Note that the JNI code above uses a number of string lookups to call a
constructor, whereas this would not occur using byte compiled Java code.
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19.9.8 Adding an equals method to the Java classes

When a pointer is returned from a JNI function, it is wrapped using a new Java proxy class or type wrapper class. Even when the
pointers are the same, it will not be possible to know that the two Java classes containing those pointers are actually the same
object. It is common in Java to use the equals() method to check whether two objects are equivalent. An equals method is
easily added to all proxy classes. For example:

%typemap(javacode) SWIGTYPE %{
  public boolean equals(Object obj) {
    boolean equal = false;
    if (obj instanceof $javaclassname)
      equal = ((($javaclassname)obj).swigCPtr == this.swigCPtr);
    return equal;
  }
%}

class Foo { };
Foo* returnFoo(Foo *foo) { return foo; }

The following would display false without the javacode typemap above. With the typemap defining the equals method the
result is true.

Foo foo1 = new Foo();
Foo foo2 = example.returnFoo(foo1);
System.out.println("foo1? " + foo1.equals(foo2));

19.9.9 Void pointers and a common Java base class

One might wonder why the common code that SWIG emits for the proxy and type wrapper classes is not pushed into a base class.
The reason is that although swigCPtr could be put into a common base class for all classes wrapping C structures, it would not
work for C++ classes involved in an inheritance chain. Each class derived from a base needs a separate swigCPtr because C++
compilers sometimes use a different pointer value when casting a derived class to a base. Additionally as Java only supports single
inheritance, it would not be possible to derive wrapped classes from your own pure Java classes if the base class has been 'used up'
by SWIG. However, you may want to move some of the common code into a base class. Here is an example which uses a
common base class for all proxy classes and type wrapper classes:

%typemap(javabase) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], 
                                                         SWIGTYPE (CLASS::*) "SWIG"

%typemap(javacode) SWIGTYPE, SWIGTYPE *, SWIGTYPE &, SWIGTYPE [], 
                                                         SWIGTYPE (CLASS::*) %{
  protected long getPointer() {
    return swigCPtr;
  }
%}

Define new base class called SWIG:

public abstract class SWIG {
  protected abstract long getPointer();

  public boolean equals(Object obj) {
    boolean equal = false;
    if (obj instanceof SWIG)
      equal = (((SWIG)obj).getPointer() == this.getPointer());
    return equal;
  }

  SWIGTYPE_p_void getVoidPointer() {
    return new SWIGTYPE_p_void(getPointer(), false);
  }
}
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This example contains some useful functionality which you may want in your code.

It has an equals() method. Unlike the previous example, the method code isn't replicated in all classes.• 
It also has a function which effectively implements a cast from the type of the proxy/type wrapper class to a void pointer.
This is necessary for passing a proxy class or a type wrapper class to a function that takes a void pointer.

• 

19.10 Living with Java Directors

This section is intended to address frequently asked questions and frequently encountered problems when using Java directors.

When my program starts up, it complains that method_foo cannot be found in a Java method called swig_module_init.
How do I fix this?

Open up the C++ wrapper source code file and look for "method_foo" (include the double quotes, they are
important!) Look at the JNI field descriptor and make sure that each class that occurs in the descriptor has the correct
package name in front of it. If the package name is incorrect, put a "javapackage" typemap in your SWIG interface file.

1. 

I'm compiling my code and I'm using templates. I provided a javapackage typemap, but SWIG doesn't generate the right
JNI field descriptor.

Use the template's renamed name as the argument to the "javapackage" typemap:

%typemap(javapackage)  std::vector<int>  "your.package.here"
%template(VectorOfInt) std::vector<int>;

2. 

When I pass class pointers or references through a C++ upcall and I try to type cast them, Java complains with a
ClassCastException. What am I doing wrong?

Normally, a non−director generated Java proxy class creates temporary Java objects as follows:

public static void MyClass_method_upcall(MyClass self, long jarg1)
{
  Foo darg1 = new Foo(jarg1, false);

  self.method_upcall(darg1);
}

Unfortunately, this loses the Java type information that is part of the underlying Foo director proxy class's java object
pointer causing the type cast to fail. The SWIG Java module's director code attempts to correct the problem, but only for
director−enabled classes, since the director class retains a global reference to its Java object. Thus, for director−enabled
classes and only for director−enabled classes, the generated proxy Java code looks somthing like:

public static void MyClass_method_upcall(MyClass self, long jarg1,
                                         Foo jarg1_object)
{
  Foo darg1 = (jarg1_object != null ? jarg1_object : new Foo(jarg1, false));

  self.method_upcall(darg1);
}

When you import a SWIG interface file containing class definitions, the classes you want to be director−enabled must be
have the feature("director") enabled for type symmetry to work. This applies even when the class being
wrapped isn't a director−enabled class but takes parameters that are director−enabled classes.

The current "type symmetry" design will work for simple C++ inheritance, but will most likely fail for anything more
compicated such as tree or diamond C++ inheritance hierarchies. Those who are interested in challenging problems are
more than welcome to hack the Java::Java_director_declaration method in
Source/Modules/java.cxx.

3. 
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If all else fails, you can use the downcastXXXXX() method to attempt to recover the director class's Java object pointer.
For the Java Foo proxy class, the Foo director class's java object pointer can be accessed through the javaObjectFoo()
method. The generated method's signature is:

  public static Foo javaObjectFoo(Foo obj);

From your code, this method is invoked as follows:

public class MyClassDerived {
  public void method_upcall(Foo foo_object)
  {
    FooDerived    derived = (foo_object != null ?
                 (FooDerived) Foo.downcastFoo(foo_object) : null);
    /* rest of your code here */
  }
}

An good approach for managing downcasting is placing a static method in each derived class that performs the downcast
from the superclass, e.g.,

public class FooDerived extends Foo {
  /* ... */
  public static FooDerived downcastFooDerived(Foo foo_object)
  {
    try {
     return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object);
    }

    catch (ClassCastException exc) {
      // Wasn't a FooDerived object, some other sublcass of Foo
      return null;
    }
  }
}

Then change the code in MyClassDerived as follows:

public class MyClassDerived extends MyClass {
  /* ... */
  public void method_upcall(Foo foo_object)
  {
    FooDerived    derived = FooDerived.downcastFooDerived(foo_object) : null);
    /* rest of your code here */
  }
}

Why isn't the proxy class declared abstract? Why aren't the director upcall methods in the proxy class declared abstract?

Declaring the proxy class and its methods abstract would break the JNI argument marshalling and SWIG's downcall
functionality (going from Java to C++.) Create an abstract Java subclass that inherits from the director−enabled class
instead. Using the previous Foo class example:

public abstract class UserVisibleFoo extends Foo {
  /** Make sure user overrides this method, it's where the upcall
   * happens.
   */
  public abstract void method_upcall(Foo foo_object);

  /// Downcast from Foo to UserVisibleFoo
  public static UserVisibleFoo downcastUserVisibleFoo(Foo foo_object)
  {
    try {
     return (foo_object != null ? (FooDerived) Foo.downcastFoo(foo_object) : null);
    }

4. 
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    catch (ClassCastException exc) {
      // Wasn't a FooDerived object, some other sublcass of Foo
      return null;
    }
  }
}

This doesn't prevent the user from creating subclasses derived from Foo, however, UserVisibleFoo provides the safety
net that reminds the user to override the method_upcall() method.

19.11 Odds and ends

19.11.1 JavaDoc comments

The SWIG documentation system is currently deprecated. When it is resurrected JavaDoc comments will be fully supported. If
you can't wait for the full documentation system a couple of workarounds are available. The %javamethodmodifiers feature
can be used for adding proxy class method comments and module class method comments. The "javaimports" typemap can be
hijacked for adding in proxy class JavaDoc comments. The jniclassimports or jniclassclassmodifiers pragmas
can also be used for adding intermediary JNI class comments and likewise the moduleimports or
moduleclassmodifiers pragmas for the module class. Here is an example adding in a proxy class and method comment:

%javamethodmodifiers Barmy::lose_marbles() "
  /**
    * Calling this method will make you mad.
    * Use with <b>utmost</b> caution. 
    */
  public";

%typemap(javaimports) Barmy "
/** The crazy class. Use as a last resort. */"

class Barmy {
public:
  void lose_marbles() {}
};

Note the "public" added at the end of the %javamethodmodifiers as this is the default for this feature. The generated proxy
class with JavaDoc comments is then as follows:

/** The crazy class. Use as a last resort. */
public class Barmy {
...
  /**
    * Calling this method will make you mad.
    * Use with <b>utmost</b> caution. 
    */
  public void lose_marbles() {
    ...
  }
...
}

19.11.2 Functional interface without proxy classes

It is possible to run SWIG in a mode that does not produce proxy classes by using the −noproxy commandline option. The
interface is rather primitive when wrapping structures or classes and is accessed through function calls to the module class. All the
functions in the module class are wrapped by functions with identical names as those in the intermediary JNI class.

Consider the example we looked at when examining proxy classes:

class Foo {
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public:
     int x;
     int spam(int num, Foo* foo);
};

When using −noproxy, type wrapper classes are generated instead of proxy classes. Access to all the functions and variables is
through a C like set of functions where the first parameter passed is the pointer to the class, that is an instance of a type wrapper
class. Here is what the module class looks like:

public class example {
  public static void set_Foo_x(SWIGTYPE_p_Foo self, int x) {...}
  public static int get_Foo_x(SWIGTYPE_p_Foo self) {...}
  public static int Foo_spam(SWIGTYPE_p_Foo self, int num, SWIGTYPE_p_Foo foo) {...}
  public static SWIGTYPE_p_Foo new_Foo() {...}
  public static void delete_Foo(SWIGTYPE_p_Foo self) {...}
}

This approach is not nearly as natural as using proxy classes as the functions need to be used like this:

SWIGTYPE_p_Foo foo = example.new_Foo();
example.set_Foo_x(foo, 10);
int var = example.get_Foo_x(foo);
example.Foo_spam(foo, 20, foo);
example.delete_Foo(foo);

Unlike proxy classes, there is no attempt at tracking memory. All destructors have to be called manually for example the
delete_Foo(foo) call above.

19.11.3 Using your own JNI functions

You may have some hand written JNI functions that you want to use in addition to the SWIG generated JNI functions. Adding
these to your SWIG generated package is possible using the %native directive. If you don't want SWIG to wrap your JNI
function then of course you can simply use the %ignore directive. However, if you want SWIG to generate just the Java code
for a JNI function then use the %native directive. The C types for the parameters and return type must be specified in place of
the JNI types and the function name must be the native method name. For example:

%native (HandRolled) void HandRolled(int, char *);
%{
JNIEXPORT void JNICALL Java_packageName_moduleName_HandRolled(JNIEnv *, jclass,
                                                              jlong, jstring);
%}

No C JNI function will be generated and the Java_packageName_moduleName_HandRolled function will be accessible
using the SWIG generated Java native method call in the intermediary JNI class which will look like this:

  public final static native void HandRolled(int jarg1, String jarg2);

and as usual this function is wrapped by another which for a global C function would appear in the module class:

  public static void HandRolled(int arg0, String arg1) {
    exampleJNI.HandRolled(arg0, arg1);
  }

The packageName and moduleName must of course be correct else you will get linker errors when the JVM dynamically
loads the JNI function. You may have to add in some "jtype", "jstype", "javain" and "javaout" typemaps when wrapping some JNI
types. Here the default typemaps work for for int and char *.

In summary the %native directive is telling SWIG to generate the Java code to access the JNI C code, but not the JNI C
function itself. This directive is only really useful if you want to mix your own hand crafted JNI code and the SWIG generated
code into one Java class or package.
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19.11.4 Performance concerns and hints

If you're directly manipulating huge arrays of complex objects from Java, performance may suffer greatly when using the array
functions in arrays_java.i. Try and minimise the expensive JNI calls to C/C++ functions, perhaps by using temporary Java
variables instead of accessing the information directly from the C/C++ object.

Java classes without any finalizers generally speed up code execution as there is less for the garbage collector to do. Finalizer
generation can be stopped by using an empty javafinalize typemap:

%typemap(javafinalize) SWIGTYPE ""

However, you will have to be careful about memory management and make sure that you code in a call to the delete()
member function. This method calls the C++ destructor or free() for C code.

19.12 Examples

The directory Examples/java has a number of further examples. Take a look at these if you want to see some of the techniques
described in action. The Examples/index.html file in the parent directory contains the SWIG Examples Documentation and is a
useful starting point. If your SWIG installation went well Unix users should be able to type make in each example directory, then
java main to see them running. For the benefit of Windows users, there are also Visual C++ project files in a couple of the
Windows Examples.
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20 SWIG and Modula−3
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Why Modula−3 ?♦ 
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More hints to the generator
Features♦ 
Pragmas♦ 
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Remarks• 

This chapter describes SWIG's support of Modula−3. You should be familiar with the basics of SWIG, especially typemaps.

20.1 Overview

The Modula−3 support is very basic and highly experimental! Many features are still not designed satisfyingly and I need more
discussion about the odds and ends. Don't rely on any feature, incompatible changes are likely in the future! The Modula−3
generator was already useful for interfacing to the libraries

PLPlot1. 
FFTW .2. 

I took some more time to explain why I think it's right what I'm doing. So the introduction got a bit longer than it should ... ;−)

20.1.1 Why not scripting ?

SWIG started as wrapper from the fast compiled languages C and C++ to high level scripting languages like Python. Although
scripting languages are designed to make programming life easier by hiding machine internals from the programmer there are
several aspects of todays scripting languages that are unfavourable in my opinion.

Besides C, C++, Cluster (a Modula derivate for Amiga computers) I evaluated several scripting like languages in the past:
Different dialects of BASIC, Perl, ARexx (a variant of Rexx for Amiga computers), shell scripts. I found them too inconsistent,
too weak in distinguishing types, too weak in encapsulating pieces of code. Eventually I have started several projects in Python
because of the fine syntax. But when projects became larger I lost the track. I got convinced that one can not have maintainable
code in a language that is not statically typed. In fact the main advantages of scripting languages e.g. matching regular
expressions, complex built−in datatypes like lists, dictionaries, are not advantages of the language itself but can be provided by
function libraries.
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20.1.2 Why Modula−3 ?

Modula−3 is a compiler language in the tradition of Niklaus Wirth's Modula 2, which is in turn a successor of the popular Pascal.
I have chosen Modula−3 because of its logical syntax, strong modularization, the type system which is very detailed for machine
types compared to other languages. Of course it supports all of the modern games like exceptions, objects, garbage collection,
threads. While C++ programmers must control three languages, namely the preprocessor, C and ++, Modula−3 is made in one go
and the language definition is really compact.

On the one hand Modula−3 can be safe (but probably less efficient) in normal modules while providing much static and dynamic
safety. On the other hand you can write efficient but less safe code in the style of C within UNSAFE modules.

Unfortunately Modula's safety and strength requires more writing than scripting languages do. Today if I want to safe characters I
prefer Haskell (similar to OCAML) − it's statically typed, too.

20.1.3 Why C / C++ ?

Although it is no problem to write Modula−3 programs that performs as fast as C most libraries are not written in Modula−3 but
in C. Fortunately the binary interface of most function libraries can be addressed by Modula−3. Even more fortunately even
non−C libraries may provide C header files. This is where SWIG becomes helpful.

20.1.4 Why SWIG ?

The C headers and the possibility to interface to C libraries still leaves the work for you to write Modula−3 interfaces to them. To
make things comfortable you will also need wrappers that convert between high−level features of Modula−3 (garbage collecting,
exceptions) and the low level of the C libraries.

SWIG converts C headers to Modula−3 interfaces for you. You could call the C functions without loss of efficiency but it won't
be joy because you could not pass TEXTs or open arrays and you would have to process error return codes rather then exceptions.
But using some typemaps SWIG will also generate wrappers that bring the whole Modula−3 comfort to you. If the library API is
ill designed writing appropriate typemaps can be still time−consuming. E.g. C programmers are very creative to work−around
missing data types like (real) enumerations and sets. You should turn such work−arounds back to the Modula−3 way otherwise
you lose static safety and consistency.

But you have still a problem: C library interfaces are often ill. They lack for certain information because C compilers wouldn't
care about. You should integrate detailed type information by adding typedefs and consts and you should persuade the C
library programmer to add this information to his interface. Only this way other language users can benefit from your work and
only this way you can easily update your interfaces when a new library version is released. You will realise that writing good
SWIG interfaces is very costly and it will only amortise when considering evolving libraries.

Without SWIG you would probably never consider to call C++ libraries from Modula−3. But with SWIG this is worth a
consideration. SWIG can write C wrappers to C++ functions and object methods that may throw exceptions. In fact it breaks
down C++ libraries to C interfaces which can be in turn called from Modula−3. To make it complete you can hide the C interface
with Modula−3 classes and exceptions.

Although SWIG does the best it can do it can only serve as a one−way strategy. That means you can use C++ libraries with
Modula−3 (even with call back functions), but it's certainly not possible to smoothly integrate Modula−3 code into a C / C++
project.

20.2 Conception

20.2.1 Interfaces to C libraries

Modula−3 has an integrated support for calling C functions. This is also extensively used by the standard Modula−3 libraries to
call OS functions. The Modula−3 part of SWIG and the corresponding SWIG library modula3.swg contain code that uses these
features. Because of the built−in support there is no need for calling the SWIG kernel to generate wrappers written in C. All
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conversion and argument checking can be done in Modula−3 and the interfacing is quite efficient. All you have to do is to write
pieces of Modula−3 code that SWIG puts together.

C library support integrated in Modula−3

Pragma <* EXTERNAL
*>

Precedes a declaration of a PROCEDURE that is implemented in an external library instead of a
Modula−3 module.

Pragma <* CALLBACK
*>

Precedes a declaration of a PROCEDURE that should be called by external library code.

Module Ctypes Contains Modula−3 types that match some basic C types.

Module M3toC Contains routines that convert between Modula−3's TEXT type and C's char * type.

In each run of SWIG the Modula−3 part generates several files:

Module name
scheme

Identifier for
%insert

Description

ModuleRaw.i3 m3rawintf
Declaration of types that are equivalent to those of the C library, EXTERNAL
procedures as interface to the C library functions

ModuleRaw.m3 m3rawimpl Almost empty.

Module.i3 m3wrapintf Declaration of comfortable wrappers to the C library functions.

Module.m3 m3wrapimpl
Implementation of the wrappers that convert between Modula−3 and C types,
check for validity of values, hand−over resource management to the garbage
collector using WeakRefs and raises exceptions.

m3makefile m3makefile

Add the modules above to the Modula−3 project and specify the name of the
Modula−3 wrapper library to be generated. Today I'm not sure if it is a good idea
to create a m3makefile in each run, because SWIG must be started for each
Modula−3 module it creates. Thus the m3makefile is overwritten each time. :−(

Here's a scheme of how the function calls to Modula−3 wrappers are redirected to C library functions:

Modula−3 wrapper
Module.i3

generated by Modula−3 part of SWIG

|
v

Modula−3 interface to C
ModuleRaw.i3

generated by Modula−3 part of SWIG
−−> C library

I have still no good conception how one can split C library interfaces into type oriented interfaces. A Module in Modula−3
represents an Abstract DataType (or call it a static classes, i.e. a class without virtual methods). E.g. if you have a principal type,
say Database, it is good Modula−3 style to set up one Module with the name Database where the database type is declared
with the name T and where all functions are declared that operates on it.

The normal operation of SWIG is to generate a fixed set of files per call. To generate multiple modules one has to write one
SWIG interface (different SWIG interfaces can share common data) per module. Identifiers belonging to a different module may
ignored (%ignore) and the principal type must be renamed (%typemap).

20.2.2 Interfaces to C++ libraries

Interfaces to C++ files are much more complicated and there are some more design decisions that are not made, yet. Modula−3
has no support for C++ functions but C++ compilers should support generating C++ functions with a C interface.

Here's a scheme of how the function calls to Modula−3 wrappers a redirected to C library functions:
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Modula−3 wrapper
Module.i3

generated by Modula−3 part of SWIG
C++ library

|
v

^
|

Modula−3 interface to C
ModuleRaw.i3

generated by Modula−3 part of SWIG
−−>

C interface to C++
module_wrap.cxx

generated by the SWIG core
Wrapping C++ libraries arises additional problems:

Is it sensible to wrap C++ classes with Modula−3 classes?• 
How to find the wrapping Modula−3 class for a class pointer that is returned by a C++ routine?• 
How to deal with multiple inheritance which was neglected for Modula−3 for good reasons?• 
Is it possible to sub−class C++ classes with Modula−3 code? This issue is addressed by directors, a feature that was
experimentally added to some Language modules like Java and Python.

• 

How to manage storage with the garbage collector of Modula−3? Support for %newobject and
%typemap(newfree) isn't implemented, yet. What's about resources that are managed by the garbage collector but
shall be passed back to the storage management of the C++ library? This is a general issue which is not solved in a
satisfying fashion as far as I know.

• 

How to turn C++ exceptions into Modula−3 exceptions? There's also no support for %exception, yet.• 

Be warned: There is no C++ library I wrote a SWIG interface for, so I'm not sure if this is possible or sensible, yet.

20.3 Preliminaries

20.3.1 Compilers

There are different Modula−3 compilers around: cm3, pm3, ezm3, Klagenfurth Modula−3, Cambridge Modula−3. SWIG itself
does not contain compiler specific code but the library file modula3.swg may do so. For testing examples I use Critical Mass
cm3.

20.3.2 Additional Commandline Options

There are some experimental command line options that prevent SWIG from generating interface files. Instead files are emitted
that may assist you when writing SWIG interface files.

Modula−3 specific
options

Description

−generateconst
<file>

Disable generation of interfaces and wrappers. Instead write code for computing numeric values of constants
to the specified file.
C code may contain several constant definitions written as preprocessor macros. Other language modules of
SWIG use compute−once−use−readonly variables or functions to wrap such definitions. All of them can
invoke C code dynamically for computing the macro values. But if one wants to turn them into Modula−3
integer constants, enumerations or set types, the values of these expressions has to be known statically.
Although definitions like (1 << FLAG_MAXIMIZEWINDOW) must be considered as good C style they are
hard to convert to Modula−3 since the value computation can use every feature of C.
Thus I implemented these switch to extract all constant definitions and write a C program that output the
values of them. It works for numeric constants only and treats all of them as double. Future versions may
generate a C++ program that can detect the type of the macros by overloaded output functions. Then strings
can also be processed.

−generaterename
<file>

Disable generation of interfaces and wrappers. Instead generate suggestions for %rename.
C libraries use a naming style that is neither homogenous nor similar to that of Modula−3. C function names
often contain a prefix denoting the library and some name components separated by underscores or
capitalization changes. To get library interfaces that are really Modula−3 like you should rename the
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function names with the %rename directive. This switch outputs a list of such directives with a name
suggestion generated by a simple heuristic.

−generatetypemap
<file>

Disable generation of interfaces and wrappers. Instead generate templates for some basic typemaps.

20.4 Modula−3 typemaps

20.4.1 Inputs and outputs

Each C procedure has a bunch of inputs and outputs. Inputs are passed as function arguments, outputs are updated referential
arguments and the function value.

Each C type can have several typemaps that apply only in case if a type is used for an input argument, for an output argument, or
for a return value. A further typemap may specify the direction that is used for certain parameters. I have chosen this separation in
order to be able to write general typemaps for the typemap library modula3.swg . In the library code the final usage of the type
is not known. Using separate typemaps for each possible use allows appropriate definitions for each case. If these pre−definitions
are fine then the direction of the function parameter is the only hint the user must give.

The typemaps specific to Modula−3 have a common name scheme: A typemap name starts with "m3", followed by "raw" or
"wrap" depending on whether it controls the generation of the ModuleRaw.i3 or the Module.i3, respectively. It follows an "in"
for typemaps applied to input argument, "out" for output arguments, "arg" for all kind of arguments, "ret" for returned values.

The main task of SWIG is to build wrapper function, i.e. functions that convert values between C and Modula−3 and call the
corresponding C function. Modula−3 wrapper functions generated by SWIG consist of the following parts:

Generate PROCEDURE signature.• 
Declare local variables.• 
Convert input values from Modula−3 to C.• 
Check for input value integrity.• 
Call the C function.• 
Check returned values, e.g. error codes.• 
Convert and write back values into Modula−3 records.• 
Free temporary storage.• 
Return values.• 

Typemap Example Description

m3wrapargvar $1: INTEGER := $1_name;
Declaration of some variables needed for temporary
results.

m3wrapargconst$1 = "$1_name";
Declaration of some constant, maybe for debug
purposes.

m3wrapargraw ORD($1_name)
The expression that should be passed as argument to
the raw Modula−3 interface function.

m3wrapargdir out
Referential arguments can be used for input, output,
update. ???

m3wrapinmode READONLY
One of Modula−3 parameter modes VALUE (or
empty), VAR, READONLY

m3wrapinname New name of the input argument.

m3wrapintype Modula−3 type of the input argument.

m3wrapindefault Default value of the input argument

m3wrapinconv $1 := M3toC.SharedTtoS($1_name);
Statement for converting the Modula−3 input value to
C compliant value.

m3wrapincheck
IF Text.Length($1_name) > 10 THEN
RAISE E("str too long"); END;

Check the integrity of the input value.
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m3wrapoutname
Name of the RECORD field to be used for returning
multiple values. This applies to referential output
arguments that shall be turned into return values.

m3wrapouttype
Type of the value that is returned instead of a
referential output argument.

m3wrapoutconv

m3wrapoutcheck

m3wrapretraw

m3wrapretname

m3wraprettype

m3wrapretvar

m3wrapretconv

m3wrapretcheck

m3wrapfreearg M3toC.FreeSharedS(str,arg1);

Free resources that were temporarily used in the
wrapper. Since this step should never be skipped,
SWIG will put it in the FINALLY branch of a TRY
.. FINALLY structure.

20.4.2 Subranges, Enumerations, Sets

Subranges, enumerations, and sets are machine oriented types that make Modula very strong and expressive compared with the
type systems of many other languages.

Subranges are used for statically restricted choices of integers.• 
Enumerations are used for named choices.• 
Sets are commonly used for flag (option) sets.• 

Using them extensively makes Modula code very safe and readable. C supports enumerations, too, but they are not as safe as the
ones of Modula. Thus they are abused for many things: For named choices, for integer constant definitions, for sets. To make it
complete every way of defining a value in C (#define, const int, enum) is somewhere used for defining something that
must be handled completely different in Modula−3 (INTEGER, enumeration, SET). I played around with several %features
and %pragmas that split the task up into converting the C bit patterns (integer or bit set) into Modula−3 bit patterns (integer or bit
set) and change the type as requested. See the corresponding example. This is quite messy and not satisfying. So the best what you
can currently do is to rewrite constant definitions manually. Though this is a tedious work that I'd like to automate.

20.4.3 Objects

Declarations of C++ classes are mapped to OBJECT types while it is tried to retain the access hierarchy "public − protected −
private" using partial revelation. Though the implementation is not really useful, yet.

20.4.4 Imports

Pieces of Modula−3 code provided by typemaps may contain identifiers from foreign modules. If the typemap m3wrapinconv
for blah * contains code using the function M3toC.SharedTtoS you may declare
%typemap("m3wrapinconv:import") blah * %{M3toC%}. Then the module M3toC is imported if the
m3wrapinconv typemap for blah * is used at least once. Use %typemap("m3wrapinconv:import") blah *
%{MyConversions AS M3toC%} if you need module renaming. Unqualified import is not supported.

It is cumbersome to add this typemap to each piece of Modula−3 code. It is especially useful when writing general typemaps for
the typemap library modula3.swg . For a monolithic module you might be better off if you add the imports directly:

%insert(m3rawintf) %{
IMPORT M3toC;
%}

SWIG−1.3 Documentation

20.4.2 Subranges, Enumerations, Sets 271



20.4.5 Exceptions

Modula−3 provides another possibility of an output of a function: exceptions. Any piece of Modula−3 code that SWIG inserts due
to a typemap can raise an exception. This way you can also convert an error code from a C function into a Modula−3 exception.
The RAISES clause is controlled by typemaps with the throws extension. If the typemap m3wrapinconv for blah *
contains code that may raise the exceptions OSError.E you should declare %typemap("m3wrapinconv:throws")
blah * %{OSError.E%}.

20.4.6 Example

The generation of wrappers in Modula−3 needs very fine control to take advantage of the language features. Here is an example of
a generated wrapper where almost everything is generated by a typemap:

         (* %relabel  m3wrapinmode m3wrapinname m3wrapintype  m3wrapindefault *)
  PROCEDURE Name     (READONLY       str       :    TEXT    :=      ""       )
              (* m3wrapoutcheck:throws *)
     : NameResult RAISES {E} =
    CONST
      arg1name = "str";                  (* m3wrapargconst *)
    VAR
      arg0   : C.char_star;              (* m3wrapretvar *)
      arg1   : C.char_star;              (* m3wrapargvar *)
      arg2   : C.int;
      result : RECORD
           (*m3wrapretname  m3wraprettype*)
                 unixPath : TEXT;
           (*m3wrapoutname  m3wrapouttype*)
                 checksum : CARDINAL;
               END;
    BEGIN
      TRY
        arg1 := M3toC.SharedTtoS(str);   (* m3wrapinconv *)
        IF Text.Length(arg1) > 10 THEN   (* m3wrapincheck *)
          RAISE E("str too long");
        END;
 (* m3wrapretraw           m3wrapargraw *)
        arg0 := MessyToUnix  (arg1,   arg2);
        result.unixPath := M3toC.CopyStoT(arg0);  (* m3wrapretconv *)
        result.checksum := arg2;         (* m3wrapoutconv *)
        IF result.checksum = 0 THEN      (* m3wrapoutcheck *)
          RAISE E("invalid checksum");
        END;
      FINALLY
        M3toC.FreeSharedS(str,arg1);     (* m3wrapfreearg *)
      END;
    END Name;

20.5 More hints to the generator

20.5.1 Features

Feature Example Description

multiretval %m3multiretval get_box; or
%feature("modula3:multiretval")
get_box;

Let the denoted function return a RECORD
rather than a plain value. This RECORD
contains all arguments with "out" direction
including the return value of the C function (if
there is one). If more than one argument is
"out" then the function must have the
multiretval feature activated, but it is
explicitly requested from the user to prevent
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mistakes.

constnumeric
%constnumeric(12) twelve; or
%feature("constnumeric","12") twelve;

This feature can be used to tell Modula−3's
back−end of SWIG the value of an identifier.
This is necessary in the cases where it was
defined by a non−trivial C expression. This
feature is used by the −generateconst
option. In future it may be generalized to other
kind of values such as strings.

20.5.2 Pragmas

Pragma Example Description

unsafe
%pragma(modula3)
unsafe="true";

Mark the raw interface modules as UNSAFE. This will be necessary in
many cases.

library
%pragma(modula3)
library="m3fftw";

Specifies the library name for the wrapper library to be created. It
should be distinct from the name of the library to be wrapped.

20.6 Remarks

The Modula−3 part of SWIG doesn't try to generate nicely formatted code. Use m3pp to postprocess the Modula files, it
does a very good job here.

• 
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21 SWIG and MzScheme
Creating native MzScheme structures• 

This section contains information on SWIG's support of MzScheme.

21.1 Creating native MzScheme structures

Example interface file:

/* define a macro for the struct creation */
%define handle_ptr(TYPE,NAME)
%typemap(mzscheme,argout) TYPE *NAME{
    Scheme_Object *o = SWIG_NewStructFromPtr($1, $*1_mangle);
    SWIG_APPEND_VALUE(o);
}

%typemap(mzscheme,in,numinputs=0) TYPE *NAME (TYPE temp) {
    $1 = &temp;
}
%enddef

/* setup the typemaps for the pointer to an output parameter cntrs */
handle_ptr(struct diag_cntrs, cntrs);

Then in scheme, you can use regular struct access procedures like

        ; suppose a function created a struct foo as 
        ; (define foo (make−diag−cntrs (#x1 #x2 #x3) (make−inspector))
        ; Then you can do
        (format "0x~x" (diag−cntrs−field1 foo))
        (format "0x~x" (diag−cntrs−field2 foo))
        ;etc...

That's pretty much it. It works with nested structs as well.
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22 SWIG and Ocaml
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Running SWIG♦ 
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• 
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Arrays
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Director Classes
Director Introduction◊ 
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Director Usage Example◊ 
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directorin typemap◊ 
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♦ 

Exceptions♦ 

• 

This chapter describes SWIG's support of Ocaml. Ocaml is a relatively recent addition to the ML family, and is a recent addition
to SWIG. It's the second compiled, typed language to be added. Ocaml has widely acknowledged benefits for engineers, mostly
derived from a sophistocated type system, compile−time checking which eliminates several classes of common programming
errors, and good native performance. While all of this is wonderful, there are well−written C and C++ libraries that Ocaml users
will want to take advantage of as part of their arsenal (such as SSL and gdbm), as well as their own mature C and C++ code.
SWIG allows this code to be used in a natural, type−safe way with Ocaml, by providing the necessary, but repetetive glue code
which creates and uses Ocaml values to communicate with C and C++ code. In addition, SWIG also produces the needed Ocaml
source that binds variants, functions, classes, etc.

If you're not familiar with the Objective Caml language, you can visit The Ocaml Website.

22.1 Preliminaries

SWIG 1.3 works with Ocaml 3.04 and above. Given the choice, you should use the latest stable release. The SWIG Ocaml module
has been tested on Linux (x86,PPC,Sparc) and Cygwin on Windows. The best way to determine whether your system will work is
to compile the examples and test−suite which come with SWIG. You can do this by running make check from the SWIG root
directory after installing SWIG. The Ocaml module has been tested using the system's dynamic linking (the usual −lxxx against
libxxx.so, as well as with Gerd Stolpmann's Dl package . The ocaml_dynamic and ocaml_dynamic_cpp targets in the file
Examples/Makefile illustrate how to compile and link SWIG modules that will be loaded dynamically. This has only been tested
on Linux so far.
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22.1.1 Running SWIG

The basics of getting a SWIG Ocaml module up and running can be seen from one of SWIG's example Makefiles, but is also
described here. To build an Ocaml module, run SWIG using the −ocaml option.

%swig −ocaml example.i

This will produce 3 files. The file example_wrap.c contains all of the C code needed to build an Ocaml module. To build the
module, you will compile the file example_wrap.c with ocamlc or ocamlopt to create the needed .o file. You will need to
compile the resulting .ml and .mli files as well, and do the final link with −custom (not needed for native link).

22.1.2 Compiling the code

The O'Caml SWIG module now requires you to compile a module (Swig) separately. In addition to aggregating common SWIG
functionality, the Swig module contains the data structure that represents C/C++ values. This allows easier data sharing between
modules if two or more are combined, because the type of each SWIG'ed module's c_obj is derived from Swig.c_obj_t. This also
allows SWIG to acquire new conversions painlessly, as well as giving the user more freedom with respect to custom typing. Use
ocamlc or ocamlopt to compile your SWIG interface like:

% swig −ocaml −co swig.mli ; swig −ocaml co swig.ml
% ocamlc −c swig.mli ; ocamlc −c swig.ml
% ocamlc −c −ccopt "−I/usr/include/foo" example_wrap.c
% ocamlc −c example.mli
% ocamlc −c example.ml

ocamlc is aware of .c files and knows how to handle them. Unfortunately, it does not know about .cxx, .cc, or .cpp files, so when
SWIG is invoked in C++ mode, you must:

% cp example_wrap.cxx example_wrap.cxx.c
% ocamlc −c ... −ccopt −xc++ example_wrap.cxx.c
% ...

22.1.3 The camlp4 module

The camlp4 module (swigp4.ml −> swigp4.cmo) contains a simple rewriter which makes C++ code blend more seamlessly with
objective caml code. It's use is optional, but encouraged. The source file is included in the Lib/ocaml directory of the SWIG
source distribution. You can checkout this file with "swig −ocaml −co swigp4.ml". You should compile the file with
"ocamlc −I `camlp4 −where` −pp 'camlp4o pa_extend.cmo q_MLast.cmo' −c swigp4.ml"

The basic principle of the module is to recognize certain non−caml expressions and convert them for use with C++ code as
interfaced by SWIG. The camlp4 module is written to work with generated SWIG interfaces, and probably isn't great to use with
anything else.

Here are the main rewriting rules:

Input Rewritten to

f'( ... ) as in
atoi'("0") or
_exit'(0)

f(C_list [ ... ]) as in
atoi (C_list [ C_string "0" ]) or
_exit (C_list [ C_int 0 ])

object −> method ( ... )
(invoke object) "method" (C_list
[ ... ])

object 'binop argument as in
a '+= b

(invoke object) "+=" argument
as in
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(invoke a) "+=" b

Note that because camlp4 always recognizes << and >>, they are replaced by lsl and lsr in operator
names.

'unop object as in
'! a

(invoke a) "!" C_void

Smart pointer access like this
object '−> method ( args )

(invoke (invoke object "−>"
C_void))

Invoke syntax
object . '( ... )

(invoke object) "()" (C_list [ ... ])

Array syntax
object '[ 10 ]

(invoke object) "[]" (C_int 10)

Assignment syntax
let a = '10 and b = '"foo" and c = '1.0 and d = 'true

let a = C_int 10 and b = C_string
"foo" and c = C_double 1.0 and
d = C_bool true

Cast syntax
let a = _atoi '("2") as int
let b = (getenv "PATH") to string
This works for int, string, float, bool

let a = get_int (_atoi (C_string
"2"))
let b = C_string (getenv
"PATH")

22.1.4 Using your module

You can test−drive your module by building a toplevel ocaml interpreter. Consult the ocaml manual for details.

When linking any ocaml bytecode with your module, use the −custom option to build your functions into the primitive list. This
option is not needed when you build native code.

22.1.5 Compilation problems and compiling with C++

As mentioned above, .cxx files need special handling to be compiled with ocamlc. Other than that, C code that uses class as a
non−keyword, and C code that is too liberal with pointer types may not compile under the C++ compiler. Most code meant to be
compiled as C++ will not have problems.

22.2 The low−level Ocaml/C interface

In order to provide access to overloaded functions, and provide sensible outputs from them, all C entites are represented as
members of the c_obj type:

In the code as seen by the typemap writer, there is a value, swig_result, that always contains the current return data. It is a list, and
must be appended with the caml_list_append function, or with functions and macros provided by objective caml.

type c_obj =
    C_void
  | C_bool of bool
  | C_char of char
  | C_uchar of char
  | C_short of int
  | C_ushort of int
  | C_int of int
  | C_uint of int32
  | C_int32 of int32
  | C_int64 of int64
  | C_float of float
  | C_double of float
  | C_ptr of int64 * int64
  | C_array of c_obj array
  | C_list of c_obj list
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  | C_obj of (string −> c_obj −> c_obj)
  | C_string of string
  | C_enum of c_enum_t

A few functions exist which generate and return these:

caml_ptr_val receives a c_obj and returns a void *.  This should be used for all pointer purposes.• 
caml_long_val receives a c_obj and returns a long.  This should be used for most integral purposes.• 
caml_val_ptr receives a void * and returns a c_obj.• 
caml_val_bool receives a C int and returns a c_obj representing it's bool value.• 
caml_val_(u)?(char|short|int|long|float|double) receives an appropriate C value and returns a c_obj representing it.• 
caml_val_string receives a char * and returns a string value.• 
caml_val_string_len receives a char * and a length and returns a string value.• 
caml_val_obj receives a void * and an object type and returns a C_obj, which contains a closure giving method access.• 

Because of this style, a typemap can return any kind of value it wants from a function.  This enables out typemaps and inout
typemaps to work well.  The one thing to remember about outputting values is that you must append them to the return list with
swig_result = caml_list_append(swig_result,v).

 This function will return a new list that has your element appended. Upon return to caml space, the fnhelper function beautifies
the result. A list containing a single item degrades to only that item (i.e. [ C_int 3 ] −> C_int 3), and a list containing more than
one item is wrapped in C_list (i.e. [ C_char 'a' ; C_char 'b' −> C_list [ C_char 'a' ; C_char b ]).  This is in order to make return
values easier to handle when functions have only one return value, such as constructors, and operators.  In addition, string,
pointer, and object values are interchangable with respect to caml_ptr_val, so you can allocate memory as caml strings and still
use the resulting pointers for C purposes, even using them to construct simple objects on. Note, though, that foreign C++ code
does not respect the garbage collector, although the SWIG interface does.

The wild card type that you can use in lots of different ways is C_obj. It allows you to wrap any type of thing you like as an object
using the same mechanism that the ocaml module does.  When evaluated in caml_ptr_val, the returned value is the result of a call
to the object's "&" operator, taken as a pointer.

You should only construct values using objective caml, or using the functions caml_val_* functions provided as static functions to
a SWIG ocaml module, as well as the caml_list_* functions. These functions provide everything a typemap needs to produce
values. In addition, value items pass through directly, but you must make your own type signature for a function that uses value in
this way.

22.2.1 The generated module

The SWIG %module directive specifies the name of the Ocaml module to be generated. If you specified `%module example',
then your Ocaml code will be accessible in the module Example. The module name is always capitalized as is the ocaml
convention. Note that you must not use any Ocaml keyword to name your module. Remember that the keywords are not the same
as the C++ ones.

You can introduce extra code into the output wherever you like with SWIG. These are the places you can introduce code:

"header" This code is inserted near the beginning of the C wrapper file, before any function definitions.

"wrapper" This code is inserted in the function definition section.

"runtime" This code is inserted near the end of the C wrapper file.

"mli" This code is inserted into the caml interface file. Special signatures should be inserted here.

"ml"
This code is inserted in the caml code defining the interface to your C code. Special caml code, as well as any
initialization which should run when the module is loaded may be inserted here.

"classtemplate"The "classtemplate" place is special because it describes the output SWIG will generate for class definitions.
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22.2.2 Enums

SWIG will wrap enumerations as polymorphic variants in the output Ocaml code, as above in C_enum.  In order to support all
C++−style uses of enums, the function int_to_enum and enum_to_int are provided for ocaml code to produce and consume these
values as integers.  Other than that, correct uses of enums will not have a problem.  Since enum labels may overlap between
enums, the enum_to_int and int_to_enum functions take an enum type label as an argument. Example:

%module enum_test
%{
enum c_enum_type { a = 1, b, c = 4, d = 8 };
%}
enum c_enum_type { a = 1, b, c = 4, d = 8 };

The output mli contains:

type c_enum_type = [
  `unknown
| `c_enum_type
]
type c_enum_tag = [
  `int of int
| `a
| `b
| `c
| `d
]
val int_to_enum c_enum_type −> int −> c_obj
val enum_to_int c_enum_type −> c_obj −> c_obj

So it's possible to do this:

bash−2.05a$ ocamlmktop −custom enum_test_wrap.o enum_test.cmo −o enum_test_top
bash−2.05a$ ./enum_test_top 
        Objective Caml version 3.04

# open Enum_test ;;
# let x = C_enum `a ;;
val x : Enum_test.c_obj = C_enum `a
# enum_to_int `c_enum_type x ;;
− : Enum_test.c_obj = C_int 1
# int_to_enum `c_enum_type 4 ;;
− : Enum_test.c_obj = C_enum `c

22.2.2.1 Enum typing in Ocaml

The ocaml SWIG module now has support for loading and using multiple SWIG modules at the same time. This enhances
modularity, but presents problems when used with a language which assumes that each module's types are complete at compile
time. In order to achieve total soundness enum types are now isolated per−module. The type issue matters when values are shared
between functions imported from different modules. You must convert values to master values using the swig_val function before
sharing them with another module.

22.2.3 Arrays

22.2.3.1 Simple types of bounded arrays

SWIG has support for array types, but you generally will need to provide a typemap to handle them. You can currently roll your
own, or expand some of the macros provided (but not included by default) with the SWIG distribution.

By including "carray.i", you will get access to some macros that help you create typemaps for array types fairly easily.
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%make_simple_array_typemap is the easiest way to get access to arrays of simple types with known bounds in your code,
but this only works for arrays whose bounds are completely specified.

22.2.3.2 Complex and unbounded arrays

Unfortunately, unbounded arrays and pointers can't be handled in a completely general way by SWIG, because the end−condition
of such an array can't be predicted. In some cases, it will be by consent (e.g. an array of four or more chars), sometimes by explicit
length (char *buffer, int len), and sometimes by sentinel value (0,−1,etc.). SWIG can't predict which of these methods will be used
in the array, so you have to specify it for yourself in the form of a typemap.

22.2.3.3 Using an object

It's possible to use C++ to your advantage by creating a simple object that provides access to your array. This may be more
desirable in some cases, since the object can provide bounds checking, etc., that prevents crashes.

Consider writing an object when the ending condition of your array is complex, such as using a required centinel, etc.

22.2.3.4 Example typemap for a function taking float * and int

This is a simple example in typemap for an array of float, where the length of the array is specified as an extra parameter. Other
such typemaps will work similarly. In the example, the function printfloats is called with a float array, and specified length. The
actual length reported in the len argument is the length of the array passed from ocaml, making passing an array into this type of
function convenient.

tarray.i
%module tarray
%{
#include <stdio.h>

void printfloats( float *tab, int len ) {
        int i;

        for( i = 0; i < len; i++ ) {
                printf( "%f ", tab[i] );
        }

        printf( "\n" );  
}
%}

%typemap(in) (float *tab, int len) {
    int i;
    /* $*1_type */
    $2 = caml_array_len($input);
    $1 = ($*1_type *)malloc( $2 * sizeof( float ) );
    for( i = 0; i < $2; i++ ) {
        $1[i] = caml_double_val(caml_array_nth($input,i));
    }
}

void printfloats( float *tab, int len );

Sample Run
# open Tarray ;;
# _printfloats (C_array [| C_double 1.0 ; C_double 3.0 ; C_double 5.6666 |]) ;;
1.000000 3.000000 5.666600
− : Tarray.c_obj = C_void
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22.2.4 C++ Classes

C++ classes, along with structs and unions are represented by C_obj (string −> c_obj −> c_obj) wrapped closures.  These objects
contain a method list, and a type, which allow them to be used like C++ objects. When passed into typemaps that use pointers,
they degrade to pointers through their "&" method.  Every method an object has is represented as a string in the object's method
table, and each method table exists in memory only once.  In addition to any other operators an object might have, certain builtin
ones are provided by SWIG: (all of these take no arguments (C_void))

"~" Delete this object

"&" Return an ordinary C_ptr value representing this object's address

"sizeof" If enabled with ("sizeof"="1") on the module node, return the object's size in char.

":methods" Returns a list of strings containing the names of the methods this object contains

":classof" Returns the name of the class this object belongs to.

":parents" Returns a list of all direct parent classes which have been wrapped by SWIG.

"::[parent−class]"
Returns a view of the object as the indicated parent class. This is mainly used internally by the
SWIG module, but may be useful to client programs.

"[member−variable]"
Each member variable is wrapped as a method with an optional parameter. Called with one
argument, the member variable is set to the value of the argument. With zero arguments, the value
is returned.

Note that this string belongs to the wrapper object, and not the underlying pointer, so using create_[x]_from_ptr alters the returned
value for the same object.

22.2.4.1 STL vector and string Example

Standard typemaps are now provided for STL vector and string. More are in the works. STL strings are passed just like normal
strings, and returned as strings. STL string references don't mutate the original string, (which might be surprising), because Ocaml
strings are mutable but have fixed length. Instead, use multiple returns, as in the argout_ref example.

example.i
%module example
%{
#include "example.h"
%}

%include stl.i

namespace std {
        %template(StringVector) std::vector < string >;
};

%include example.h

This example is in Examples/ocaml/stl

Since there's a makefile in that directory, the example is easy to build.

Here's a sample transcript of an interactive session using a string vector after making a toplevel (make toplevel). This example
uses the camlp4 module.

bash−2.05a$ ./example_top 
        Objective Caml version 3.06

        Camlp4 Parsing version 3.06

# open Swig ;;
# open Example ;;
# let x = new_StringVector '() ;;
val x : Example.c_obj = C_obj <fun>
# x −> ":methods" () ;;
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− : Example.c_obj =
C_list
 [C_string "nop"; C_string "size"; C_string "empty"; C_string "clear";
  C_string "push_back"; C_string "[]"; C_string "="; C_string "set";
  C_string "~"; C_string "&"; C_string ":parents"; C_string ":classof";
  C_string ":methods"]
# x −> push_back ("foo") ;;
− : Example.c_obj = C_void
# x −> push_back ("bar") ;;
− : Example.c_obj = C_void
# x −> push_back ("baz") ;;
− : Example.c_obj = C_void
# x '[1] ;;
− : Example.c_obj = C_string "bar"
# x −> set (1,"spam") ;;
− : Example.c_obj = C_void
# x '[1] ;;
− : Example.c_obj = C_string "spam"
# for i = 0 to (x −> size() as int) − 1 do 
    print_endline ((x '[i to int]) as string) 
  done ;;
foo
bar
baz
− : unit = ()
# 

22.2.4.2 C++ Class Example

Here's a simple example using Trolltech's Qt Library:

qt.i
%module qt
%{
#include <qapplication.h>
#include <qpushbutton.h>
%}
class QApplication {
public:
        QApplication( int argc, char **argv );
        void setMainWidget( QWidget *widget );
        void exec();
};

class QPushButton {
public:
        QPushButton( char *str, QWidget *w );
        void resize( int x, int y );
        void show();
};

22.2.4.3 Compiling the example

bash−2.05a$ QTPATH=/your/qt/path
bash−2.05a$ for file in swig.mli swig.ml swigp4.ml ; do swig −ocaml −co $file ; done
bash−2.05a$ ocamlc −c swig.mli ; ocamlc −c swig.ml
bash−2.05a$ ocamlc −I `camlp4 −where` −pp "camlp4o pa_extend.cmo q_MLast.cmo" −c swigp4.ml
bash−2.05a$ swig −ocaml −c++ −I$QTPATH/include  qt.i
bash−2.05a$ mv qt_wrap.cxx qt_wrap.c
bash−2.05a$ ocamlc −c −ccopt −xc++ −ccopt −g −g −ccopt −I$QTPATH/include qt_wrap.c 
bash−2.05a$ ocamlc −c qt.mli
bash−2.05a$ ocamlc −c qt.ml
bash−2.05a$ ocamlmktop −custom swig.cmo −I `camlp4 −where` \
  camlp4o.cma swigp4.cmo qt_wrap.o qt.cmo −o qt_top −cclib \
  −L$QTPATH/lib −cclib −lqt
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22.2.4.4 Sample Session

bash−2.05a$ ./qt_top 
        Objective Caml version 3.06

        Camlp4 Parsing version 3.06

# open Swig ;;
# open Qt ;;
# let a = new_QApplication '(0,0) ;;
val a : Qt.c_obj = C_obj <fun>
# let hello = new_QPushButton '("hi",0) ;;
val hello : Qt.c_obj = C_obj <fun>
# hello −> resize (100,30) ;;
− : Qt.c_obj = C_void
# hello −> show () ;;
− : Qt.c_obj = C_void
# a −> exec () ;;

Assuming you have a working installation of QT, you will see a window containing the string "hi" in a button.

22.2.5 Director Classes

22.2.5.1 Director Introduction

Director classes are classes which allow Ocaml code to override the public methods of a C++ object. This facility allows the user
to use C++ libraries that require a derived class to provide application specific functionality in the context of an application or
utility framework.

You can turn on director classes by using an optional module argument like this:

%module(directors="1")

...

// Turn on the director class for a specific class like this:
%feature("director")
class foo {
  ...
};

22.2.5.2 Overriding Methods in Ocaml

Because the Ocaml language module treats C++ method calls as calls to a certain function, all you need to do is to define the
function that will handle the method calls in terms of the public methods of the object, and any other relevant information. The
function new_derived_object uses a stub class to call your methods in place of the ones provided by the underlying
implemenation. The object you receive is the underlying object, so you are free to call any methods you want from within your
derived method. Note that calls to the underlying object do not invoke Ocaml code. You need to handle that yourself.

new_derived_object receives your function, the function that creates the underlying object, and any constructor arguments,
and provides an object that you can use in any usual way. When C++ code calls one of the object's methods, the object invokes
the Ocaml function as if it had been invoked from Ocaml, allowing any method definitions to override the C++ ones.

In this example, I'll examine the objective caml code involved in providing an overloaded class. This example is contained in
Examples/ocaml/shapes.

22.2.5.3 Director Usage Example

example_prog.ml
open Swig
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open Example

...

let triangle_class pts ob meth args =
  match meth with
      "cover" −>
        (match args with
             C_list [ x_arg ; y_arg ] −>
             let xa = x_arg as float
             and ya = y_arg as float in
               (point_in_triangle pts xa ya) to bool
           | _ −> raise (Failure "cover needs two double arguments."))
    | _ −> (invoke ob) meth args ;;

let triangle =
  new_derived_object 
    new_shape
    (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
    '() ;;

let _ = _draw_shape_coverage '(triangle, C_int 60, C_int 20) ;;

This is the meat of what you need to do. The actual "class" definition containing the overloaded method is defined in the function
triangle_class. This is a lot like the class definitions emitted by SWIG, if you look at example.ml, which is generated when SWIG
consumes example.i. Basically, you are given the arguments as a c_obj and the method name as a string, and you must intercept
the method you are interested in and provide whatever return value you need. Bear in mind that the underlying C++ code needs
the right return type, or an exception will be thrown. This exception will generally be Failure, or NotObject. You must call other
ocaml methods that you rely on yourself. Due to the way directors are implemented, method calls on your object from with ocaml
code will always invoke C++ methods even if they are overridden in ocaml.

In the example, the draw_shape_coverage function plots the indicated number of points as either covered (x) or uncovered ( )
between 0 and 1 on the X and Y axes. Your shape implementation can provide any coverage map it likes, as long as it responds to
the "cover" method call with a boolean return (the underlying method returns bool). This might allow a tricky shape
implementation, such as a boolean combination, to be expressed in a more effortless style in ocaml, while leaving the "engine"
part of the program in C++.

22.2.5.4 Creating director objects

The definition of the actual object triangle can be described this way:

let triangle =
  new_derived_object 
    new_shape
    (triangle_class ((0.0,0.0),(0.5,1.0),(1.0,0.0)))
    '()

The first argument to new_derived_object, new_shape is the method which returns a shape instance. This function will be
invoked with the third argument will be appended to the argument list [ C_void ]. In the example, the actual argument list is sent
as (C_list [ C_void ; C_void ]). The augmented constructor for a director class needs the first argument to determine whether it is
being constructed as a derived object, or as an object of the indicated type only (in this case shape). The Second argument is a
closure that will be added to the final C_obj.

The actual object passed to the self parameter of the director object will be a C_director_core, containing a c_obj option ref and a
c_obj. The c_obj provided is the same object that will be returned from new_derived object, that is, the object exposing the
overridden methods. The other part is an option ref that will have its value extracted before becoming the ob parameter of your
class closure. This ref will contain None if the C++ object underlying is ever destroyed, and will consequently trigger an
exception when any method is called on the object after that point (the actual raise is from an inner function used by
new_derived_object, and throws NotObject). This prevents a deleted C++ object from causing a core dump, as long as the object
is destroyed properly.
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22.2.5.5 Typemaps for directors, directorin, directorout, directorargout

Special typemaps exist for use with directors, the directorin, directorout, directorargout are used in place of
in, out, argout typemaps, except that their direction is reversed. They provide for you to provide argout values, as well as
a function return value in the same way you provide function arguments, and to receive arguments the same way you normally
receive function returns.

22.2.5.6 directorin typemap

The directorin typemap is used when you will receive arguments from a call made by C++ code to you, therefore, values will
be translated from C++ to ocaml. You must provide some valid C_obj value. This is the value your ocaml code receives when you
are called. In general, a simple directorin typemap can use the same body as a simple out typemap.

22.2.5.7 directorout typemap

The directorout typemap is used when you will send an argument from your code back to the C++ caller. That is; directorout
specifies a function return conversion. You can usually use the same body as an in typemap for the same type, except when there
are special requirements for object ownership, etc.

22.2.5.8 directorargout typemap

C++ allows function arguments which are by pointer (*) and by reference (&) to receive a value from the called function, as well
as sending one there. Sometimes, this is the main purpose of the argument given. directorargout typemaps allow your caml
code to emulate this by specifying additional return values to be put into the output parameters. The SWIG ocaml module is a bit
loose in order to make code eaiser to write. In this case, your return to the caller must be a list containing the normal function
return first, followed by any argout values in order. These argout values will be taken from the list and assigned to the values to be
returned to C++ through directorargout typemaps. In the event that you don't specify all of the necessary values, integral values
will read zero, and struct or object returns have undefined results.

22.2.6 Exceptions

Catching exceptions is now supported using SWIG's %exception feature. A simple but not too useful example is provided by the
throw_exception testcase in Examples/test−suite. You can provide your own exceptions, too.
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Caution: This chapter is under repair!

This chapter describes SWIG's support of Perl5. Although the Perl5 module is one of the earliest SWIG modules, it has continued
to evolve and has been improved greatly with the help of SWIG users. For the best results, it is recommended that SWIG be used
with Perl5.003 or later. Earlier versions are problematic and SWIG generated extensions may not compile or run correctly.
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23.1 Overview

To build Perl extension modules, SWIG uses a layered approach. At the lowest level, simple procedural wrappers are generated
for functions, classes, methods, and other declarations in the input file. Then, for structures and classes, an optional collection of
Perl proxy classes can be generated in order to provide a more natural object oriented Perl interface. These proxy classes simply
build upon the low−level interface.

In describing the Perl interface, this chapter begins by covering the essentials. First, the problem of configuration, compiling, and
installing Perl modules is discussed. Next, the low−level procedural interface is presented. Finally, proxy classes are described.
Advanced customization features, typemaps, and other options are found near the end of the chapter.

23.2 Preliminaries

To build a Perl5 module, run Swig using the −perl option as follows :

swig −perl example.i

This produces two files. The first file, example_wrap.c contains all of the C code needed to build a Perl5 module. The second
file, example.pm contains supporting Perl code needed to properly load the module.

To build the module, you will need to compile the file example_wrap.c and link it with the rest of your program.

23.2.1 Getting the right header files

In order to compile, SWIG extensions need the following Perl5 header files :

#include "Extern.h"
#include "perl.h"
#include "XSUB.h"

These are typically located in a directory like this

/usr/lib/perl5/5.00503/i386−linux/CORE

The SWIG configuration script automatically tries to locate this directory so that it can compile examples. However, if you need
to find out where the directory is loaded, an easy way to find out is to run Perl itself.

% perl −e 'use Config; print $Config{archlib};'
/usr/lib/perl5/5.00503/i386−linux

23.2.2 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you will need
to compile your program using comands like this (shown for Linux):

$ swig −perl example.i
% gcc example.c
% gcc −c example_wrap.c −I/usr/lib/perl5/5.00503/i386−linux/CORE −Dbool=char
% gcc −shared example.o example_wrap.o −o example.so

The exact compiler options vary from platform to platform. SWIG tries to guess the right options when it is installed. Therefore,
you may want to start with one of the examples in the SWIG/Examples/perl5 directory. If that doesn't work, you will need to
read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki for
additional information.
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When linking the module, the name of the shared object file must match the module name used in the SWIG interface file. If you
used `%module example', then the target should be named `example.so', `example.sl', or the appropriate dynamic
module name on your system.

23.2.3 Building a dynamic module with MakeMaker

It is also possible to use Perl to build dynamically loadable modules for you using the MakeMaker utility. To do this, write a Perl
script such as the following :

# File : Makefile.PL
use ExtUtils::MakeMaker;
WriteMakefile(
        `NAME'    => `example',                  # Name of package
        `LIBS'    => [`−lm'],                    # Name of custom libraries
        `OBJECT'  => `example.o example_wrap.o'  # Object files
);

Now, to build a module, simply follow these steps :

% perl Makefile.PL
% make
% make install

If you are planning to distribute a SWIG−generated module, this is the preferred approach to compilation. More information about
MakeMaker can be found in "Programming Perl, 2nd ed." by Larry Wall, Tom Christiansen, and Randal Schwartz.

23.2.4 Building a static version of Perl

If you machine does not support dynamic loading or if you've tried to use it without success, you can build a new version of the
Perl interpreter with your SWIG extensions added to it. To build a static extension, you first need to invoke SWIG as follows :

% swig −perl −static example.i

By default SWIG includes code for dynamic loading, but the −static option takes it out.

Next, you will need to supply a main() function that initializes your extension and starts the Perl interpreter. While, this may
sound daunting, SWIG can do this for you automatically as follows :

%module example

extern double My_variable;
extern int fact(int);

// Include code for rebuilding Perl
%include perlmain.i

The same thing can be accomplished by running SWIG as follows :

% swig −perl −static −lperlmain.i example.i

The permain.i file inserts Perl's main() function into the wrapper code and automatically initializes the SWIG generated
module. If you just want to make a quick a dirty module, this may be the easiest way. By default, the perlmain.i code does
not initialize any other Perl extensions. If you need to use other packages, you will need to modify it appropriately. You can do
this by just copying perlmain.i out of the SWIG library, placing it in your own directory, and modifying it to suit your
purposes.

To build your new Perl executable, follow the exact same procedure as for a dynamic module, but change the link line to
something like this:
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% gcc example.o example_wrap.o −L/usr/lib/perl5/5.00503/i386−linux/CORE \
        −lperl −lsocket −lnsl −lm −o myperl

This will produce a new version of Perl called myperl. It should be functionality identical to Perl with your C/C++ extension
added to it. Depending on your machine, you may need to link with additional libraries such as −lsocket, −lnsl, −ldl,
etc.

23.2.5 Using the module

To use the module, simply use the Perl use statement. If all goes well, you will be able to do this:

$ perl
use example;
print example::fact(4),"\n";
24

A common error received by first−time users is the following:

use example;
Can't locate example.pm in @INC (@INC contains: /usr/lib/perl5/5.00503/i386−lin
ux /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386−linux /usr/lib/pe
rl5/site_perl/5.005 .) at − line 1.
BEGIN failed−−compilation aborted at − line 1.

This error is almost caused when the name of the shared object file you created doesn't match the module name you specified with
the %module directive.

A somewhat related, but slightly different error is this:

use example;
Can't find 'boot_example' symbol in ./example.so
 at − line 1
BEGIN failed−−compilation aborted at − line 1.

This error is generated because Perl can't locate the module bootstrap function in the SWIG extension module. This could be
caused by a mismatch between the module name and the shared library name. However, another possible cause is forgetting to
link the SWIG−generated wrapper code with the rest of your application when you linked the extension module.

Another common error is the following:

use example;
Can't load './example.so' for module example: ./example.so: 
undefined symbol: Foo at /usr/lib/perl5/5.00503/i386−linux/DynaLoader.pm line 169.

 at − line 1
BEGIN failed−−compilation aborted at − line 1.

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration. Better yet, update the header file so that it
doesn't have an undefined declaration.

Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
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      −o example.so

If the foo library is compiled as a shared library, you might get the following error when you try to use your module:

use example;
Can't load './example.so' for module example: libfoo.so: cannot open shared object file: 
No such file or directory at /usr/lib/perl5/5.00503/i386−linux/DynaLoader.pm line 169.

 at − line 1
BEGIN failed−−compilation aborted at − line 1.
>>>                 

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To get the loader to look in
other locations, there are several things you can do. First, you can recompile your extension module with extra path information.
For example, on Linux you can do this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
−Xlinker −rpath /home/beazley/projects/lib \

      −o example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Perl, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib perl

Finally, you can use a command such as ldconfig (Linux) or crle (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to read the man pages).

23.2.6 Compilation problems and compiling with C++

Compilation of C++ extensions has traditionally been a tricky problem. Since the Perl interpreter is written in C, you need to take
steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

% swig −c++ −perl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/lib/perl5/5.00503/i386−linux/CORE
% g++ −shared example.o example_wrap.o −o example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −perl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/lib/perl5/5.00503/i386−linux/CORE
% g++ −shared example.o example_wrap.o −o example.so −lCrun

Of course, the names of the extra libraries are completely non−portable−−−you will probably need to do some experimentation.

Another possible compile problem comes from recent versions of Perl (5.8.0) and the GNU tools. If you see errors having to do
with _crypt_struct, that means _GNU_SOURCE is not defined and it needs to be. So you should compile the wrapper like:

% g++ −c example_wrap.cxx −I/usr/lib/perl/5.8.0/CORE −D_GNU_SOURCE

−D_GNU_SOURCE is also included in the Perl ccflags, which can be found by running

% perl −e 'use Config; print $Config{ccflags};'
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So you could also compile the wrapper like

% g++ −c example_wrap.cxx −I/usr/lib/perl/5.8.0/CORE \
`perl −e 'use Config; print $Config{ccflags}'`

Sometimes people have suggested that it is necessary to relink the Perl interpreter using the C++ compiler to make C++ extension
modules work. In the experience of this author, this has never actually appeared to be necessary on most platforms. Relinking the
interpreter with C++ really only includes the special run−time libraries described above−−−as long as you link your extension
modules with these libraries, it should not be necessary to rebuild Perl.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to
include when you link your extension module. For example, notice the first line of output here:

$ ldd swig
libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)

        libm.so.6 => /lib/libm.so.6 (0x4005b000)
        libc.so.6 => /lib/libc.so.6 (0x40077000)
        /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

If linking wasn't enough of a problem, another major complication of C++ is that it does not define any sort of standard for binary
linking of libraries. This means that C++ code compiled by different compilers will not link together properly as libraries nor is
the memory layout of classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this
problem may be unnoticed. However, in Perl, it is possible for different extension modules to be compiled with different C++
compilers. As long as these modules are self−contained, this probably won't matter. However, if these modules start sharing data,
you will need to take steps to avoid segmentation faults and other erratic program behavior. Also, be aware that certain C++
features, especially RTTI, can behave strangely when working with multiple modules.

It should be noted that you may get alot of error messages about the `bool' datatype when compiling a C++ Perl module. If you
experience this problem, you can try the following :

Use −DHAS_BOOL when compiling the SWIG wrapper code• 
Or use −Dbool=char when compiling.• 

Finally, recent versions of Perl (5.8.0) have namespace conflict problems. Perl defines a bunch of short macros to make the Perl
API function names shorter. For example, in /usr/lib/perl/5.8.0/CORE/embed.h there is a line:

#define do_open Perl_do_open

The problem is, in the <iostream> header from GNU libstdc++v3 there is a private function named do_open. If <iostream> is
included after the perl headers, then the Perl macro causes the iostream do_open to be renamed, which causes compile errors.
Hopefully in the future Perl will support a PERL_NO_SHORT_NAMES flag, but for now the only solution is to undef the macros
that conflict. Lib/perl5/noembed.h in the SWIG source has a list of macros that are known to conflict with either standard headers
or other headers. But if you get macro type conflicts from other macros not included in Lib/perl5/noembed.h while compiling the
wrapper, you will have to find the macro that conflicts and add an #undef into the .i file. Please report any conflicting macros you
find to swig mailing list.

23.2.7 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

To utilize 64−bits, the Perl executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper code,
and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.
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If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

23.3 Building Perl Extensions under Windows

Building a SWIG extension to Perl under Windows is roughly similar to the process used with Unix. Normally, you will want to
produce a DLL that can be loaded into the Perl interpreter. This section assumes you are using SWIG with Microsoft Visual C++
although the procedure may be similar with other compilers.

23.3.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly requires these steps :

Open up a new workspace and use the AppWizard to select a DLL project.• 
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer studio will keep a reference to it
around.

• 

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.• 
Enter "SWIG" in the description field.• 
Enter "swig −perl5 −o $(ProjDir)\$(InputName)_wrap.cxx $(InputPath)" in the "Build
command(s) field"

• 

Enter "$(ProjDir)\$(InputName)_wrap.cxx" in the "Output files(s) field".• 
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Perl 5
installation under "Additional include directories".

• 

Define the symbols WIN32 and MSWIN32 under preprocessor options. If using the ActiveWare port, also define the
symbol PERL_OBJECT. Note that all extensions to the ActiveWare port must be compiled with the C++ compiler since
Perl has been encapsulated in a C++ class.

• 

Finally, select the settings for the entire project and go to "Link Options". Add the Perl library file to your link libraries.
For example "perl.lib". Also, set the name of the output file to match the name of your Perl module (ie. example.dll).

• 

Build your project.• 

Now, assuming you made it this far, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new Perl
extension, simply run Perl and use the use command as normal. For example :

DOS > perl
use example;
$a = example::fact(4);
print "$a\n";

23.3.2 Using other compilers

SWIG is known to work with Cygwin and may work with other compilers on Windows. For general hints and suggestions refer to
the Windows chapter.

23.4 The low−level interface

At its core, the Perl module uses a simple low−level interface to C function, variables, constants, and classes. This low−level
interface can be used to control your application. However, it is also used to construct more user−friendly proxy classes as
described in the next section.
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23.4.1 Functions

C functions are converted into new Perl built−in commands (or subroutines). For example:

%module example
int fact(int a);
...

Now, in Perl:

use example;
$a = &example::fact(2);

23.4.2 Global variables

Global variables are handled using Perl's magic variable mechanism. SWIG generates a pair of functions that intercept read/write
operations and attaches them to a Perl variable with the same name as the C global variable. Thus, an interface like this

%module example;
...
double Spam;
...

is accessed as follows :

use example;
print $example::Spam,"\n";
$example::Spam = $example::Spam + 4
# ... etc ...

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can also use the %immutable directive. For example:

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable. It is also possible to tag a specific
variable as read−only like this:

%immutable path; 
...
...
extern char *path;       // Declared later in the input

23.4.3 Constants

Constants are wrapped as read−only Perl variables. For example:

%module example

#define FOO 42

In Perl:

use example;
print $example::FOO,"\n";    # OK
$example::FOO = 2;           # Error
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23.4.4 Pointers

SWIG represents pointers as blessed references. A blessed reference is the same as a Perl reference except that it has additional
information attached to it indicating what kind of reference it is. That is, if you have a C declaration like this :

Matrix *new_Matrix(int n, int m);

The module returns a value generated as follows:

$ptr = new_Matrix(int n, int m);     # Save pointer return result
bless $ptr, "p_Matrix";              # Bless it as a pointer to Matrix

SWIG uses the "blessing" to check the datatype of various pointers. In the event of a mismatch, an error or warning message is
generated.

To check to see if a value is the NULL pointer, use the defined() command :

if (defined($ptr)) {
        print "Not a NULL pointer.";
} else {
        print "Is a NULL pointer.";
}

To create a NULL pointer, you should pass the undef value to a function.

The "value" of a Perl reference is not the same as the underlying C pointer that SWIG wrapper functions return. Suppose that $a
and $b are two references that point to the same C object. In general, $a and $b will be different−−since they are different
references. Thus, it is a mistake to check the equality of $a and $b to check the equality of two C pointers. The correct method to
check equality of C pointers is to dereference them as follows :

if ($$a == $$b) {
        print "a and b point to the same thing in C";
} else {
        print "a and b point to different objects.";
}

As much as you might be inclined to modify a pointer value directly from Perl, don't. Manipulating pointer values is architecture
dependent and could cause your program to crash. Similarly, don't try to manually cast a pointer to a new type by reblessing a
pointer. This may not work like you expect and it is particularly dangerous when casting C++ objects. If you need to cast a pointer
or change its value, consider writing some helper functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
   return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
   return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
    return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return NULL if the conversion can't be performed.
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Compatibility Note: In earlier versions, SWIG tried to preserve the same pointer naming conventions as XS and xsubpp. Given
the advancement of the SWIG typesystem and the growing differences between SWIG and XS, this is no longer supported.

23.4.5 Structures

Access to the contents of a structure are provided through a set of low−level accessor functions as described in the "SWIG Basics"
chapter. For example,

struct Vector {
        double x,y,z;
};

gets mapped into the following collection of accessor functions:

struct Vector *new_Vector();
void           delete_Vector(Vector *v);
double         Vector_x_get(Vector *obj)
void           Vector_x_set(Vector *obj, double x)
double         Vector_y_get(Vector *obj)
void           Vector_y_set(Vector *obj, double y)
double         Vector_z_get(Vector *obj)
void           Vector_z_set(Vector *obj, double z)

These functions are then used to access structure data from Perl as follows:

$v = example::new_Vector();
print example::Vector_x_get($v),"\n";    # Get x component
example::Vector_x_set($v,7.8);          # Change x component

Similar access is provided for unions and the data members of C++ classes.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
   ...
   %immutable;
   int x;        /* Read−only members */
   char *name;
   %mutable;
   ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

Array members are normally wrapped as read−only. For example,

struct Foo {
   int  x[50];
};

produces a single accessor function like this:

int *Foo_x_get(Foo *self) {
    return self−>x;
};
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If you want to set an array member, you will need to supply a "memberin" typemap described later in this chapter. As a special
case, SWIG does generate code to set array members of type char (allowing you to store a Python string in the structure).

When structure members are wrapped, they are handled as pointers. For example,

struct Foo {
   ...
};

struct Bar {
   Foo f;
};

generates accessor functions such as this:

Foo *Bar_f_get(Bar *b) {
    return &b−>f;
}

void Bar_f_set(Bar *b, Foo *val) {
    b−>f = *val;
}

23.4.6 C++ classes

C++ classes are wrapped by building a set of low level accessor functions. Consider the following class :

class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
static void print(List *l);
};

When wrapped by SWIG, the following functions are created :

List    *new_List();
void     delete_List(List *l);
int      List_search(List *l, char *item);
void     List_insert(List *l, char *item);
void     List_remove(List *l, char *item);
char    *List_get(List *l, int n);
int      List_length_get(List *l);
void     List_length_set(List *l, int n);
void     List_print(List *l);

In Perl, these functions are used in a straightforward manner:

use example;
$l = example::new_List();
example::List_insert($l,"Ale");
example::List_insert($l,"Stout");
example::List_insert($l,"Lager")
example::List_print($l)
Lager
Stout
Ale
print example::List_length_get($l),"\n";
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At this low level, C++ objects are really just typed pointers. Member functions are accessed by calling a C−like wrapper with an
instance pointer as the first argument. Although this interface is fairly primitive, it provides direct access to C++ objects. A higher
level interface using Perl proxy classes can be built using these low−level accessors. This is described shortly.

23.4.7 C++ classes and type−checking

The SWIG type−checker is fully aware of C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

and a function

void spam(Foo *f);

then the function spam() accepts Foo * or a pointer to any class derived from Foo. If necesssary, the type−checker also adjusts
the value of the pointer (as is necessary when multiple inheritance is used).

23.4.8 C++ overloaded functions

If you have a C++ program with overloaded functions or methods, you will need to disambiguate those methods using %rename.
For example:

/* Forward renaming declarations */
%rename(foo_i) foo(int); 
%rename(foo_d) foo(double);
...
void foo(int);           // Becomes 'foo_i'
void foo(char *c);       // Stays 'foo' (not renamed)

class Spam {
public:
   void foo(int);      // Becomes 'foo_i'
   void foo(double);   // Becomes 'foo_d'
   ...
};

Now, in Perl, the methods are accessed as follows:

use example;
example::foo_i(3);
$s = example::new_Spam();
example::Spam_foo_i($s,3);
example::Spam_foo_d($s,3.14);

Please refer to the "SWIG Basics" chapter for more information.

23.4.9 Operators

C++ operators can also be wrapped using the %rename directive. All you need to do is give the operator the name of a valid Perl
identifier. For example:

%rename(add_complex) operator+(Complex &, Complex &);
...
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Complex operator+(Complex &, Complex &);

Now, in Perl, you can do this:

use example;
$a = example::new_Complex(2,3);
$b = example::new_Complex(4,−1);
$c = example::add_complex($a,$b);

Some preliminary work on mapping C++ operators into Perl operators has been completed. This is covered later.

23.4.10 Modules and packages

When you create a SWIG extension, everything gets placed into a single Perl module. The name of the module is determined by
the %module directive. To use the module, do the following :

% perl5
use example;                      # load the example module
print example::fact(4),"\n"       # Call a function in it
24

Usually, a module consists of a collection of code that is contained within a single file. A package, on the other hand, is the Perl
equivalent of a namespace. A package is alot like a module, except that it is independent of files. Any number of files may be part
of the same package−−or a package may be broken up into a collection of modules if you prefer to think about it in this way.

SWIG installs its functions into a package with the same name as the module.

Incompatible Change: previous versions of SWIG enabled you to change the name of the package by using the −package option,
this feature has been removed in order to properly support modules that used nested namespaces, e.g. Foo::Bar::Baz. To give your
module a nested namespace simply provide the fully qualified name in your %module directive:

%module "Foo::Bar::Baz"

NOTE: the double quotes are necessary.

23.5 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
   *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
   return *x+*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int  sub(int *INPUT, int *INPUT);

In Perl, this allows you to pass simple values. For example:
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$a = example::add(3,4);
print "$a\n";
7
$b = example::sub(7,4);
print "$b\n";
3

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};

void add(int x, int y, int *result);
int  sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
   *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Perl, a mutated parameter shows up as a return value. For example:

$a = example::negate(3);
print "$a\n";
−3

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);

When used in Perl, the function will return multiple values.

($bytes, $success) = example::send_message("Hello World");

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);
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To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Perl:

($r,$c) = example::get_dimensions($m);

In certain cases, it is possible to treat Perl references as C pointers. To do this, use the REFERENCE typemap. For example:

%module example
%include typemaps.i

void add(int x, int y, int *REFERENCE);

In Perl:

use example;
$c = 0.0;
example::add(3,4,\$c);
print "$c\n";
7

Note: The REFERENCE feature is only currently supported for numeric types (integers and floating point).

23.6 Exception handling

The SWIG %exception directive can be used to create a user−definable exception handler for converting exceptions in your
C/C++ program into Perl exceptions. The chapter on customization features contains more details, but suppose you have a C++
class like the following :

class RangeError {};   // Used for an exception

class DoubleArray {
  private:
    int n;
    double *ptr;
  public:
    // Create a new array of fixed size
    DoubleArray(int size) {
      ptr = new double[size];
      n = size;
    }
    // Destroy an array
    ~DoubleArray() {
       delete ptr;
    }
    // Return the length of the array
    int   length() {
      return n;
    }

    // Get an item from the array and perform bounds checking.
    double getitem(int i) {
      if ((i >= 0) && (i < n))
        return ptr[i];
      else
        throw RangeError();
    }
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    // Set an item in the array and perform bounds checking.
    void setitem(int i, double val) {
      if ((i >= 0) && (i < n))
        ptr[i] = val;
      else {
        throw RangeError();
      }
    }
  };

Since several methods in this class can throw an exception for an out−of−bounds access, you might want to catch this in the Perl
extension by writing the following in an interface file:

%exception {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out−of−bounds");
  }
}

class DoubleArray {
...
};

The exception handling code is inserted directly into generated wrapper functions. The $action variable is replaced with the
C/C++ code being executed by the wrapper. When an exception handler is defined, errors can be caught and used to gracefully
generate a Perl error instead of forcing the entire program to terminate with an uncaught error.

As shown, the exception handling code will be added to every wrapper function. Since this is somewhat inefficient. You might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out−of−bounds");
  }
}

%exception setitem {
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out−of−bounds");
  }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

If you had a lot of different methods, you can avoid extra typing by using a macro. For example:

%define RANGE_ERROR
{
  try {
    $action
  }
  catch (RangeError) {
    croak("Array index out−of−bounds");
  }
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}
%enddef

%exception getitem RANGE_ERROR;
%exception setitem RANGE_ERROR;

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
"Customization features" for more examples.

Compatibility note: In SWIG1.1, exceptions were defined using the older %except directive:

%except(python) {
  try {
    $function
  }
  catch (RangeError) {
    croak("Array index out−of−bounds");
  }
}

This is still supported, but it is deprecated. The newer %exception directive provides the same functionality, but it has
additional capabilities that make it more powerful.

23.7 Remapping datatypes with typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Perl C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Perl interface.

23.7.1 A simple typemap example

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Perl to C, you might define a typemap like this:

%module example

%typemap(in) int {
        $1 = (int) SvIV($input);
        printf("Received an integer : %d\n", $1);
}
...
extern int fact(int n);

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object (usually a SV *).

When this example is used in Perl5, it will operate as follows :

use example;
$n = example::fact(6);
print "$n\n";
...

Output :
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Received an integer : 6
720

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
        $1 = (int) SvIV($input);
        printf("n = %d\n",$1);
}
typedef int Integer;
extern int fact(Integer n);    // Above typemap is applied

It should be noted that the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not
applied to arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, unsigned len) {
    $1 = SvPV($input,$2);
};

int count(char c, char *str, unsigned len);

When a multi−argument typemap is defined, the arguments are always handled as a single Perl object. This allows the function to
be used like this (notice how the length parameter is ommitted):

example::count("e","Hello World");
1
>>>

23.7.2 Perl5 typemaps

The previous section illustrated an "in" typemap for converting Perl objects to C. A variety of different typemap methods are
defined by the Perl module. For example, to convert a C integer back into a Perl object, you might define an "out" typemap like
this:

%typemap(out) int {
    $result = sv_newmortal();
    set_setiv($result, (IV) $1);
    argvi++;
}

The following typemap methods are available:

%typemap(in)

Converts Perl5 object to input function arguments.

%typemap(out)

Converts function return value to a Perl5 value.

%typemap(varin)

Converts a Perl5 object to a global variable.

%typemap(varout)
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Converts a global variable to a Perl5 object.

%typemap(freearg)

Cleans up a function argument after a function call

%typemap(argout)

Output argument handling

%typemap(ret)

Clean up return value from a function.

%typemap(memberin)

Setting of C++ member data (all languages).

%typemap(memberout)

Return of C++ member data (all languages).

%typemap(check)

Check value of input parameter.

23.7.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this
is a C local variable that's supposed to hold an argument value. For output values, this is the raw result that's
supposed to be returned to Perl.

$input

A Perl object holding the value of an argument of variable value.

$result

A Perl object that holds the result to be returned to Perl.

$1_name

The parameter name that was matched.

$1_type

The actual C datatype matched by the typemap.

$1_ltype
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An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of
a C assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All
arguments and local variables in wrapper functions are declared using this type so that their values can be
properly assigned.

$symname

The Perl name of the wrapper function being created.

23.7.4 Useful functions

When writing typemaps, it is necessary to work directly with Perl5 objects. This, unfortunately, can be a daunting task. Consult
the "perlguts" man−page for all of the really ugly details. A short summary of commonly used functions is provided here for
reference. It should be stressed that SWIG can be usef quite effectively without knowing any of these details−−especially now that
there are typemap libraries that can already been written.

Perl Integer Functions

int   SvIV(SV *);
void  sv_setiv(SV *sv, IV value);
SV   *newSViv(IV value);
int   SvIOK(SV *);

Perl Floating Point Functions

double SvNV(SV *);
void   sv_setnv(SV *, double value);
SV    *newSVnv(double value);
int    SvNOK(SV *);

Perl String Functions

char     *SvPV(SV *, STRLEN len);
void      sv_setpv(SV *, char *val);
void      sv_setpvn(SV *, char *val, STRLEN len);
SV       *newSVpv(char *value, STRLEN len);
int       SvPOK(SV *);
void      sv_catpv(SV *, char *);
void      sv_catpvn(SV *, char *, STRLEN);

Perl References

void      sv_setref_pv(SV *, char *, void *ptr);
int       sv_isobject(SV *);
SV       *SvRV(SV *);
int       sv_isa(SV *, char *0;

23.8 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "perl5.swg" and
"typemaps.i" in the SWIG library.

23.8.1 Converting a Perl5 array to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Perl5 array reference to be used as a char ** datatype.

%module argv
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// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
        AV *tempav;
        I32 len;
        int i;
        SV  **tv;
        if (!SvROK($input))
            croak("Argument $argnum is not a reference.");
        if (SvTYPE(SvRV($input)) != SVt_PVAV)
            croak("Argument $argnum is not an array.");
        tempav = (AV*)SvRV($input);
        len = av_len(tempav);
        $1 = (char **) malloc((len+2)*sizeof(char *));
        for (i = 0; i <= len; i++) {
            tv = av_fetch(tempav, i, 0);        
            $1[i] = (char *) SvPV(*tv,PL_na);
        }
        $1[i] = NULL;
};

// This cleans up the char ** array after the function call
%typemap(freearg) char ** {
        free($1);
}

// Creates a new Perl array and places a NULL−terminated char ** into it
%typemap(out) char ** {
        AV *myav;
        SV **svs;
        int i = 0,len = 0;
        /* Figure out how many elements we have */
        while ($1[len])
           len++;
        svs = (SV **) malloc(len*sizeof(SV *));
        for (i = 0; i < len ; i++) {
            svs[i] = sv_newmortal();
            sv_setpv((SV*)svs[i],$1[i]);
        };
        myav =  av_make(len,svs);
        free(svs);
        $result = newRV((SV*)myav);
        sv_2mortal($result);
        argvi++;
}

// Now a few test functions
%inline %{
int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i,argv[i]);
         i++;
    }
    return i;
}

// Returns a char ** list 
char **get_args() {
    static char *values[] = { "Dave", "Mike", "Susan", "John", "Michelle", 0};
    return &values[0];
}
%}

When this module is compiled, the wrapped C functions can be used in a Perl script as follows :

use argv;
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@a = ("Dave", "Mike", "John", "Mary");           # Create an array of strings
argv::print_args(\@a);                           # Pass it to our C function
$b = argv::get_args();                           # Get array of strings from C
print @$b,"\n";                                  # Print it out

23.8.2 Return values

Return values are placed on the argument stack of each wrapper function. The current value of the argument stack pointer is
contained in a variable argvi. Whenever a new output value is added, it is critical that this value be incremented. For multiple
output values, the final value of argvi should be the total number of output values.

The total number of return values should not exceed the number of input values unless you explicitly extend the argument stack.
This can be done using the EXTEND() macro as in :

%typemap(argout) int *OUTPUT {
        if (argvi >= items) {            
                EXTEND(sp,1);              /* Extend the stack by 1 object */
        }
        $result = sv_newmortal();
        sv_setiv($target,(IV) *($1));
        argvi++;
}

23.8.3 Returning values from arguments

Sometimes it is desirable for a function to return a value in one of its arguments. This example describes the implementation of
the OUTPUT typemap.

%module return

// This tells SWIG to treat an double * argument with name 'OutDouble' as
// an output value.  

%typemap(argout) double *OUTPUT {
        $result = sv_newmortal();
        sv_setnv($result, *$input);
        argvi++;                     /* Increment return count −− important! */
}

// We don't care what the input value is. Ignore, but set to a temporary variable

%typemap(in,numinputs=0) double *OUTPUT(double junk) {
        $1 = &junk;
}

// Now a function to test it
%{
/* Returns the first two input arguments */
int multout(double a, double b, double *out1, double *out2) {
        *out1 = a;
        *out2 = b;
        return 0;
};
%}

// If we name both parameters OutDouble both will be output

int multout(double a, double b, double *OUTPUT, double *OUTPUT);
...

When this function is called, the output arguments are appended to the stack used to return results. This shows up an array in Perl.
For example :
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@r = multout(7,13);
print "multout(7,13) = @r\n";
($x,$y) = multout(7,13);

23.8.4 Accessing array structure members

Consider the following data structure :

#define SIZE  8
typedef struct {
    int   values[SIZE];
    ...
} Foo;

By default, SWIG doesn't know how to the handle the values structure member it's an array, not a pointer. In this case, SWIG
makes the array member read−only. Reading will simply return a pointer to the first item in the array. To make the member
writable, a "memberin" typemap can be used.

%typemap(memberin) int [SIZE] {
    int i;
    for (i = 0; i < SIZE; i++) {
        $1[i] = $input[i];
    }
}

Whenever a int [SIZE] member is encountered in a structure or class, this typemap provides a safe mechanism for setting its
value.

As in the previous example, the typemap can be generalized for any dimension. For example:

%typemap(memberin) int [ANY] {
   int i;
   for (i = 0; i < $1_dim0; i++) {
      $1[i] = $input[i];
   }
}

When setting structure members, the input object is always assumed to be a C array of values that have already been converted
from the target language. Because of this, the memberin typemap is almost always combined with the use of an "in" typemap.
For example, the "in" typemap in the previous section would be used to convert an int[] array to C whereas the "memberin"
typemap would be used to copy the converted array into a C data structure.

23.8.5 Turning Perl references into C pointers

A frequent confusion on the SWIG mailing list is errors caused by the mixing of Perl references and C pointers. For example,
suppose you have a C function that modifies its arguments like this :

void add(double a, double b, double *c) {
        *c = a + b;
}

A common misinterpretation of this function is the following Perl script :

# Perl script
$a = 3.5;
$b = 7.5;
$c = 0.0;          # Output value
add($a,$b,\$c);    # Place result in c (Except that it doesn't work)
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To make this work with a reference, you can use a typemap such as this:

%typemap(in) double * (double dvalue) {
  SV* tempsv;
  if (!SvROK($input)) {
    croak("expected a reference\n");
  }
  tempsv = SvRV($input);
  if ((!SvNOK(tempsv)) && (!SvIOK(tempsv))) {
    croak("expected a double reference\n");
  }
  dvalue = SvNV(tempsv);
  $1 = &dvalue;
}

%typemap(argout) double * {
  SV *tempsv;
  tempsv = SvRV($input);
  sv_setnv(tempsv, *$input);
}

Now, if you place this before the add function, you can do this :

$a = 3.5;
$b = 7.5;
$c = 0.0;
add($a,$b,\$c);            # Now it works!
print "$c\n";

23.8.6 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
To convert a pointer from Perl to C, the following function is used:

int SWIG_ConvertPtr(SV *obj, void **ptr, swig_type_info *ty, int flags)

Converts a Perl object obj to a C pointer. The result of the conversion is placed into the pointer located at ptr.
ty is a SWIG type descriptor structure. flags is used to handle error checking and other aspects of
conversion. flags is currently undefined and reserved for future expansion. Returns 0 on success and −1 on
error.

void *SWIG_MakePtr(SV *obj, void *ptr, swig_type_info *ty, int flags)

Creates a new Perl pointer object. obj is a Perl SV that has been initialized to hold the result, ptr is the pointer
to convert, ty is the SWIG type descriptor structure that describes the type, and flags is a flag that controls
properties of the conversion. flags is currently undefined and reserved.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, 0) == −1) return NULL;

SV *sv = sv_newmortal();
SWIG_MakePtr(sv, f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
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   if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,0)) == −1) return NULL;
}

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
   if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *), 0)) == −1) return NULL;
}

23.9 Proxy classes

Out of date. Needs update.

Using the low−level procedural interface, SWIG can also construct a high−level object oriented interface to C structures and C++
classes. This is done by constructing a Perl proxy class (also known as a shadow class) that provides an OO wrapper to the
underlying code. This section describes the implementation details of the proxy interface.

23.9.1 Preliminaries

Proxy classes, are generated by default. If you want to turn them off, use the −noproxy command line option. For example:

$ swig −c++ −perl −noproxy example.i

When proxy classes are used, SWIG moves all of the low−level procedural wrappers to another package name. By default, this
package is named 'modulec' where 'module' is the name of the module you provided with the %module directive. Then, in place
of the original module, SWIG creates a collection of high−level Perl wrappers. In your scripts, you will use these high level
wrappers. The wrappers, in turn, interact with the low−level procedural module.

23.9.2 Structure and class wrappers

Suppose you have the following SWIG interface file :

%module example
struct Vector {
        Vector(double x, double y, double z);
        ~Vector();
        double x,y,z;
};

When wrapped, SWIG creates the following set of low−level accessor functions as described in previous sections.

Vector *new_Vector(double x, double y, double z);
void    delete_Vector(Vector *v);
double  Vector_x_get(Vector *v);
double  Vector_x_set(Vector *v, double value);
double  Vector_y_get(Vector *v);
double  Vector_y_set(Vector *v, double value);
double  Vector_z_get(Vector *v);
double  Vector_z_set(Vector *v, double value);

However, when proxy classes are enabled, these accessor functions are wrapped inside a Perl class like this:

package example::Vector;
@ISA = qw( example );
%OWNER = ();
%BLESSEDMEMBERS = ();

sub new () {
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    my $self = shift;
    my @args = @_;
    $self = vectorc::new_Vector(@args);
    return undef if (!defined($self));
    bless $self, "example::Vector";
    $OWNER{$self} = 1;
    my %retval;
    tie %retval, "example::Vector", $self;
    return bless \%retval,"Vector";
}

sub DESTROY {
    return unless $_[0]−>isa('HASH');
    my $self = tied(%{$_[0]});
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
         examplec::delete_Vector($self));
         delete $OWNER{$self};
}

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "vectorc::Vector_${field}_get";
    my $val = &$member_func($self);
    if (exists $BLESSEDMEMBERS{$field}) {
        return undef if (!defined($val));
        my %retval;
        tie %retval,$BLESSEDMEMBERS{$field},$val;
        return bless \%retval, $BLESSEDMEMBERS{$field};
    }
    return $val;
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "vectorc::Vector_${field}_set";
    if (exists $BLESSEDMEMBERS{$field}) {
        &$member_func($self,tied(%{$newval}));
    } else {
        &$member_func($self,$newval);
    }
}

Each structure or class is mapped into a Perl package of the same name. The C++ constructors and destructors are mapped into
constructors and destructors for the package and are always named "new" and "DESTROY". The constructor always returns a tied
hash table. This hash table is used to access the member variables of a structure in addition to being able to invoke member
functions. The %OWNER and %BLESSEDMEMBERS hash tables are used internally and described shortly.

To use our new proxy class we can simply do the following:

# Perl code using Vector class
$v = new Vector(2,3,4);
$w = Vector−>new(−1,−2,−3);

# Assignment of a single member
$v−>{x} = 7.5;

# Assignment of all members
%$v = ( x=>3,
         y=>9,
         z=>−2);

# Reading members
$x = $v−>{x};

# Destruction
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$v−>DESTROY();

23.9.3 Object Ownership

In order for proxy classes to work properly, it is necessary for Perl to manage some mechanism of object ownership. Here's the
crux of the problem−−−suppose you had a function like this :

Vector *Vector_get(Vector *v, int index) {
        return &v[i];
}

This function takes a Vector pointer and returns a pointer to another Vector. Such a function might be used to manage arrays or
lists of vectors (in C). Now contrast this function with the constructor for a Vector object :

Vector *new_Vector(double x, double y, double z) {
        Vector *v;
        v = new Vector(x,y,z);        // Call C++ constructor
        return v;
}

Both functions return a Vector, but the constructor is returning a brand−new Vector while the other function is returning a Vector
that was already created (hopefully). In Perl, both vectors will be indistinguishable−−−clearly a problem considering that we
would probably like the newly created Vector to be destroyed when we are done with it.

To manage these problems, each class contains two methods that access an internal hash table called %OWNER. This hash keeps a
list of all of the objects that Perl knows that it has created. This happens in two cases: (1) when the constructor has been called,
and (2) when a function implicitly creates a new object (as is done when SWIG needs to return a complex datatype by value).
When the destructor is invoked, the Perl proxy class module checks the %OWNER hash to see if Perl created the object. If so, the
C/C++ destructor is invoked. If not, we simply destroy the Perl object and leave the underlying C object alone (under the
assumption that someone else must have created it).

This scheme works remarkably well in practice but it isn't foolproof. In fact, it will fail if you create a new C object in Perl, pass it
on to a C function that remembers the object, and then destroy the corresponding Perl object (this situation turns out to come up
frequently when constructing objects like linked lists and trees). When C takes possession of an object, you can change Perl's
owership by simply deleting the object from the %OWNER hash. This is done using the DISOWN method.

# Perl code to change ownership of an object
$v = new Vector(x,y,z);
$v−>DISOWN();     

To acquire ownership of an object, the ACQUIRE method can be used.

# Given Perl ownership of a file
$u = Vector_get($v);
$u−>ACQUIRE();

As always, a little care is in order. SWIG does not provide reference counting, garbage collection, or advanced features one might
find in sophisticated languages.

23.9.4 Nested Objects

Suppose that we have a new object that looks like this :

struct Particle {
        Vector r;
        Vector v;
        Vector f;
        int     type;
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}

In this case, the members of the structure are complex objects that have already been encapsulated in a Perl proxy class. To handle
these correctly, we use the %BLESSEDMEMBERS hash which would look like this (along with some supporting code) :

package Particle;
...
%BLESSEDMEMBERS = (
        r => `Vector',
        v => `Vector',
        f => `Vector',
);

When fetching members from the structure, %BLESSEDMEMBERS is checked. If the requested field is present, we create a
tied−hash table and return it. If not, we just return the corresponding member unmodified.

This implementation allows us to operate on nested structures as follows :

# Perl access of nested structure
$p = new Particle();
$p−>{f}−>{x} = 0.0;
%${$p−>{v}} = ( x=>0, y=>0, z=>0);         

23.9.5 Proxy Functions

When functions take arguments involving a complex object, it is sometimes necessary to write a proxy function. For example :

double dot_product(Vector *v1, Vector *v2);

Since Vector is an object already wrapped into a proxy class, we need to modify this function to accept arguments that are given
in the form of tied hash tables. This is done by creating a Perl function like this :

sub dot_product {
    my @args = @_;
    $args[0] = tied(%{$args[0]});         # Get the real pointer values
    $args[1] = tied(%{$args[1]});
    my $result = vectorc::dot_product(@args);
    return $result;
}

This function replaces the original function, but operates in an identical manner.

23.9.6 Inheritance

Simple C++ inheritance is handled using the Perl @ISA array in each class package. For example, if you have the following
interface file :

// shapes.i
// SWIG interface file for shapes class
%module shapes
%{
#include "shapes.h"
%}

class Shape {
public:
        virtual double area() = 0;
        virtual double perimeter() = 0;
        void    set_location(double x, double y);
};
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class Circle : public Shape {
public:
        Circle(double radius);
        ~Circle();
        double area();
        double perimeter();
};
class Square : public Shape {
public:
        Square(double size);
        ~Square();
        double area();
        double perimeter();
}

The resulting, Perl wrapper class will create the following code :

Package Shape;
@ISA = (shapes);
...
Package Circle;
@ISA = (shapes Shape);
...
Package Square;
@ISA = (shapes Shape);

The @ISA array determines where to look for methods of a particular class. In this case, both the Circle and Square classes
inherit functions from Shape so we'll want to look in the Shape base class for them. All classes also inherit from the top−level
module shapes. This is because certain common operations needed to implement proxy classes are implemented only once and
reused in the wrapper code for various classes and structures.

Since SWIG proxy classes are implemented in Perl, it is easy to subclass from any SWIG generated class. To do this, simply put
the name of a SWIG class in the @ISA array for your new class. However, be forewarned that this is not a trivial problem. In
particular, inheritance of data members is extremely tricky (and I'm not even sure if it really works).

23.9.7 Modifying the proxy methods

It is possible to override the SWIG generated proxy/shadow methods, using %feature("shadow"). It works like all the other
%feature directives. Here is a simple example showing how to add some Perl debug code to the constructor:

/* Let's make the constructor of the class Square more verbose */
%feature("shadow") Square(double w)
%{
  sub new {
    my $pkg = shift;
    my $self = examplec::new_Square(@_);
    print STDERR "Constructed an @{[ref($self)]}\n";
    bless $self, $pkg if defined($self);
  }
%}

class Square {
public:
  Square(double w);
  ...
};
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Caution: This chapter (and module!) is still under construction

In this chapter, we discuss SWIG's support of PHP4. The PHP4 module is still under development so some of the features below
may not work properly (or at all!.)

The PHP4 module has undergone a lot of changes recently affecting the way proxy classes are implemented so you should read
this document even if you thought you were familiar with what it said. The major change is that proxy classes are implemented
inside the php module in C++ instead of in the generated .php file in php.

24.1 Preliminaries

In order to use this module, you will need to have a copy of the PHP 4.0 (or above) include files to compile the SWIG generated
files. You can find these files by running 'php−config −−includes'. To test the modules you will need either the php
binary or the Apache php module. If you want to build your extension into php directly (without having the overhead of loading it
into each script), you will need the complete PHP source tree available.

24.2 Building PHP4 Extensions

To build a PHP4 extension, run swig using the −php4 option as follows :

swig −php4 example.i

This will produce 3 files by default. The first file, example_wrap.c contains all of the C code needed to build a PHP4
extension. The second file, php_example.h contains the header information needed to link the extension into PHP. The third
file, example.php can be included by your php scripts. It will attempt to dynamically load your extension, and is a
place−holder for extra code specified in the interface file. If you want to build your extension using the phpize utility, or if you
want to build your module into PHP directly, you can specify the −phpfull command line argument to swig.

The −phpfull will generate three extra files. The first extra file, config.m4 contains the shell code needed to enable the
extension as part of the PHP4 build process. The second extra file, Makefile.in contains the information needed to build the
final Makefile after substitutions. The third and final extra file, CREDITS should contain the credits for the extension.

To finish building the extension, you have two choices. You can either build the extension as a seperate object file which will then
have to be explicitly loaded by each script. Or you can rebuild the entire php source tree and build the extension into the php
executable/library so it will be available in every script. The first choice is the default, however it can be changed by passing the
'−phpfull' command line switch to select the second build method.
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24.2.1 Building a loadable extension

To build a dynamic module for PHP, you have two options. You can use the phpize utility, or you can do it manually.

To build manually, use a compile string similar to this (different for each OS):

        cc −I.. $(PHPINC) −fpic −c example_wrap.c
        cc −shared example_wrap.o −o libexample.so

To build with phpize, after you have run swig you will need to run the 'phpize' command (installed as part of php) in the same
directory. This re−creates the php build environment in that directory. It also creates a configure file which includes the shell code
from the config.m4 that was generated by SWIG, this configure script will accept a command line argument to enable the
extension to be run ( by default the command line argument is −−enable−modulename, however you can edit the config.m4 file
before running phpize to accept −−with−modulename. You can also add extra tests in config.m4 to check that a correct library
version is installed or correct header files are included, etc, but you must edit this file before running phpize. ) If you like SWIG
can generate simple extra tests for libraries and header files for you.

        swig −php4 −phpfull −withlibs "xapian omquery" −−withincs "om.h"

Will include in the config.m4 search for libxapian.a or libxapian.so and search for libomquery.a or libomquery.so as well as a
search for om.h

If you depend on source files not generated by SWIG, before generated configure file, you may need to edit the Makefile.in
file. This contains the names of the source files to compile (just the wrapper file by default) and any additional libraries needed to
be linked in. If there are extra C files to compile, you will need to add them to the Makefile.in, or add the names of libraries if they
are needed. In simple cases SWIG is pretty good at generating a complete Makefile.in and config.m4 which need no further
editing.

You then run the configure script with the command line argument needed to enable the extension. Then run make, which builds
the extension. The extension object file will be left in the modules sub directory, you can move it to wherever it is convenient to
call from your php script.

To test the extension from a PHP script, you need to load it first. You do this by putting the line,

        dl("/path/to/modulename.so");   // Load the module

at the start of each PHP file. SWIG also generates a php module, which attempts to do the dl() call for you:

        include("example.php");

A more complicated method which builds the module directly into the php executable is described below.

24.2.2 Basic PHP4 interface

24.2.3 Functions

C functions are converted into PHP functions. Default/optional arguments are also allowed. An interface file like this :

%module default
int foo(int a);
double bar(double, double b = 3.0);
...

Will be accessed in PHP like this :

dl("default.so"); $a = foo(2);
$b = bar(3.5, −1.5);
$c = bar(3.5);          # Use default argument for 2nd parameter
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24.2.4 Global Variables

Global variables are difficult for PHP to handle, unlike Perl, their is no 'magic' way to intercept modifications made to variables,
so changes in a PHP variable will not be reflected in its C equivalent. To get around the problem, two extra function are
generated, Swig_sync_c() and Swig_sync_php(). These functions are called at the start and end of every function call,
ensuring changes made in PHP are updated in C ( and vice versa. ) Because this is handled for you, you can modify the variables
in PHP as normal, e.g.

%module example;
...
double seki = 2;
...
int example_func(void);

is accessed as follow :

dl("example.so");
print $seki;
$seki = $seki * 2;      # Does not affect C variable, still equal to 2
example_func();         # Syncs C variable to PHP Variable, now both 4

SWIG supports global variables of all C datatypes including pointers and complex objects.

24.2.5 Pointers

Pointers to C/C++ objects no longer represented as character strings such as:_523d3f4_Circle_p, instead they are
represented as PHP resources, rather like MySQL connection handles.

You can also explicitly create a NULL pointer as a string "NULL" or by passing a null or empty value.

24.2.6 Structures and C++ classes

For structures and classes, SWIG produces accessor fuction for each member function and data. For example :

%module vector

class Vector {
public:
        double x,y,z;
        Vector();
        ~Vector();
        double magnitude();
};

This gets turned into the following collection of PHP functions :

Vector_x_set($obj);
Vector_x_get($obj);
Vector_y_set($obj);
Vector_y_get($obj);
Vector_z_set($obj);
Vector_z_get($obj);
new_Vector();
delete_Vector($obj);
Vector_magnitude($obj);
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To use the class, simply use these functions. However, SWIG also has a mechanism for creating proxy classes that hides these
functions and uses an object oriented interface instead − see below

24.2.7 Constants

These work in much the same way as in C/C++, constants can be defined by using either the normal C pre−processor declarations,
or the %constant SWIG directive. These will then be available from your PHP script as a PHP constant, (e.g. no dollar sign is
needed to access them. ) For example, with a swig file like this,

%module example

#define PI 3.14159

%constant int E  = 2.71828

you can access from in your php script like this,

dl("libexample.so");

echo "PI = " . PI . "\n";

echo "E = " . E . "\n";

There are two peculiarities with using constants in PHP4. The first is that if you try to use an undeclared constant, it will evaulate
to a string set to the constants name. For example,

%module example

#define EASY_TO_MISPELL 0

accessed incorrectly in PHP,

dl("libexample.so");

if(EASY_TO_MISPEL) {
        ....
} else {
        ....
}

will issue a warning about the undeclared constant, but will then evalute it and turn it into a string ('EASY_TO_MISPEL'), which
evaluates to true, rather than the value of the constant which would be false. This is a feature.

The second 'feature' is that although constants are case sensitive (by default), you cannot declare a constant twice with alternative
cases. E.g.,

%module example

#define TEST    Hello
#define Test    World

accessed from PHP,

dl("libexample.so");

echo TEST, Test;

will output "Hello Test" rather than "Hello World". This is because internally, all constants are stored in a hash table by their
lower case name, so 'TEST' and 'Test' will map to the same hash element ('Test'). But, because we declared them case sensitive,
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the Zend engine will test if the case matches with the case the constant was declared with first.

So, in the example above, the TEST constant was declared first, and will be stored under the hash element 'test'. The 'Test'
constant will also map to the same hash element 'test', but will not overwrite it. When called from the script, the TEST constant
will again be mapped to the hash element 'test' so the constant will be retrieved. The case will then be checked, and will match up,
so the value ('Hello') will be returned. When 'Test' is evaulated, it will also map to the same hash element 'test'. The same constant
will be retrieved, this time though the case check will fail as 'Test' != 'TEST'. So PHP will assume that Test is a undeclared
constant, and as explained above, will return it as a string set to the constant name ('Test'). Hence the script above will print 'Hello
Test'. If they were declared non−case sensitive, the output would be 'Hello Hello', as both point to the same value, without the
case test taking place. ( Apologies, this paragraph needs rewritting to make some sense. )

24.2.8 Proxy classes

To avoid having to call the various accessor function to get at structures or class members, we can turn C structs and C++ classes
into PHP classes that can be be used directly in PHP scripts as objects and object methods. This is done by writing additional PHP
code that builds PHP classes on top of the low−level SWIG interface. These PHP classes shadow or proxy an underlying C/C++
class.

To have SWIG create proxy classes, use the −proxy option :

% swig −php4 −proxy tbc.i

This will produce the same files as before except that the final module will declare internal PHP classes with the same names as
the classes in your .i file. No longer are the proxy classes defined in the .php file, it will not contain significantly more support
PHP code.

For the most part, the code is the same except that we can now access members of complex data structures using −> instead of the
low level access or functions like before.

.... ( more examples on the way ) ....

24.2.9 Constructors and Destructers

Constructors are used in PHP as in C++, they are called when the object is created and any arguments are passed to them.
However, function overloading is not allowed in PHP so only one constructor can be used. This creates a problem when copying
objects, as we cannot avoid creating a whole new one when all we want is to make it point to the same value as the original. This
is currently worked around by doing the following,

Create the new PHP object• 
Delete the PHP objects pointer to the C object• 
Set the PHP object's pointer to the same as the original PHP object's pointer.• 

This is rather convoluted and hopefully will be improved upon in a later release.

Because the internal wrapped objects are wrapped in PHP resources, PHP handles the cleaning up when there are no more
references to the wrapped object. 'RegisterShutdownFunction' is no longer needed for this. I am not sure if PHP resources are all
freed at the end of a script, or when they each go out of scope.

24.2.10 Static Member Variables

Class variables are not supported in PHP, however class functions are, using '::' syntax. Static member variables are therefore
accessed using a class function with the same name, which returns the current value of the class variable. For example

%module example

class Ko {
        static int threats;
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        ...
};

would be accessed in PHP as,

dl("libexample.so");

echo "There has now been " . Ko::threats() . " threats\n";

To set the static member variable, pass the value as the argument to the class function, e.g.

Ko::threats(10);

echo "There has now been " . Ko::threats() . " threats\n";

24.2.11 PHP4 Pragmas

There are a few pragmas understood by the PHP4 module. The first, include adds a file to be included by the generated PHP
module. The second, code adds literal code to the generated PHP module. The third, phpinfo inserts code to the function called
when PHP's phpinfo() function is called.

        /* example.i */

        %pragma(php4) include="foo.php"
        %pragma(php4) code="
          function foo($bar) {
                /* do something */
          }
        "
        %pragma(php4) phpinfo="
          zend_printf("An example of PHP support through SWIG\n");
          php_info_print_table_start();
          php_info_print_table_header(2, \"Directive\", \"Value\");
          php_info_print_table_row(2, \"Example support\", \"enabled\");
          php_info_print_table_end();
        "

        %include "example.h"

24.2.12 Building extensions into php

This method, selected with the −phpfull command line switch, involves rebuilding the entire php source tree. Whilst more
complicated to build, it does mean that the extension is then available without having to load it in each script.

After running swig with the −phpfull switch, you will be left with a shockingly similiar set of files to the previous build process.
However you will then need to move these files to a subdirectory within the php source tree, this subdirectory you will need to
create under the ext directory, with the name of the extension ( e.g mkdir php−4.0.6/ext/modulename .)

After moving the files into this directory, you will need to run the 'buildall' script in the php source directory. This rebuilds the
configure script and includes the extra command line arguments from the module you have added.

Before running the generated configure file, you may need to edit the Makefile.in. This contains the names of the source files
to compile ( just the wrapper file by default) and any additional libraries needed to link in. If their are extra C files to compile you
will need to add them to the Makefile, or add the names of libraries if they are needed. In most cases Makefile.in will be
complete, especially if you make use of −withlibs and −withincs

        swig −php4 −phpfull −withlibs "xapian omquery" −−withincs "om.h"
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Will include in the config.m4 and Makefile.in search for libxapian.a or libxapian.so and search for libomquery.a or libomquery.so
as well as a search for om.h

You then need to run the configure command and pass the necessary command line arguments to enable your module ( by default
this is −−enable−modulename, but this can be changed by editing the config.m4 file in the modules directory before running the
buildall script. In addition, extra tests can be added to the config.m4 file to ensure the correct libraries and header files are
installed.)

Once configure has completed, you can run make to build php. If this all compiles correctly, you should end up with a php
executable/library which contains your new module. You can test it with a php script which does not have the 'dl' command as
used above.

24.2.13 To be furthered...
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This chapter describes SWIG support for Pike. As of this writing, the SWIG Pike module is still under development and is not
considered ready for prime time. The Pike module is being developed against the Pike 7.4.10 release and may not be compatible
with previous versions of Pike.

This chapter covers most SWIG features, but certain low−level details are covered in less depth than in earlier chapters. At the
very least, make sure you read the "SWIG Basics" chapter.

25.1 Preliminaries

25.1.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example

%{
#include "example.h"
%}

int fact(int n);

To build a C extension module for Pike, run SWIG using the −pike option :

$ swig −pike example.i

If you're building a C++ extension, be sure to add the −c++ option:

$ swig −c++ −pike example.i

This creates a single source file named example_wrap.c (or example_wrap.cxx, if you ran SWIG with the −c++ option).
The SWIG−generated source file contains the low−level wrappers that need to be compiled and linked with the rest of your
C/C++ application to create an extension module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option:

$ swig −pike −o pseudonym.c example.i

25.1.2 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs to know the path to the Pike header files. These files are usually
contained in a directory such as
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/usr/local/pike/7.4.10/include/pike

There doesn't seem to be any way to get Pike itself to reveal the location of these files, so you may need to hunt around for them.
You're looking for files with the names global.h, program.h and so on.

25.1.3 Using your module

To use your module, simply use Pike's import statement:

$ pike
Pike v7.4 release 10 running Hilfe v3.5 (Incremental Pike Frontend)
> import example;
> fact(4);
(1) Result: 24

25.2 Basic C/C++ Mapping

25.2.1 Modules

All of the code for a given SWIG module is wrapped into a single Pike module. Since the name of the shared library that
implements your module ultimately determines the module's name (as far as Pike is concerned), SWIG's %module directive
doesn't really have any significance.

25.2.2 Functions

Global functions are wrapped as new Pike built−in functions. For example,

%module example

int fact(int n);

creates a new built−in function example.fact(n) that works exactly as you'd expect it to:

> import example;
> fact(4);
(1) Result: 24

25.2.3 Global variables

Global variables are currently wrapped as a pair of of functions, one to get the current value of the variable and another to set it.
For example, the declaration

%module example

double Foo;

will result in two functions, Foo_get() and Foo_set():

> import example;
> Foo_get();
(1) Result: 3.000000
> Foo_set(3.14159);
(2) Result: 0
> Foo_get();
(3) Result: 3.141590
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25.2.4 Constants and enumerated types

Enumerated types in C/C++ declarations are wrapped as Pike constants, not as Pike enums.

25.2.5 Constructors and Destructors

Constructors are wrapped as create() methods, and destructors are wrapped as destroy() methods, for Pike classes.

25.2.6 Static Members

Since Pike doesn't support static methods or data for Pike classes, static member functions in your C++ classes are wrapped as
regular functions and static member variables are wrapped as pairs of functions (one to get the value of the static member
variable, and another to set it). The names of these functions are prepended with the name of the class. For example, given this
C++ class declaration:

class Shape
{
public:
    static void print();
    static int nshapes;
};

SWIG will generate a Shape_print() method that invokes the static Shape::print() member function, as well as a pair
of methods, Shape_nshapes_get() and Shape_nshapes_set(), to get and set the value of Shape::nshapes.
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Caution: This chapter is under repair!

This chapter describes SWIG's support of Python. SWIG is compatible with most recent Python versions including Python 2.2 as
well as older versions dating back to Python 1.5.2. For the best results, consider using Python 2.0 or newer.

This chapter covers most SWIG features, but certain low−level details are covered in less depth than in earlier chapters. At the
very least, make sure you read the "SWIG Basics" chapter.

26.1 Overview

To build Python extension modules, SWIG uses a layered approach in which parts of the extension module are defined in C and
other parts are defined in Python. The C layer contains low−level wrappers whereas Python code is used to define high−level
features.

This layered approach recognizes the fact that certain aspects of extension building are better accomplished in each language
(instead of trying to do everything in C or C++). Furthermore, by generating code in both languages, you get a lot more flexibility
since you can enhance the extension module with support code in either language.

In describing the Python interface, this chapter starts by covering the basics of configuration, compiling, and installing Python
modules. Next, the Python interface to common C and C++ programming features is described. Advanced customization features
such as typemaps are then described followed by a discussion of low−level implementation details.

26.2 Preliminaries

26.2.1 Running SWIG

Suppose that you defined a SWIG module such as the following:

%module example
%{
#include "header.h"
%}
int fact(int n);

To build a Python module, run SWIG using the −python option :

$ swig −python example.i
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If building a C++ extension, add the −c++ option:

$ swig −c++ −python example.i

This creates two different files; a C/C++ source file example_wrap.c or example_wrap.cxx and a Python source file
example.py. The generated C source file contains the low−level wrappers that need to be compiled and linked with the rest of
your C/C++ application to create an extension module. The Python source file contains high−level support code. This is the file
that you will import to use the module.

The name of the wrapper file is derived from the name of the input file. For example, if the input file is example.i, the name of
the wrapper file is example_wrap.c. To change this, you can use the −o option. The name of the Python file is derived from
the module name specified with %module. If the module name is example, then a file example.py is created.

26.2.2 Getting the right header files

In order to compile the C/C++ wrappers, the compiler needs the Python.h header file. This file is usually contained in a
directory such as

/usr/local/include/python2.0

The exact location may vary on your machine, but the above location is typical. If you are not entirely sure where Python is
installed, you can run Python to find out. For example:

$ python
Python 2.1.1 (#1, Jul 23 2001, 14:36:06)
[GCC egcs−2.91.66 19990314/Linux (egcs−1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import sys
>>> print sys.prefix
/usr/local
>>>           

26.2.3 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you need to
compile your program using comands like this (shown for Linux):

$ swig −python example.i
$ gcc −c example.c
$ gcc −c example_wrap.c −I/usr/local/include/python2.0
$ gcc −shared example.o example_wrap.o −o _example.so

The exact commands for doing this vary from platform to platform. However, SWIG tries to guess the right options when it is
installed. Therefore, you may want to start with one of the examples in the SWIG/Examples/python directory. If that doesn't
work, you will need to read the man−pages for your compiler and linker to get the right set of options. You might also check the
SWIG Wiki for additional information.

When linking the module, the name of the output file has to match the name of the module prefixed by an underscore. If the
name of your module is "example", then the name of the corresponding object file should be "_example.so" or
"_examplemodule.so". The name of the module is specified using the %module directive or the −module command line
option.

Compatibility Note: In SWIG−1.3.13 and earlier releases, module names did not include the leading underscore. This is because
modules were normally created as C−only extensions without the extra Python support file (instead, creating Python code was
supported as an optional feature). This has been changed in SWIG−1.3.14 and is consistent with other Python extension modules.
For example, the socket module actually consists of two files; socket.py and _socket.so. Many other built−in Python
modules follow a similar convention.
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26.2.4 Using distutils

26.2.5 Static linking

An alternative approach to dynamic linking is to rebuild the Python interpreter with your extension module added to it. In the past,
this approach was sometimes necesssary due to limitations in dynamic loading support on certain machines. However, the
situation has improved greatly over the last few years and you should not consider this approach unless there is really no other
option.

The usual procedure for adding a new module to Python involves finding the Python source, adding an entry to the
Modules/Setup file, and rebuilding the interpreter using the Python Makefile. However, newer Python versions have changed
the build process. You may need to edit the 'setup.py' file in the Python distribution instead.

In earlier versions of SWIG, the embed.i library file could be used to rebuild the interpreter. For example:

%module example

extern int fact(int);
extern int mod(int, int);
extern double My_variable;

%include embed.i       // Include code for a static version of Python

The embed.i library file includes supporting code that contains everything needed to rebuild Python. To rebuild the interpreter,
you simply do something like this:

$ swig −python example.i
$ gcc example.c example_wrap.c \
        −Xlinker −export−dynamic \
        −DHAVE_CONFIG_H −I/usr/local/include/python2.1 \
        −I/usr/local/lib/python2.1/config \
        −L/usr/local/lib/python2.1/config −lpython2.1 −lm −ldl \
        −o mypython

You will need to supply the same libraries that were used to build Python the first time. This may include system libraries such as
−lsocket, −lnsl, and −lpthread. Assuming this actually works, the new version of Python should be identical to the
default version except that your extension module will be a built−in part of the interpreter.

Comment: In practice, you should probably try to avoid static linking if possible. Some programmers may be inclined to use
static linking in the interest of getting better performance. However, the performance gained by static linking tends to be rather
minimal in most situations (and quite frankly not worth the extra hassle in the opinion of this author).

Compatibility note: The embed.i library file is deprecated and has not been maintained for several years. Even though it
appears to "work" with Python 2.1, no future support is guaranteed. If using static linking, you might want to rely on a different
approach (perhaps using distutils).

26.2.6 Using your module

To use your module, simply use the Python import statement. If all goes well, you will be able to this:

$ python
>>> import example
>>> example.fact(4)
24
>>>

A common error received by first−time users is the following:
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>>> import example
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
  File "example.py", line 2, in ?
    import _example
ImportError: No module named _example

If you get this message, it means that you either forgot to compile the wrapper code into an extension module or you didn't give
the extension module the right name. Make sure that you compiled the wrappers into a module called _example.so. And don't
forget the leading underscore (_).

Another possible error is the following:

>>> import example
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
ImportError: dynamic module does not define init function (init_example)
>>>                                                               

This error is almost always caused when a bad name is given to the shared object file. For example, if you created a file
example.so instead of _example.so you would get this error. Alternatively, this error could arise if the name of the module
is inconsistent with the module name supplied with the %module directive. Double−check the interface to make sure the module
name and the shared object filename match. Another possible cause of this error is forgetting to link the SWIG−generated wrapper
code with the rest of your application when creating the extension module.

Another common error is something similar to the following:

Traceback (most recent call last):
  File "example.py", line 3, in ?
    import example
ImportError: ./_example.so: undefined symbol: fact

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration.

Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
      −o _example.so

If the foo library is compiled as a shared library, you might encounter the following problem when you try to use your module:

>>> import example
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
ImportError: libfoo.so: cannot open shared object file: No such file or directory
>>>                 

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To fix this problem, there
are several things you can do. First, you can recompile your extension module with extra path information. For example, on Linux
you can do this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
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−Xlinker −rpath /home/beazley/projects/lib  \
      −o _example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Python, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib python

Finally, you can use a command such as ldconfig (Linux) or crle (Solaris) to add additional search paths to the default
system configuration (this requires root access and you will need to read the man pages).

26.2.7 Compilation of C++ extensions

Compilation of C++ extensions has traditionally been a tricky problem. Since the Python interpreter is written in C, you need to
take steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

% swig −c++ −python example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/local/include/python2.0
% g++ −shared example.o example_wrap.o −o _example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −python example.i
% CC −c example.cxx
% CC −c example_wrap.cxx −I/usr/local/include/python2.0
% CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o _example.so −lCrun

Of course, the extra libraries to use are completely non−portable−−−you will probably need to do some experimentation.

Sometimes people have suggested that it is necessary to relink the Python interpreter using the C++ compiler to make C++
extension modules work. In the experience of this author, this has never actually appeared to be necessary. Relinking the
interpreter with C++ really only includes the special run−time libraries described above−−−as long as you link your extension
modules with these libraries, it should not be necessary to rebuild Python.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to
include when you link your extension module. For example:

$ ldd swig
        libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
        libm.so.6 => /lib/libm.so.6 (0x4005b000)
        libc.so.6 => /lib/libc.so.6 (0x40077000)
        /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

As a final complication, a major weakness of C++ is that it does not define any sort of standard for binary linking of libraries. This
means that C++ code compiled by different compilers will not link together properly as libraries nor is the memory layout of
classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this problem may be
unnoticed. However, in Python, it is possible for different extension modules to be compiled with different C++ compilers. As
long as these modules are self−contained, this probably won't matter. However, if these modules start sharing data, you will need
to take steps to avoid segmentation faults and other erratic program behavior. If working with lots of software components, you
might want to investigate using a more formal standard such as COM.
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26.2.8 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

To utilize 64−bits, the Python executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper
code, and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.

If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

26.2.9 Building Python Extensions under Windows

Building a SWIG extension to Python under Windows is roughly similar to the process used with Unix. You will need to create a
DLL that can be loaded into the interpreter. This section briefly describes the use of SWIG with Microsoft Visual C++. As a
starting point, many of SWIG's examples include project files. You might want to take a quick look at these in addition to reading
this section.

In Developer Studio, SWIG should be invoked as a custom build option. This is usually done as follows:

Open up a new workspace and use the AppWizard to select a DLL project.• 
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer Studio keeps a reference to it.

• 

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.• 
Enter "SWIG" in the description field.• 
Enter "swig −python −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build
command(s) field"

• 

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".• 
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Python
installation under "Additional include directories".

• 

Define the symbol __WIN32__ under preprocessor options.• 
Finally, select the settings for the entire project and go to "Link Options". Add the Python library file to your link
libraries. For example "python21.lib". Also, set the name of the output file to match the name of your Python module (ie.
_example.dll).

• 

Build your project.• 

If all went well, SWIG will be automatically invoked whenever you build your project. Any changes made to the interface file
will result in SWIG being automatically executed to produce a new version of the wrapper file.

To run your new Python extension, simply run Python and use the import command as normal. For example :

MSDOS > python
>>> import example
>>> print example.fact(4)
24
>>>

If you get an ImportError exception when importing the module, you may have forgotten to include aditional library files
when you built your module. If you get an access violation or some kind of general protection fault immediately upon import, you
have a more serious problem. This is often caused by linking your extension module against the wrong set of Win32 debug or
thread libraries. You will have to fiddle around with the build options of project to try and track this down.
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Some users have reported success in building extension modules using Cygwin and other compilers. However, the problem of
building usable DLLs with these compilers tends to be rather problematic. For the latest information, you may want to consult the
SWIG Wiki.

26.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Python interface to your C/C++ code. Functions are wrapped as functions, classes
are wrapped as classes, and so forth. This section briefly covers the essential aspects of this wrapping.

26.3.1 Modules

The SWIG %module directive specifies the name of the Python module. If you specify `%module example', then everything
is wrapped into a Python 'example' module. Underneath the covers, this module consists of a Python source file example.py
and a low−level extension module _example.so. When choosing a module name, make sure you don't use the same name as a
built−in Python command or standard module name.

26.3.2 Functions

Global functions are wrapped as new Python built−in functions. For example,

%module example
int fact(int n);

creates a built−in function example.fact(n) that works exactly like you think it does:

>>> import example
>>> print example.fact(4)
24
>>>

26.3.3 Global variables

C/C++ global variables are fully supported by SWIG. However, the underlying mechanism is somewhat different than you might
expect due to the way that Python assignment works. When you type the following in Python

a = 3.4

"a" becomes a name for an object containing the value 3.4. If you later type

b = a

then "a" and "b" are both names for the object containing the value 3.4. Thus, there is only one object containing 3.4 and "a" and
"b" are both names that refer to it. This is quite different than C where a variable name refers to a memory location in which a
value is stored (and assignment copies data into that location). Because of this, there is no direct way to map variable assignment
in C to variable assignment in Python.

To provide access to C global variables, SWIG creates a special object called `cvar' that is added to each SWIG generated
module. Global variables are then accessed as attributes of this object. For example, consider this interface

// SWIG interface file with global variables
%module example
...
extern int My_variable;
extern double density;
...

Now look at the Python interface:

SWIG−1.3 Documentation

26.3 A tour of basic C/C++ wrapping 332

http://swig.cs.uchicago.edu/cgi-bin/wiki.pl


>>> import example
>>> # Print out value of a C global variable
>>> print example.cvar.My_variable
4
>>> # Set the value of a C global variable
>>> example.cvar.density = 0.8442
>>> # Use in a math operation
>>> example.cvar.density = example.cvar.density*1.10

If you make an error in variable assignment, you will receive an error message. For example:

>>> example.cvar.density = "Hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: C variable 'density (double )'
>>> 

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%immutable path;
...
extern char *path;      // Read−only (due to %immutable)

If you would like to access variables using a name other than "cvar", it can be changed using the −globals option :

% swig −python −globals myvar example.i

Some care is in order when importing multiple SWIG modules. If you use the "from <file> import *" style of importing,
you will get a name clash on the variable `cvar' and you will only be able to access global variables from the last module loaded.
To prevent this, you might consider renaming cvar or making it private to the module by giving it a name that starts with a
leading underscore. SWIG does not create cvar if there are no global variables in a module.

26.3.4 Constants and enums

C/C++ constants are installed as Python objects containing the appropriate value. To create a constant, use #define, enum, or
the %constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

enum Beverage { ALE, LAGER, STOUT, PILSNER };

%constant int FOO = 42;
%constant const char *path = "/usr/local";

For enums, make sure that the definition of the enumeration actually appears in a header file or in the wrapper file somehow−−−if
you just stick an enum in a SWIG interface without also telling the C compiler about it, the wrapper code won't compile.

Note: declarations declared as const are wrapped as read−only variables and will be accessed using the cvar object described
in the previous section. They are not wrapped as constants. For further discussion about this, see the SWIG Basics chapter.
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Constants are not guaranteed to remain constant in Python−−−the name of the constant could be accidentally reassigned to refer to
some other object. Unfortunately, there is no easy way for SWIG to generate code that prevents this. You will just have to be
careful.

26.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Python. For example:

>>> import example
>>> f = example.fopen("junk","w")
>>> example.fputs("Hello World\n", f)
>>> example.fclose(f)

If this makes you uneasy, rest assured that there is no deep magic involved. Underneath the covers, pointers to C/C++ objects are
simply represented as opaque values−−normally an encoded character string like this:

>>> print f
_c0671108_p_FILE
>>>

This pointer value can be freely passed around to different C functions that expect to receive an object of type FILE *. The only
thing you can't do is dereference the pointer from Python. Of course, that isn't much of a concern in this example.

As an alternative to strings, SWIG can encode pointers as a Python CObject type. CObjects are rarely discussed in most Python
books or documentation. However, this is a special built−in type that can be used to hold raw C pointer values. Internally, a
CObject is just a container that holds a raw void * along with some additional information such as a type−string.

If you want to use CObjects instead of strings, compile the SWIG wrapper code with the −DSWIG_COBJECT_TYPES option.
For example:

% swig −python example.i
% gcc −c example.c
% gcc −c −DSWIG_COBJECT_TYPES example_wrap.c −I/usr/local/include/python2.0
% gcc −shared example.o example_wrap.o −o _example.so

The choice of whether or not to use strings or CObjects is mostly a matter of personal preference. There is no significant
performance difference between using one type or the other (strings actually appear to be ever−so−slightly faster on the author's
machine). Although CObjects feel more natural to some programmers, a disadvantage of this approach is that it makes debugging
more difficult. For example, if you are using CObjects, you will get code that works like this:

>>> import example
>>> f = example.fopen("junk","w")
>>> f
<PyCObject object at 0x80c5e60>
>>> 

Notice how no clues regarding the actual type of f is shown. On the other hand, the string representation produces the following:

>>> f
'_c0671108_p_FILE'
>>>
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For either pointer representation, the NULL pointer is represented by None.

As much as you might be inclined to modify a pointer value directly from Python, don't. The hexadecimal encoding is not
necessarily the same as the logical memory address of the underlying object. Instead it is the raw byte encoding of the pointer
value. The encoding will vary depending on the native byte−ordering of the platform (i.e., big−endian vs. little−endian). Similarly,
don't try to manually cast a pointer to a new type by simply replacing the type−string. This may not work like you expect, it is
particularly dangerous when casting C++ objects, and it won't work if you switch to a new pointer representation such as
CObjects. If you need to cast a pointer or change its value, consider writing some helper functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
   return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
   return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
    return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return None if the conversion can't be performed.

26.3.6 Structures

If you wrap a C structure, it is wrapped by a Python class. This provides a very natural interface. For example,

struct Vector {
        double x,y,z;
};

is used as follows:

>>> v = example.Vector()
>>> v.x = 3.5
>>> v.y = 7.2
>>> print v.x, v.y, v.z
7.8 −4.5 0.0
>>> 

Similar access is provided for unions and the data members of C++ classes.

If you print out the value of v in the above example, you will see something like this:

>>> print v
<C Vector instance at _18e31408_p_Vector>

This object is actually a Python instance that has been wrapped around a pointer to the low−level C structure. This instance
doesn't actually do anything−−it just serves as a proxy. The pointer to the C object can be found in the the .this attribute. For
example:

>>> print v.this
_18e31408_p_Vector
>>>
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Further details about the Python proxy class are covered a little later.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
   ...
   %immutable;
   int x;        /* Read−only members */
   char *name;
   %mutable;
   ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
    int  x[16];
};

If accessed in Python, you will see behavior like this:

>>> b = example.Bar()
>>> print b.x
_801861a4_p_int
>>> 

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

>>> c = example.Bar()
>>> c.x = b.x             # Copy contents of b.x to c.x

For array assignment, SWIG copies the entire contents of the array starting with the data pointed to by b.x. In this example, 16
integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad pointer, you may get
a segmentation fault or access violation.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {
   int a;
};

struct Bar {
   Foo f;
};

Now, suppose that you access the f attribute of Bar like this:

>>> b = Bar()
>>> x = b.f

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f;       /* Points inside b */
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Because the pointer points inside the structure, you can modify the contents and everything works just like you would expect. For
example:

>>> b = Bar()
>>> b.f.a = 3               # Modify attribute of structure member
>>> x = b.f                   
>>> x.a = 3                 # Modifies the same structure

26.3.7 C++ classes

C++ classes are wrapped by Python classes as well. For example, if you have this class,

class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
};

you can use it in Python like this:

>>> l = example.List()
>>> l.insert("Ale")
>>> l.insert("Stout")
>>> l.insert("Lager")
>>> l.get(1)
'Stout'
>>> print l.length
3
>>>

Class data members are accessed in the same manner as C structures.

Static class members present a special problem for Python. Prior to Python−2.2, Python classes had no support for static methods
and no version of Python supports static member variables in a manner that SWIG can utilize. Therefore, SWIG generates
wrappers that try to work around some of these issues. To illustrate, suppose you have a class like this:

class Spam {
public:
   static void foo();
   static int bar;

};

In Python, the static member can be access in three different ways:

>>> example.Spam_foo()    # Spam::foo()
>>> s = example.Spam()
>>> s.foo()               # Spam::foo() via an instance
>>> example.Spam.foo()    # Spam::foo(). Python−2.2 only

The first two methods of access are supported in all versions of Python. The last technique is only available in Python−2.2 and
later versions.

Static member variables are currently accessed as global variables. This means, they are accessed through cvar like this:

>>> print example.cvar.Spam_bar
7
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26.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

those classes are wrapped into a hierarchy of Python classes that reflect the same inheritance structure. All of the usual Python
utility functions work normally:

>>> b = Bar()
>>> instance(b,Foo)
1
>>> issubclass(Bar,Foo)
1
>>> issubclass(Foo,Bar)
0

Furthermore, if you have functions like this

void spam(Foo *f);

then the function spam() accepts Foo * or a pointer to any class derived from Foo.

It is safe to use multiple inheritance with SWIG.

26.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x);      // Pass by pointer
void spam2(Foo &x);      // Pass by reference
void spam3(Foo x);       // Pass by value
void spam4(Foo x[]);     // Array of objects

In Python, there is no detailed distinction like this−−specifically, there are only "objects". There are no pointers, references,
arrays, and so forth. Because of this, SWIG unifies all of these types together in the wrapper code. For instance, if you actually
had the above functions, it is perfectly legal to do this:

>>> f = Foo()           # Create a Foo
>>> spam1(f)            # Ok. Pointer
>>> spam2(f)            # Ok. Reference
>>> spam3(f)            # Ok. Value.
>>> spam4(f)            # Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo  spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Python will release this memory when the return value is garbage
collected).
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26.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Python in a straightforward manner:

>>> foo(3)           # foo(int)
>>> foo("Hello")     # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
    Foo();
    Foo(const Foo &);
    ...
};

you can write Python code like this:

>>> f = Foo()          # Create a Foo
>>> g = Foo(f)         # Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);    
void spam(short);   // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);    
void spam(short);   // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

SWIG−1.3 Documentation

26.3.10 C++ overloaded functions 339



Please refer to the "SWIG and C++" chapter for more information about overloading.

26.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {
private:
  double rpart, ipart;
public:
  Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
  Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
  Complex &operator=(const Complex &c);
  Complex operator+(const Complex &c) const;
  Complex operator−(const Complex &c) const;
  Complex operator*(const Complex &c) const;
  Complex operator−() const;

  double re() const { return rpart; }
  double im() const { return ipart; }
};

When wrapped, it works like you expect:

>>> c = Complex(3,4)
>>> d = Complex(7,8)
>>> e = c + d
>>> e.re()
10.0
>>> e.im()
12.0

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

class Complex {
...
friend Complex operator+(double, const Complex &c);
...
};

then SWIG doesn't know what to do with the friend function−−in fact, it simply ignores it and issues a warning. You can still
wrap the operator, but you may have to encapsulate it in a special function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);
...
Complex operator+(double, const Complex &c);

There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

Also, be aware that certain operators don't map cleanly to Python. For instance, overloaded assignment operators don't map to
Python semantics and will be ignored.

26.3.12 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
   int fact(int n);
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   struct Vector {
       double x,y,z;
   };
};

it works in Python as follows:

>>> import example
>>> example.fact(3)
6
>>> v = example.Vector()
>>> v.x = 3.4
>>> print v.y
0.0
>>>

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
    int spam();
}

namespace Bar {
    int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.

26.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
   typedef T1 first_type;
   typedef T2 second_type;
   T1 first;
   T2 second;
   pair();
   pair(const T1&, const T2&);
  ~pair();
};

%template(pairii) pair<int,int>;

In Python:

>>> import example
>>> p = example.pairii(3,4)
>>> p.first
3
>>> p.second
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Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

26.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
   ...
   T *operator−>();
   ...
}

Then, if you have a class like this,

class Foo {
public:
     int x;
     int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo();   // Created somehow (not shown)
...
p−>x = 3;                        // Foo::x
int y = p−>bar();                // Foo::bar

To wrap this in Python, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Python, everything should just "work":

>>> p = example.CreateFoo()          # Create a smart−pointer somehow
>>> p.x = 3                          # Foo::x
>>> p.bar()                          # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

>>> f = p.__deref__()     # Returns underlying Foo *

26.4 Further details on the Python class interface

In the previous section, a high−level view of Python wrapping was presented. A key component of this wrapping is that structures
and classes are wrapped by Python proxy classes. This provides a very natural Python interface and allows SWIG to support a
number of advanced features such as operator overloading. However, a number of low−level details were omitted. This section
provides a brief overview of how the proxy classes work.
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26.4.1 Proxy classes

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a class like this

class Foo {
public:
     int x;
     int spam(int);
     ...

then SWIG transforms it into a set of low−level procedural wrappers. For example:

Foo *new_Foo() {
    return new Foo();
}
void delete_Foo(Foo *f) {
    delete f;
}
int Foo_x_get(Foo *f) {
    return f−>x;
}
void Foo_x_set(Foo *f, int value) {
    f−>x = value;
}
int Foo_spam(Foo *f, int arg1) {
    return f−>spam(arg1);
}

These wrappers can be found in the low−level extension module (e.g., _example).

Using these wrappers, SWIG generates a high−level Python proxy class (also known as a shadow class) like this (shown for
Python 2.2):

import _example

class Foo(object):
     def __init__(self):
         self.this = _example.new_Foo()
         self.thisown = 1
     def __del__(self):
         if self.thisown:
               _example.delete_Foo(self.this)
     def spam(self,arg1):
         return _example.Foo_spam(self.this,arg1)
     x = property(_example.Foo_x_get, _example.Foo_x_set)

This class merely holds a pointer to the underlying C++ object (.this) and dispatches methods and member variable access to
that object using the low−level accessor functions. From a user's point of view, it makes the class work normally:

>>> f = example.Foo()
>>> f.x = 3
>>> y = f.spam(5)

The fact that the class has been wrapped by a real Python class offers certain advantages. For instance, you can attach new Python
methods to the class and you can even inherit from it (something not supported by Python built−in types until Python 2.2).

26.4.2 Memory management

Associated with proxy object, is an ownership flag .thisown The value of this flag determines who is responsible for deleting
the underlying C++ object. If set to 1, the Python interpreter will destroy the C++ object when the proxy class is garbage
collected. If set to 0 (or if the attribute is missing), then the destruction of the proxy class has no effect on the C++ object.
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When an object is created by a constructor or returned by value, Python automatically takes ownership of the result. For example:

class Foo {
public:
    Foo();
    Foo bar();
};

In Python:

>>> f = Foo()
>>> f.thisown
1
>>> g = f.bar()
>>> g.thisown
1

On the other hand, when pointers are returned to Python, there is often no way to know where they came from. Therefore, the
ownership is set to zero. For example:

class Foo {
public:
    ...
    Foo *spam();
    ...
};

>>> f = Foo()
>>> s = f.spam()
>>> print s.thisown
0
>>>

This behavior is especially important for classes that act as containers. For example, if a method returns a pointer to an object that
is contained inside another object, you definitely don't want Python to assume ownership and destroy it!

Related to containers, ownership issues can arise whenever an object is assigned to a member or global variable. For example,
consider this interface:

%module example

struct Foo {
    int  value;
    Foo  *next;
};

Foo *head = 0;

When wrapped in Python, careful observation will reveal that ownership changes whenever an object is assigned to a global
variable. For example:

>>> f = example.Foo()
>>> f.thisown
1
>>> example.cvar.head = f           
>>> f.thisown
0
>>>

In this case, C is now holding a reference to the object−−−you probably don't want Python to destroy it. Similarly, this occurs for
members. For example:

>>> f = example.Foo()
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>>> g = example.Foo()
>>> f.thisown
1
>>> g.thisown
1
>>> f.next = g
>>> g.thisown
0
>>>

For the most part, memory management issues remain hidden. However, there are occasionally situations where you might have
to manually change the ownership of an object. For instance, consider code like this:

class Node {
   Object *value;
public:
   void set_value(Object *v) { value = v; }
   ...
};

Now, consider the following Python code:

>>> v = Object()           # Create an object
>>> n = Node()             # Create a node
>>> n.set_value(v)         # Set value
>>> v.thisown
1
>>> del v

In this case, the object n is holding a reference to v internally. However, SWIG has no way to know that this has occurred.
Therefore, Python still thinks that it has ownership of the object. Should the proxy object be destroyed, then the C++ destructor
will be invoked and n will be holding a stale−pointer. If you're lucky, you will only get a segmentation fault.

To work around this, it is always possible to flip the ownership flag. For example,

>>> v.thisown = 0

It is also possible to deal with situations like this using typemaps−−an advanced topic discussed later.

26.4.3 Python 2.2 and classic classes

SWIG makes every attempt to preserve backwards compatibility with older versions of Python to the extent that it is possible.
However, in Python−2.2, an entirely new type of class system was introduced. This new−style class system offers many
enhancements including static member functions, properties (managed attributes), and class methods. Details about all of these
changes can be found on www.python.org and is not repeated here.

To address differences between Python versions, SWIG currently emits dual−mode proxy class wrappers. In Python−2.2 and
newer releases, these wrappers encapsulate C++ objects in new−style classes that take advantage of new features (static methods
and properties). However, if these very same wrappers are imported into an older version of Python, old−style classes are used
instead.

This dual−nature of the wrapper code means that you can create extension modules with SWIG and those modules will work with
all versions of Python ranging from Python−1.4 to the very latest release. Moreover, the wrappers take advantage of Python−2.2
features when available.

For the most part, the interface presented to users is the same regardless of what version of Python is used. The only
incompatibility lies in the handling of static member functions. In Python−2.2, they can be accessed via the class itself. In
Python−2.1 and earlier, they have to be accessed as a global function or through an instance (see the earlier section).
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26.5 Cross language polymorphism (experimental)

Proxy classes provide a more natural, object−oriented way to access extension classes. As described above, each proxy instance
has an associated C++ instance, and method calls to the proxy are passed to the C++ instance transparently via C wrapper
functions.

This arrangement is asymmetric in the sense that no corresponding mechanism exists to pass method calls down the inheritance
chain from C++ to Python. In particular, if a C++ class has been extended in Python (by extending the proxy class), these
extensions will not be visible from C++ code. Virtual method calls from C++ are thus not able access the lowest implementation
in the inheritance chain.

Changes have been made to SWIG 1.3.18 to address this problem and make the relationship between C++ classes and proxy
classes more symmetric. To achieve this goal, new classes called directors are introduced at the bottom of the C++ inheritance
chain. The job of the directors is to route method calls correctly, either to C++ implementations higher in the inheritance chain or
to Python implementations lower in the inheritance chain. The upshot is that C++ classes can be extended in Python and from
C++ these extensions look exactly like native C++ classes. Neither C++ code nor Python code needs to know where a particular
method is implemented: the combination of proxy classes, director classes, and C wrapper functions takes care of all the
cross−language method routing transparently.

26.5.1 Enabling directors

The director feature is disabled by default. To use directors you must make two changes to the interface file. First, add the
"directors" option to the %module directive, like this:

%module(directors="1") modulename

Without this option no director code will be generated. Second, you must use the %feature("director") directive to tell SWIG
which classes and methods should get directors. The %feature directive can be applied globally, to specific classes, and to specific
methods, like this:

// generate directors for all classes that have virtual methods
%feature("director");         

// genarate directors for all virtual methods in class Foo
%feature("director") Foo;      

// generate a director for just Foo::bar()
%feature("director") Foo::bar; 

You can use the %feature("nodirector") directive to turn off directors for specific classes or methods. So for example,

%feature("director") Foo;
%feature("nodirector") Foo::bar;

will generate directors for all virtual methods of class Foo except bar().

Directors can also be generated implicitly through inheritance. In the following, class Bar will get a director class that handles the
methods one() and two() (but not three()):

%feature("director") Foo;
class Foo {
public:
    virtual void one();
    virtual void two();
};

class Bar: public Foo {
public:
    virtual void three();
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};

26.5.2 Director classes

For each class that has directors enabled, SWIG generates a new class that derives from both the class in question and a special
Swig::Director class. These new classes, referred to as director classes, can be loosely thought of as the C++ equivalent of
the Python proxy classes. The director classes store a pointer to their underlying Python object and handle various issues related to
object ownership. Indeed, this is quite similar to the "this" and "thisown" members of the Python proxy classes.

For simplicity let's ignore the Swig::Director class and refer to the original C++ class as the director's base class. By default,
a director class extends all virtual methods in the inheritance chain of its base class (see the preceding section for how to modify
this behavior). Thus all virtual method calls, whether they originate in C++ or in Python via proxy classes, eventually end up in at
the implementation in the director class. The job of the director methods is to route these method calls to the appropriate place in
the inheritance chain. By "appropriate place" we mean the method that would have been called if the C++ base class and its
extensions in Python were seamlessly integrated. That seamless integration is exactly what the director classes provide,
transparently skipping over all the messy extension API glue that binds the two languages together.

In reality, the "appropriate place" is one of only two possibilities: C++ or Python. Once this decision is made, the rest is fairly
easy. If the correct implementation is in C++, then the lowest implementation of the method in the C++ inheritance chain is called
explicitly. If the correct implementation is in Python, the Python API is used to call the method of the underlying Python object
(after which the usual virtual method resolution in Python automatically finds the right implementation).

Now how does the director decide which language should handle the method call? The basic rule is to handle the method in
Python, unless there's a good reason not to. The reason for this is simple: Python has the most "extended" implementation of the
method. This assertion is guaranteed, since at a minimum the Python proxy class implements the method. If the method in
question has been extended by a class derived from the proxy class, that extended implementation will execute exactly as it
should. If not, the proxy class will route the method call into a C wrapper function, expecting that the method will be resolved in
C++. The wrapper will call the virtual method of the C++ instance, and since the director extends this the call will end up right
back in the director method. Now comes the "good reason not to" part. If the director method were to blindly call the Python
method again, it would get stuck in an infinite loop. We avoid this situation by adding special code to the C wrapper function that
tells the director method to not do this. The C wrapper function compares the pointer to the Python object that called the wrapper
function to the pointer stored by the director. If these are the same, then the C wrapper function tells the director to resolve the
method by calling up the C++ inheritance chain, preventing an infinite loop.

One more point needs to be made about the relationship between director classes and proxy classes. When a proxy class instance
is created in Python, SWIG creates an instance of the original C++ class and assigns it to .this. This is exactly what happens
without directors and is true even if directors are enabled for the particular class in question. When a class derived from a proxy
class is created, however, SWIG then creates an instance of the corresponding C++ director class. The reason for this difference is
that user−defined subclasses may override or extend methods of the original class, so the director class is needed to route calls to
these methods correctly. For unmodified proxy classes, all methods are ultimately implemented in C++ so there is no need for the
extra overhead involved with routing the calls through Python.

26.5.3 Ownership and object destruction

Memory management issues are slightly more complicated with directors than for proxy classes alone. Python instances hold a
pointer to the associated C++ director object, and the director in turn holds a pointer back to the Python object. By default, proxy
classes own their C++ director object and take care of deleting it when they are garbage collected.

This relationship can be reversed by calling the special __disown__() method of the proxy class. After calling this method, the
.thisown flag is set to zero, and the director class increments the reference count of the Python object. When the director class
is deleted it decrements the reference count. Assuming no outstanding references to the Python object remain, the Python object
will be destroyed at the same time. This is a good thing, since directors and proxies refer to each other and so must be created and
destroyed together. Destroying one without destroying the other will likely cause your program to segfault.

To help ensure that no references to the Python object remain after calling __disown__(), this method returns a weak
reference to the Python object. Weak references are only available in Python versions 2.1 and higher, so for older versions you
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must exclicitly delete all references. Here is an example:

class Foo {
public:
    ...
};
class FooContainer {
public:
    void addFoo(Foo *);
    ...
};

>>> c = FooContainer()
>>> a = Foo().__disown()__
>>> c.addFoo(a)
>>> b = Foo()
>>> b = b.__disown()__
>>> c.addFoo(b)
>>> c.addFoo(Foo().__disown()__)

In this example, we are assuming that FooContainer will take care of deleting all the Foo pointers it contains at some point. Note
that no hard references to the Foo objects remain in Python.

26.5.4 Exception unrolling

With directors routing method calls to Python, and proxies routing them to C++, the handling of exceptions is an important
concern. By default, the directors ignore exceptions that occur during method calls that are resolved in Python. To handle such
exceptions correctly, it is necessary to temporarily translate them into C++ exceptions. This can be done with the
%feature("director:except") directive. The following code should suffice in most cases:

%feature("director:except") {
    if ($error != NULL) {
        throw Swig::DirectorMethodException();
    }
}

This code will check the Python error state after each method call from a director into Python, and throw a C++ exception if an
error occured. This exception can be caught in C++ to implement an error handler. Currently no information about the Python
error is stored in the Swig::DirectorMethodException object, but this will likely change in the future.

It may be the case that a method call originates in Python, travels up to C++ through a proxy class, and then back into Python via
a director method. If an exception occurs in Python at this point, it would be nice for that exception to find its way back to the
original caller. This can be done by combining a normal %exception directive with the director:except handler shown
above. Here is an example of a suitable exception handler:

%exception {
    try { $action }
    catch (Swig::DirectorException &e) { SWIG_fail; }
}

The class Swig::DirectorException used in this example is actually a base class of Swig::DirectorMethodException, so it will trap
this exception. Because the Python error state is still set when Swig::DirectorMethodException is thrown, Python will register the
exception as soon as the C wrapper function returns.

26.5.5 Overhead and code bloat

Enabling directors for a class will generate a new director method for every virtual method in the class' inheritance chain. This
alone can generate a lot of code bloat for large hierarchies. Method arguments that require complex conversions to and from target
language types can result in large director methods. For this reason it is recommended that you selectively enable directors only
for specific classes that are likely to be extended in Python and used in C++.
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Compared to classes that do not use directors, the call routing in the director methods does add some overhead. In particular, at
least one dynamic cast and one extra function call occur per method call from Python. Relative to the speed of Python execution
this is probably completely negligible. For worst case routing, a method call that ultimately resolves in C++ may take one extra
detour through Python in order to ensure that the method does not have an extended Python implementation. This could result in a
noticible overhead in some cases.

Although directors make it natural to mix native C++ objects with Python objects (as director objects) via a common base class
pointer, one should be aware of the obvious fact that method calls to Python objects will be much slower than calls to C++
objects. This situation can be optimized by selectively enabling director methods (using the %feature directive) for only those
methods that are likely to be extended in Python.

26.5.6 Typemaps

Typemaps for input and output of most of the basic types from director classes have been written. These are roughly the reverse of
the usual input and output typemaps used by the wrapper code. The typemap operation names are 'directorin', 'directorout', and
'directorargout'. The director code does not use any of the other kinds of typemaps yet. It is not clear at this point which kinds are
appropriate and need to be supported.

Typemaps for STL classes are under construction. So far there is support for std::string, std::vector, and std::complex, although
there's no guarantee these are fully functional yet.

26.5.7 Miscellaneous

26.6 Common customization features

The last section presented the absolute basics of C/C++ wrapping. If you do nothing but feed SWIG a header file, you will get an
interface that mimics the behavior described. However, sometimes this isn't enough to produce a nice module. Certain types of
functionality might be missing or the interface to certain functions might be awkward. This section describes some common
SWIG features that are used to improve your the interface to an extension module.

26.6.1 C/C++ helper functions

Sometimes when you create a module, it is missing certain bits of functionality. For example, if you had a function like this

void set_transform(Image *im, double m[4][4]);

it would be accessible from Python, but there may be no easy way to call it. For example, you might get errors like this:

>>> a = [
...   [1,0,0,0],
...   [0,1,0,0],
...   [0,0,1,0],
...   [0,0,0,1]]
>>> set_transform(im,a)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: Type error. Expected _p_a_4__double

The problem here is that there is no easy way to construct and manipulate a suitable double [4][4] value to use. To fix this,
you can write some extra C helper functions. Just use the %inline directive. For example:

%inline %{
/* Note: double[4][4] is equivalent to a pointer to an array double (*)[4] */
double (*new_mat44())[4] {
   return (double (*)[4]) malloc(16*sizeof(double));
}
void free_mat44(double (*x)[4]) {
   free(x);
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}
void mat44_set(double x[4][4], int i, int j, double v) {
   x[i][j] = v;
}
double mat44_get(double x[4][4], int i, int j) {
   return x[i][j];
}
%}

From Python, you could then write code like this:

>>> a = new_mat44()
>>> mat44_set(a,0,0,1.0)
>>> mat44_set(a,1,1,1.0)
>>> mat44_set(a,2,2,1.0)
...
>>> set_transform(im,a)
>>>

Admittedly, this is not the most elegant looking approach. However, it works and it wasn't too hard to implement. It is possible to
clean this up using Python code, typemaps, and other customization features as covered in later sections.

26.6.2 Adding additional Python code

If writing support code in C isn't enough, it is also possible to write code in Python. This code gets inserted in to the .py file
created by SWIG. One use of Python code might be to supply a high−level interface to certain functions. For example:

void set_transform(Image *im, double x[4][4]);

...
/* Rewrite the high level interface to set_transform */
%pythoncode %{
def set_transform(im,x):
   a = new_mat44()
   for i in range(4):
       for j in range(4):
           mat44_set(a,i,j,x[i][j])
   _example.set_transform(im,a)
   free_mat44(a)
%}

In this example, set_transform() provides a high−level Python interface built on top of low−level helper functions. For
example, this code now seems to work:

>>> a = [
...   [1,0,0,0],
...   [0,1,0,0],
...   [0,0,1,0],
...   [0,0,0,1]]
>>> set_transform(im,a)
>>>

Admittedly, this whole scheme for wrapping the two−dimension array argument is rather ad−hoc. Besides, shouldn't a Python list
or a Numeric Python array just work normally? We'll get to those examples soon enough. For now, think of this example as an
illustration of what can be done without having to rely on any of the more advanced customization features.

26.6.3 Class extension with %extend

One of the more interesting features of SWIG is that it can extend structures and classes with new methods−−at least in the Python
interface. Here is a simple example:

%module example
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%{
#include "someheader.h"
%}

struct Vector {
   double x,y,z;
};

%extend Vector {
   char *__str__() {
       static char tmp[1024];
       sprintf(tmp,"Vector(%g,%g,%g)", self−>x,self−>y,self−>z);
       return tmp;
   }
   Vector(double x, double y, double z) {
       Vector *v = (Vector *) malloc(sizeof(Vector));
       v−>x = x;
       v−>y = y;
       v−>z = z;
       return v;
   }
};

Now, in Python

>>> v = example.Vector(2,3,4)
>>> print v
Vector(2,3,4)
>>>

%extend can be used for many more tasks than this. For example, if you wanted to overload a Python operator, you might do
this:

%extend Vector {
    Vector __add__(Vector *other) {
         Vector v;
         v.x = self−>x + other−>x;
         v.y = self−>y + other−>y;
         v.z = self−>z + other−>z;
         return v;
    }
};

Use it like this:

>>> import example
>>> v = example.Vector(2,3,4)
>>> w = example.Vector(10,11,12)
>>> print v+w
Vector(12,14,16)
>>> 

%extend works with both C and C++ code. It does not modify the underlying object in any way−−−the extensions only show up
in the Python interface.

26.6.4 Exception handling with %exception

If a C or C++ function throws an error, you may want to convert that error into a Python exception. To do this, you can use the
%exception directive. %exception simply lets you rewrite part of the generated wrapper code to include an error check.

In C, a function often indicates an error by returning a status code (a negative number or a NULL pointer perhaps). Here is a
simple example of how you might handle that:

SWIG−1.3 Documentation

26.6.4 Exception handling with %exception 351



%exception malloc {
  $action
  if (!result) {
     PyErr_SetString(PyExc_MemoryError,"Not enough memory");
     return NULL;
  }
}
void *malloc(size_t nbytes);

In Python,

>>> a = example.malloc(2000000000)
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
MemoryError: Not enough memory
>>>

If a library provides some kind of general error handling framework, you can also use that. For example:

%exception {
   $action
   if (err_occurred()) {
      PyErr_SetString(PyExc_RuntimeError, err_message());
      return NULL;
   }
}

No declaration name is given to %exception, it is applied to all wrapper functions.

C++ exceptions are also easy to handle. For example, you can write code like this:

%exception getitem {
   try {
      $action
   } catch (std::out_of_range &e) {
      PyErr_SetString(PyExc_IndexError, const_cast<char*>(e.what()));
      return NULL;
   }
}

class Base {
public:
     Foo *getitem(int index);      // Exception handled added
     ...
};

When raising a Python exception from C, use the PyErr_SetString() function as shown above. The following exception
types can be used as the first argument.

PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FloatingPointError
PyExc_ImportError
PyExc_IndexError
PyExc_IOError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_NameError
PyExc_NotImplementedError
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PyExc_OSError
PyExc_OverflowError
PyExc_RuntimeError
PyExc_StandardError
PyExc_SyntaxError
PyExc_SystemError
PyExc_TypeError
PyExc_UnicodeError
PyExc_ValueError
PyExc_ZeroDivisionError

The language−independent exception.i library file can also be used to raise exceptions. See the SWIG Library chapter.

26.7 Tips and techniques

Although SWIG is largely automatic, there are certain types of wrapping problems that require additional user input. Examples
include dealing with output parameters, strings, binary data, and arrays. This chapter discusses the common techniques for solving
these problems.

26.7.1 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
   *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
   return *x−*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int  sub(int *INPUT, int *INPUT);

In Python, this allows you to pass simple values. For example:

>>> a = add(3,4)
>>> print a
7
>>> b = sub(7,4)
>>> print b
3
>>>

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};
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void add(int x, int y, int *result);
int  sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
   *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Python, a mutated parameter shows up as a return value. For example:

>>> a = negate(3)
>>> print a
−3
>>>

Note: Since most primitive Python objects are immutable, it is not possible to perform in−place modification of a Python object
passed as a parameter.

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);

When used in Python, the function will return multiple values.

bytes, success = send_message("Hello World")
if not success:
    print "Whoa!"
else:
    print "Sent", bytes

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);

To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Python:
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>>> r,c = get_dimensions(m)

Be aware that the primary purpose of the typemaps.i file is to support primitive datatypes. Writing a function like this

void foo(Bar *OUTPUT);

may not have the intended effect since typemaps.i does not define an OUTPUT rule for Bar.

26.7.2 Simple pointers

If you must work with simple pointers such as int * or double * and you don't want to use typemaps.i, consider using
the cpointer.i library file. For example:

%module example
%include "cpointer.i"

extern void add(int x, int y, int *result);
%pointer_functions(int, intp);

The %pointer_functions(type,name) macro generates five helper functions that can be used to create, destroy, copy,
assign, and dereference a pointer. In this case, the functions are as follows:

int  *new_intp();
int  *copy_intp(int *x);
void  delete_intp(int *x);
void  intp_assign(int *x, int value);
int   intp_value(int *x);

In Python, you would use the functions like this:

>>> result = new_intp()
>>> print result
_108fea8_p_int
>>> add(3,4,result)
>>> print intp_value(result)
7
>>>

If you replace %pointer_functions() by %pointer_class(type,name), the interface is more class−like.

>>> result = intp()
>>> add(3,4,result)
>>> print result.value()
7

See the SWIG Library chapter for further details.

26.7.3 Unbounded C Arrays

Sometimes a C function expects an array to be passed as a pointer. For example,

int sumitems(int *first, int nitems) {
    int i, sum = 0;
    for (i = 0; i < nitems; i++) {
        sum += first[i];
    }
    return sum;
}

To wrap this into Python, you need to pass an array pointer as the first argument. A simple way to do this is to use the
carrays.i library file. For example:
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%include "carrays.i"
%array_class(int, intArray);

The %array_class(type, name) macro creates wrappers for an unbounded array object that can be passed around as a
simple pointer like int * or double *. For instance, you will be able to do this in Python:

>>> a = intArray(10000000)         # Array of 10−million integers
>>> for i in xrange(10000):        # Set some values
...     a[i] = i
>>> sumitems(a,10000)
49995000
>>>

The array "object" created by %array_class() does not encapsulate pointers inside a special array object. In fact, there is no
bounds checking or safety of any kind (just like in C). Because of this, the arrays created by this library are extremely low−level
indeed. You can't iterate over them nor can you even query their length. In fact, any valid memory address can be accessed if you
want (negative indices, indices beyond the end of the array, etc.). Needless to say, this approach is not going to suit all
applications. On the other hand, this low−level approach is extremely efficient and well suited for applications in which you need
to create buffers, package binary data, etc.

26.7.4 String handling

If a C function has an argument of char *, then a Python string can be passed as input. For example:

// C
void foo(char *s);

# Python
>>> foo("Hello")

When a Python string is passed as a parameter, the C function receives a pointer to the raw data contained in the string. Since
Python strings are immutable, it is illegal for your program to change the value. In fact, doing so will probably crash the Python
interpreter.

If your program modifies the input parameter or uses it to return data, consider using the cstring.i library file described in the
SWIG Library chapter.

When functions return a char *, it is assumed to be a NULL−terminated string. Data is copied into a new Python string and
returned.

If your program needs to work with binary data, you can use a typemap to expand a Python string into a pointer/length argument
pair. As luck would have it, just such a typemap is already defined. Just do this:

%apply (char *STRING, int LENGTH) { (char *data, int size) };
...
int parity(char *data, int size, int initial);

Now in Python:

>>> parity("e\x09ffss\x00\x00\x01\nx", 0)

If you need to return binary data, you might use the cstring.i library file. The cdata.i library can also be used to extra
binary data from arbitrary pointers.

26.7.5 Arrays
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26.7.6 String arrays

26.7.7 STL wrappers

26.8 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Python C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Python interface or if you
want to elevate your guru status.

26.8.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Python to C, you might define a typemap like this:

%module example

%typemap(in) int {
        $1 = (int) PyLong_AsLong($input);
        printf("Received an integer : %d\n",$1);
}
extern int fact(int n);

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object of type PyObject *.

When this example is compiled into a Python module, it operates as follows:

>>> from example import *
>>> fact(6)
Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int nonnegative {
        $1 = (int) PyLong_AsLong($input);
        if ($1 < 0) {
           PyErr_SetString(PyExc_ValueError,"Expected a nonnegative value.");
           return NULL;
        }
}
extern int fact(int nonnegative);

In this case, the typemap code is only attached to arguments that exactly match int nonnegative.

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG C++ type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:
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%typemap(in) int n {
        $1 = (int) PyLong_AsLong($input);
        printf("n = %d\n",$1);
}
typedef int Integer;
extern int fact(Integer n);    // Above typemap is applied

Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
    $1 = PyString_AsString($input);
    $2 = PyString_Size($input);
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Python object. This allows the function
to be used like this (notice how the length parameter is omitted):

>>> example.count('e','Hello World')
1
>>>

26.8.2 Python typemaps

The previous section illustrated an "in" typemap for converting Python objects to C. A variety of different typemap methods are
defined by the Python module. For example, to convert a C integer back into a Python object, you might define an "out" typemap
like this:

%typemap(out) int {
    $result = PyInt_FromLong((long) $1);
}

A detailed list of available methods can be found in the "Typemaps" chapter. However, the best source of typemap information
(and examples) is probably the Python module itself. In fact, all of SWIG's default type handling is defined by typemaps. You can
view these typemaps by looking at the python.swg file in the SWIG library. Just issue these commands:

$ swig −python −co python.swg
'python.swg' checked out from the SWIG library.
$ cat python.swg

Additional typemap examples can also be found in the typemaps.i file.

26.8.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this
is a C local variable that's supposed to hold an argument value. For output values, this is the raw result that's
supposed to be returned to Python.

$input

A PyObject * holding a raw Python object with an argument or variable value.

$result
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A PyObject * that holds the result to be returned to Python.

$1_name

The parameter name that was matched.

$1_type

The actual C datatype matched by the typemap.

$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of
a C assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All
arguments and local variables in wrapper functions are declared using this type so that their values can be
properly assigned.

$symname

The Python name of the wrapper function being created.

26.8.4 Useful Python Functions

When you write a typemap, you usually have to work directly with Python objects. The following functions may prove to be
useful.

Python Integer Functions

PyObject *PyInt_FromLong(long l);
long      PyInt_AsLong(PyObject *);
int       PyInt_Check(PyObject *);

Python Floating Point Functions

PyObject *PyFloat_FromDouble(double);
double    PyFloat_AsDouble(PyObject *);
int       PyFloat_Check(PyObject *);

Python String Functions

PyObject *PyString_FromString(char *);
PyObject *PyString_FromStringAndSize(char *, lint len);
int       PyString_Size(PyObject *);
char     *PyString_AsString(PyObject *);
int       PyString_Check(PyObject *);

Python List Functions

PyObject *PyList_New(int size);
int       PyList_Size(PyObject *list);
PyObject *PyList_GetItem(PyObject *list, int i);
int       PyList_SetItem(PyObject *list, int i, PyObject *item);
int       PyList_Insert(PyObject *list, int i, PyObject *item);
int       PyList_Append(PyObject *list, PyObject *item);
PyObject *PyList_GetSlice(PyObject *list, int i, int j);
int       PyList_SetSlice(PyObject *list, int i, int , PyObject *list2);
int       PyList_Sort(PyObject *list);
int       PyList_Reverse(PyObject *list);
PyObject *PyList_AsTuple(PyObject *list);
int       PyList_Check(PyObject *);
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Python Tuple Functions

PyObject *PyTuple_New(int size);
int       PyTuple_Size(PyObject *);
PyObject *PyTuple_GetItem(PyObject *, int i);
int       PyTuple_SetItem(PyObject *, int i, pyObject *item);
PyObject *PyTuple_GetSlice(PyObject *t, int i, int j);
int       PyTuple_Check(PyObject *);

Python Dictionary Functions

write me

Python File Conversion Functions

PyObject *PyFile_FromFile(FILE *f);
FILE     *PyFile_AsFile(PyObject *);
int       PyFile_Check(PyObject *);

Abstract Object Interface

write me

26.9 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the files "python.swg" and
"typemaps.i" in the SWIG library.

26.9.1 Converting Python list to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Python list object to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
  /* Check if is a list */
  if (PyList_Check($input)) {
    int size = PyList_Size($input);
    int i = 0;
    $1 = (char **) malloc((size+1)*sizeof(char *));
    for (i = 0; i < size; i++) {
      PyObject *o = PyList_GetItem($input,i);
      if (PyString_Check(o))
        $1[i] = PyString_AsString(PyList_GetItem($input,i));
      else {
        PyErr_SetString(PyExc_TypeError,"list must contain strings");
        free($1);
        return NULL;
      }
    }
    $1[i] = 0;
  } else {
    PyErr_SetString(PyExc_TypeError,"not a list");
    return NULL;
  }
}

// This cleans up the char ** array we malloc'd before the function call
%typemap(freearg) char ** {
  free((char *) $1);
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}

// Now a test function
%inline %{
int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i,argv[i]);
         i++;
    }
    return i;
}
%}

When this module is compiled, the wrapped C function now operates as follows :

>>> from argv import *
>>> print_args(["Dave","Mike","Mary","Jane","John"])
argv[0] = Dave
argv[1] = Mike
argv[2] = Mary
argv[3] = Jane
argv[4] = John
5

In the example, two different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
this memory after the execution of the C function.

26.9.2 Expanding a Python object into multiple arguments

Suppose that you had a collection of C functions with arguments such as the following:

int foo(int argc, char **argv);

In the previous example, a typemap was written to pass a Python list as the char **argv. This allows the function to be used
from Python as follows:

>>> foo(4, ["foo","bar","spam","1"])

Although this works, it's a little awkward to specify the argument count. To fix this, a multi−argument typemap can be defined.
This is not very difficult−−you only have to make slight modifications to the previous example:

%typemap(in) (int argc, char **argv) {
  /* Check if is a list */
  if (PyList_Check($input)) {
    int i;
    $1 = PyList_Size($input);
    $2 = (char **) malloc(($1+1)*sizeof(char *));
    for (i = 0; i < $1; i++) {
      PyObject *o = PyList_GetItem($input,i);
      if (PyString_Check(o))
        $2[i] = PyString_AsString(PyList_GetItem($input,i));
      else {
        PyErr_SetString(PyExc_TypeError,"list must contain strings");
        free($2);
        return NULL;
      }
    }
    $2[i] = 0;
  } else {
    PyErr_SetString(PyExc_TypeError,"not a list");
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    return NULL;
  }
}

%typemap(freearg) (int argc, char **argv) {
  free((char *) $2);
}

When writing a multiple−argument typemap, each of the types is referenced by a variable such as $1 or $2. The typemap code
simply fills in the appropriate values from the supplied Python object.

With the above typemap in place, you will find it no longer necessary to supply the argument count. This is automatically set by
the typemap code. For example:

>>> foo(["foo","bar","spam","1"])

26.9.3 Using typemaps to return arguments

A common problem in some C programs is that values may be returned in arguments rather than in the return value of a function.
For example:

/* Returns a status value and two values in out1 and out2 */
int spam(double a, double b, double *out1, double *out2) {
        ... Do a bunch of stuff ...
        *out1 = result1;
        *out2 = result2;
        return status;
};

A typemap can be used to handle this case as follows :

%module outarg

// This tells SWIG to treat an double * argument with name 'OutValue' as
// an output value.  We'll append the value to the current result which 
// is guaranteed to be a List object by SWIG.

%typemap(argout) double *OutValue {
    PyObject *o, *o2, *o3;
    o = PyFloat_FromDouble(*$1);
    if ((!$result) || ($result == Py_None)) {
        $result = o;
    } else {
        if (!PyTuple_Check($result)) {
            PyObject *o2 = $result;
            $result = PyTuple_New(1);
            PyTuple_SetItem(target,0,o2);
        }
        o3 = PyTuple_New(1);
        PyTuple_SetItem(o3,0,o);
        o2 = $result;
        $result = PySequence_Concat(o2,o3);
        Py_DECREF(o2);
        Py_DECREF(o3);
    }
}

int spam(double a, double b, double *OutValue, double *OutValue);

The typemap works as follows. First, a check is made to see if any previous result exists. If so, it is turned into a tuple and the new
output value is concatenated to it. Otherwise, the result is returned normally. For the sample function spam(), there are three
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output values−−meaning that the function will return a 3−tuple of the results.

As written, the function must accept 4 arguments as input values, last two being pointers to doubles. If these arguments are only
used to hold output values (and have no meaningful input value), an additional typemap can be written. For example:

%typemap(in,numinputs=0) double *OutValue(double temp) {
    $1 = &temp;
}

By specifying numinputs=0, the input value is ignored. However, since the argument still has to be set to some meaningful value
before calling C, it is set to point to a local variable temp. When the function stores its output value, it will simply be placed in
this local variable. As a result, the function can now be used as follows:

>>> a = spam(4,5)
>>> print a
(0, 2.45, 5.0)
>>> x,y,z = spam(4,5)
>>>

26.9.4 Mapping Python tuples into small arrays

In some applications, it is sometimes desirable to pass small arrays of numbers as arguments. For example :

extern void set_direction(double a[4]);       // Set direction vector

This too, can be handled used typemaps as follows :

// Grab a 4 element array as a Python 4−tuple
%typemap(in) double[4](double temp[4]) {   // temp[4] becomes a local variable
  int i;
  if (PyTuple_Check($input)) {
    if (!PyArg_ParseTuple($input,"dddd",temp,temp+1,temp+2,temp+3)) {
      PyErr_SetString(PyExc_TypeError,"tuple must have 4 elements");
      return NULL;
    }
    $1 = &temp[0];
  } else {
    PyErr_SetString(PyExc_TypeError,"expected a tuple.");
    return NULL;
  }
}

This allows our set_direction function to be called from Python as follows :

>>> set_direction((0.5,0.0,1.0,−0.25))

Since our mapping copies the contents of a Python tuple into a C array, such an approach would not be recommended for huge
arrays, but for small structures, this approach works fine.

26.9.5 Mapping sequences to C arrays

Suppose that you wanted to generalize the previous example to handle C arrays of different sizes. To do this, you might write a
typemap as follows:

// Map a Python sequence into any sized C double array
%typemap(in) double[ANY](double temp[$1_dim0]) {
  int i;
  if (!PySequence_Check($input)) {
      PyErr_SetString(PyExc_TypeError,"Expecting a sequence");
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      return NULL;
  }
  if (PyObject_Length($input) != $1_dim0) {
      PyErr_SetString(PyExc_ValueError,"Expecting a sequence with $1_dim0 elements");
      return NULL;
  }
  for (i =0; i < $1_dim0; i++) {
      PyObject *o = PySequence_GetItem($input,i);
      if (!PyFloat_Check(o)) {
         PyErr_SetString(PyExc_ValueError,"Expecting a sequence of floats");
         return NULL;
      }
      temp[i] = PyFloat_AsDouble(o);
  }
  $1 = &temp[0];
}

In this case, the variable $1_dim0 is expanded to match the array dimensions actually used in the C code. This allows the
typemap to be applied to types such as:

void foo(double x[10]);
void bar(double a[4], double b[8]);

Since the above typemap code gets inserted into every wrapper function where used, it might make sense to use a helper function
instead. This will greatly reduce the amount of wrapper code. For example:

%{
static int convert_darray(PyObject *input, double *ptr, int size) {
  int i;
  if (!PySequence_Check(input)) {
      PyErr_SetString(PyExc_TypeError,"Expecting a sequence");
      return 0;
  }
  if (PyObject_Length(input) != size) {
      PyErr_SetString(PyExc_ValueError,"Sequence size mismatch");
      return 0;
  }
  for (i =0; i < size; i++) {
      PyObject *o = PySequence_GetItem(input,i);
      if (!PyFloat_Check(o)) {
         PyErr_SetString(PyExc_ValueError,"Expecting a sequence of floats");
         return 0;
      }
      ptr[i] = PyFloat_AsDouble(o);
  }
  return 1;
}
%}

%typemap(in) double [ANY](double temp[$1_dim0]) {
   if (!convert_darray($input,temp,$1_dim0))) {
      return NULL;
   }
   $1 = &temp[0];
}

26.9.6 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
Since there are several ways in which pointers can be represented, the following two functions are used to safely perform this
conversion:

int SWIG_ConvertPtr(PyObject *obj, void **ptr, swig_type_info *ty, int flags)
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Converts a Python object obj to a C pointer. The result of the conversion is placed into the pointer located at
ptr. ty is a SWIG type descriptor structure. flags is used to handle error checking and other aspects of
conversion. It is the bitwise−or of several flag values including SWIG_POINTER_EXCEPTION and
SWIG_POINTER_DISOWN. The first flag makes the function raise an exception on type error. The second flag
additionally steals ownership of an object. Returns 0 on success and −1 on error.

PyObject *Swig_NewPointerObj(void *ptr, swig_type_info *ty, int own)

Creates a new Python pointer object. ptr is the pointer to convert, ty is the SWIG type descriptor structure
that describes the type, and own is a flag that indicates whether or not Python should take ownership of the
pointer.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, SWIG_POINTER_EXCEPTION) == −1)
  return NULL;

PyObject *obj;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,SWIG_POINTER_EXCEPTION)) == −1)
  return NULL;
}

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *), 
                                               SWIG_POINTER_EXCEPTION)) == −1)
  return NULL;
}

Although the pointer handling functions are primarily intended for manipulating low−level pointers, both functions are fully
aware of Python proxy classes. Specifically, SWIG_ConvertPtr() will retrieve a pointer from any object that has a this
attribute. In addition, SWIG_NewPointerObj() can automatically generate a proxy class object (if applicable).

26.10 Docstring Features

Usign docstrings in Python code is becoming more and more important ans more tools are coming on the scene that take
advantage of them, everything from full−blown documentaiton generators to class browsers and popup call−tips in Python−aware
IDEs. Given the way that SWIG generates the proxy code by default, your users will normally get something like
"function_name(*args)" in the popup calltip of their IDE which is next to useless when the real function prototype might
be something like this:

bool function_name(int x, int y, Foo* foo=NULL, Bar* bar=NULL);

The features described in this section make it easy for you to add docstrings to your modules, functions and methods that can then
be used by the various tools out there to make the programming experience of your users much simpler.
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26.10.1 Module docstring

Python allows a docstring at the begining of the .py file before any other statements, and it is typically used to give a general
description of the entire module. SWIG supports this by setting an option of the %module directive. For example:

%module(docstring="This is the example module's docstring") example

When you have more than just a line or so then you can retain the easy readability of the %module directive by using a macro.
For example:

%define DOCSTRING
"The `XmlResource` class allows program resources defining menus, 
layout of controls on a panel, etc. to be loaded from an XML file."
%enddef

%module(docstring=DOCSTRING) xrc

26.10.2 %feature("autodoc")

As alluded to above SWIG will generate all the function and method proxy wrappers with just "*args" (or "*args, **kwargs" if the
−keyword option is used) for a parameter list and will then sort out the individual parameters in the C wrapper code. This is nice
and simple for the wrapper code, but makes it difficult to be programmer and tool friendly as anyone looking at the .py file will
not be able to find out anything about the parameters that the fuctions accept.

But since SWIG does know everything about the fucntion it is possible to generate a docstring containing the parameter types,
names and default values. Since many of the doctring tools are adopting a standard of recognizing if the first thing in the docstring
is a function prototype then using that instead of what they found from introspeciton, then life is good once more.

SWIG's Python module provides support for the "autodoc" feature, which when attached to a node in the parse tree will cause a
docstring to be generated that includes the name of the funciton, parameter names, default values if any, and return type if any.
There are also three options for autodoc controlled by the value given to the feature, described below.

26.10.2.1 %feature("autodoc", "0")

When the "0" option is given then the types of the parameters will not be included in the autodoc string. For example, given this
function prototype:

%feature("autodoc", "0");
bool function_name(int x, int y, Foo* foo=NULL, Bar* bar=NULL);

Then Python code like this will be generated:

def function_name(*args, **kwargs):
    """function_name(x, y, foo=None, bar=None) −> bool"""
    ...

26.10.2.2 %feature("autodoc", "1")

When the "1" option is used then the parameter types will be used in the autodoc string. In addition, an atempt is made to simplify
the type name such that it makes more sense to the Python user. Pointer, reference and const info is removed, %rename's are
evaluated, etc. (This is not always successful, but works most of the time. See the next section for what to do when it doesn't.)
Given the example above, then turning on the parameter types with the "1" option will result in Python code like this:

def function_name(*args, **kwargs):
    """function_name(int x, int y, Foo foo=None, Bar bar=None) −> bool"""
    ...
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26.10.2.3 %feature("autodoc", "docstring")

Finally, there are times when the automatically generated autodoc string will make no sense for a Python programmer, particularly
when a typemap is involved. So if you give an explicit value for the autodoc feature then that string will be used in place of the
automatically generated string. For example:

%feature("autodoc", "GetPosition() −> (x, y)") GetPosition;
void GetPosition(int* OUTPUT, int* OUTPUT);

26.10.3 %feature("docstring")

In addition to the autodoc strings described above, you can also attach any arbitrary descriptive text to a node in the parse tree
with the "docstring" feature. When the proxy module is generated then any docstring associated with classes, function or methods
are output. If an item already has an autodoc string then it is combined with the docstring and they are output together. If the
docstring is all on a single line then it is output like this::

"""This is the docstring"""

Otherwise, to aid readability it is output like this:

"""
This is a multi−line docstring
with more than one line.
"""

26.11 Python Packages

Using the package option of the %module directive allows you to specify what Python package that the module will be living
in when installed.

%module(package="wx") xrc

This is useful when the .i file is %imported by another .i file. By default SWIG will assume that the importer is able to find
the importee with just the module name, but if they live in separate Python packages then that won't work. However if the
importee specifies what its package is with the %module option then the Python code generated for the importer will use that
package name when importing the other module and also in base class declarations, etc. if the pacakge name is different than its
own.
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Ruby typemaps♦ 
Typemap variables♦ 
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This chapter describes SWIG's support of Ruby.
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27.1 Preliminaries

SWIG 1.3 is known to work with Ruby versions 1.6 and later. Given the choice, you should use the latest stable version of Ruby.
You should also determine if your system supports shared libraries and dynamic loading. SWIG will work with or without
dynamic loading, but the compilation process will vary.

This chapter covers most SWIG features, but in less depth than is found in earlier chapters. At the very least, make sure you also
read the "SWIG Basics" chapter. It is also assumed that the reader has a basic understanding of Ruby.

27.1.1 Running SWIG

To build a Ruby module, run SWIG using the −ruby option:

$ swig −ruby example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −ruby example.i

This creates a file example_wrap.c (example_wrap.cxx if compiling a C++ extension) that contains all of the code
needed to build a Ruby extension module. To finish building the module, you need to compile this file and link it with the rest of
your program.

27.1.2 Getting the right header files

In order to compile the wrapper code, the compiler needs the ruby.h header file. This file is usually contained in a directory
such as

/usr/local/lib/ruby/1.6/i686−linux/ruby.h

The exact location may vary on your machine, but the above location is typical. If you are not entirely sure where Ruby is
installed, you can run Ruby to find out. For example:

$ ruby −e 'puts $:.join("\n")'
/usr/local/lib/ruby/site_ruby/1.6 
/usr/local/lib/ruby/site_ruby/1.6/i686−linux 
/usr/local/lib/ruby/site_ruby 
/usr/local/lib/ruby/1.6 
/usr/local/lib/ruby/1.6/i686−linux 
. 

27.1.3 Compiling a dynamic module

Ruby extension modules are typically compiled into shared libraries that the interpreter loads dynamically at runtime. Since the
exact commands for doing this vary from platform to platform, your best bet is to follow the steps described in the README.EXT
file from the Ruby distribution:

Create a file called extconf.rb that looks like the following:

require 'mkmf'
create_makefile('example')

1. 

Type the following to build the extension:

$ ruby extconf.rb

2. 
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$ make
$ make install

Of course, there is the problem that mkmf does not work correctly on all platforms, e.g, HPUX. If you need to add your own make
rules to the file that extconf.rb produces, you can add this:

open("Makefile", "a") { |mf|
   puts <<EOM
   # Your make rules go here
   EOM
}

to the end of the extconf.rb file. If for some reason you don't want to use the standard approach, you'll need to determine the
correct compiler and linker flags for your build platform. For example, a typical sequence of commands for the Linux operating
system would look something like this:

$ swig −ruby example.i
$ gcc −c example.c
$ gcc −c example_wrap.c −I/usr/local/lib/ruby/1.6/i686−linux
$ gcc −shared example.o example_wrap.o −o example.so

For other platforms it may be necessary to compile with the −fPIC option to generate position−independent code. If in doubt,
consult the manual pages for your compiler and linker to determine the correct set of options. You might also check the SWIG
Wiki for additional information.

27.1.4 Using your module

Ruby module names must be capitalized, but the convention for Ruby feature names is to use lowercase names. So, for example,
the Etc extension module is imported by requiring the etc feature:

# The feature name begins with a lowercase letter...
require 'etc'

# ... but the module name begins with an uppercase letter
puts "Your login name: #{Etc.getlogin}"

To stay consistent with this practice, you should always specify a lowercase module name with SWIG's %module directive.
SWIG will automatically correct the resulting Ruby module name for your extension. So for example, a SWIG interface file that
begins with:

%module example

will result in an extension module using the feature name "example" and Ruby module name "Example".

27.1.5 Static linking

An alternative approach to dynamic linking is to rebuild the Ruby interpreter with your extension module added to it. In the past,
this approach was sometimes necessary due to limitations in dynamic loading support on certain machines. However, the situation
has improved greatly over the last few years and you should not consider this approach unless there is really no other option.

The usual procedure for adding a new module to Ruby involves finding the Ruby source, adding an entry to the ext/Setup file,
adding your directory to the list of extensions in the file, and finally rebuilding Ruby.
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27.1.6 Compilation of C++ extensions

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

$ swig −c++ −ruby example.i
$ g++ −c example.cxx
$ g++ −c example_wrap.cxx −I/usr/local/lib/ruby/1.6/i686−linux
$ g++ −shared example.o example_wrap.o −o example.so

If you've written an extconf.rb script to automatically generate a Makefile for your C++ extension module, keep in mind
that (as of this writing) Ruby still uses gcc and not g++ as its linker. As a result, the required C++ runtime library support will
not be automatically linked into your extension module and it may fail to load on some platforms. A workaround for this problem
is use the mkmf module's append_library() method to add one of the C++ runtime libraries to the list of libraries linked
into your extension, e.g.

require 'mkmf'
$libs = append_library($libs, "supc++")
create_makefile('example')

27.2 Building Ruby Extensions under Windows 95/NT

Building a SWIG extension to Ruby under Windows 95/NT is roughly similar to the process used with Unix. Normally, you will
want to produce a DLL that can be loaded into the Ruby interpreter. For all recent versions of Ruby, the procedure described
above (i.e. using an extconf.rb script) will work with Windows as well; you should be able to build your code into a DLL by
typing:

C:\swigtest> ruby extconf.rb
C:\swigtest> nmake
C:\swigtest> nmake install

The remainder of this section covers the process of compiling SWIG−generated Ruby extensions with Microsoft Visual C++ 6
(i.e. within the Developer Studio IDE, instead of using the command line tools). In order to build extensions, you may need to
download the source distribution to the Ruby package, as you will need the Ruby header files.

27.2.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly follows these steps :

Open up a new workspace and use the AppWizard to select a DLL project.• 
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (i.e.. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer Studio will keep a reference to it
around.

• 

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.• 
Enter "SWIG" in the description field.• 
Enter "swig −ruby −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field". You may have to include the path to swig.exe.

• 

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".• 
Next, select the settings for the entire project and go to the C/C++ tab and select the Preprocessor category. Add NT=1 to
the Preprocessor definitions. This must be set else you will get compilation errors. Also add IMPORT to the preprocessor
definitions, else you may get runtime errors. Also add the include directories for your Ruby installation under
"Additional include directories".

• 

Next, select the settings for the entire project and go to the Link tab and select the General category. Set the name of the• 
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output file to match the name of your Ruby module (i.e.. example.dll). Next add the Ruby library file to your link
libraries under Object/Library modules. For example "mswin32−ruby16.lib. You also need to add the path to the library
under the Input tab − Additional library path.
Build your project.• 

Now, assuming all went well, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new
Ruby extension, simply run Ruby and use the require command as normal. For example if you have this ruby file run.rb:

# file: run.rb
require 'Example'

# Call a c function
print "Foo = ", Example.Foo, "\n"

Ensure the dll just built is in your path or current directory, then run the Ruby script from the DOS/Command prompt:

C:\swigtest> ruby run.rb
Foo = 3.0

27.3 The Ruby−to−C/C++ Mapping

This section describes the basics of how SWIG maps C or C++ declarations in your SWIG interface files to Ruby constructs.

27.3.1 Modules

The SWIG %module directive specifies the name of the Ruby module. If you specify:

%module example

then everything is wrapped into a Ruby module named Example that is nested directly under the global module. You can specify
a more deeply nested module by specifying the fully−qualified module name in quotes, e.g.

%module "foo::bar::spam"

An alternate method of specifying a nested module name is to use the −prefix option on the SWIG command line. The prefix that
you specify with this option will be prepended to the module name specified with the %module directive in your SWIG interface
file. So for example, this declaration at the top of your SWIG interface file:

%module "foo::bar::spam"

will result in a nested module name of Foo::Bar::Spam, but you can achieve the same effect by specifying:

%module spam

and then running SWIG with the −prefix command line option:

$ swig −ruby −prefix "foo::bar::" example.i

Starting with SWIG 1.3.20, you can also choose to wrap everything into the global module by specifying the −globalmodule
option on the SWIG command line, i.e.

$ swig −ruby −globalmodule example.i

Note that this does not relieve you of the requirement of specifying the SWIG module name with the %module directive (or the
−module command−line option) as described earlier.
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When choosing a module name, do not use the same name as a built−in Ruby command or standard module name, as the results
may be unpredictable. Similarly, if you're using the −globalmodule option to wrap everything into the global module, take
care that the names of your constants, classes and methods don't conflict with any of Ruby's built−in names.

27.3.2 Functions

Global functions are wrapped as Ruby module methods. For example, given the SWIG interface file example.i:

%module example

int fact(int n);

and C source file example.c:

int fact(int n) {
  if (n == 0)
    return 1;
  return (n * fact(n−1));
}

SWIG will generate a method fact in the Example module that can be used like so:

$ irb
irb(main):001:0> require 'example'
true
irb(main):002:0> Example.fact(4)
24

27.3.3 Variable Linking

C/C++ global variables are wrapped as a pair of singleton methods for the module: one to get the value of the global variable and
one to set it. For example, the following SWIG interface file declares two global variables:

// SWIG interface file with global variables
%module example
...
extern int    variable1;
extern double Variable2;
...

Now look at the Ruby interface:

$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> Example.variable1 = 2
2
irb(main):003:0> Example.Variable2 = 4 * 10.3
41.2
irb(main):004:0> Example.Variable2
41.2

If you make an error in variable assignment, you will receive an error message. For example:

irb(main):005:0> Example.Variable2 = "hello"
TypeError: no implicit conversion to float from string
  from (irb):5:in `Variable2='
  from (irb):5
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If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can also use the %immutable directive. For example:

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable.

27.3.4 Constants

C/C++ constants are wrapped as module constants initialized to the appropriate value. To create a constant, use #define or the
%constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

%constant int FOO = 42;
%constant const char *path = "/usr/local";

const int BAR = 32;

Remember to use the :: operator in Ruby to get at these constant values, e.g.

$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> Example::PI
3.14159

27.3.5 Pointers

"Opaque" pointers to arbitrary C/C++ types (i.e. types that aren't explicitly declared in your SWIG interface file) are wrapped as
data objects. So, for example, consider a SWIG interface file containing only the declarations:

Foo *get_foo();
void set_foo(Foo *foo);

For this case, the get_foo() method returns an instance of an internally generated Ruby class:

irb(main):001:0> foo = Example::get_foo()
#<SWIG::TYPE_p_Foo:0x402b1654>

A NULL pointer is always represented by the Ruby nil object.

27.3.6 Structures

C/C++ structs are wrapped as Ruby classes, with accessor methods (i.e. "getters" and "setters") for all of the struct members. For
example, this struct declaration:

struct Vector {
    double x, y;
};

gets wrapped as a Vector class, with Ruby instance methods x, x=, y and y=. These methods can be used to access structure
data from Ruby as follows:
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$ irb
irb(main):001:0> require 'Example'
true
irb(main):002:0> f = Example::Vector.new
#<Example::Vector:0x4020b268>
irb(main):003:0> f.x = 10
nil
irb(main):004:0> f.x
10.0

Similar access is provided for unions and the public data members of C++ classes.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive (in C++, private may also be used). For example:

struct Foo {
   ...
   %immutable;
   int x;        /* Read−only members */
   char *name;
   %mutable;
   ...
};

When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described shortly).

Array members are normally wrapped as read−only. For example, this code:

struct Foo {
   int x[50];
};

produces a single accessor function like this:

int *Foo_x_get(Foo *self) {
    return self−>x;
};

If you want to set an array member, you will need to supply a "memberin" typemap described in the section on typemaps. As a
special case, SWIG does generate code to set array members of type char (allowing you to store a Ruby string in the structure).

When structure members are wrapped, they are handled as pointers. For example,

struct Foo {
   ...
};

struct Bar {
   Foo f;
};

generates accessor functions such as this:

Foo *Bar_f_get(Bar *b) {
    return &b−>f;
}

void Bar_f_set(Bar *b, Foo *val) {
    b−>f = *val;
}
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27.3.7 C++ classes

Like structs, C++ classes are wrapped by creating a new Ruby class of the same name with accessor methods for the public class
member data. Additionally, public member functions for the class are wrapped as Ruby instance methods, and public static
member functions are wrapped as Ruby singleton methods. So, given the C++ class declaration:

class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
  static void print(List *l);
};

SWIG would create a List class with:

instance methods search, insert, remove, and get;• 
instance methods length and length= (to get and set the value of the length data member); and,• 
a print singleton method for the class.• 

In Ruby, these functions are used as follows:

require 'Example'

l = Example::List.new

l.insert("Ale")
l.insert("Stout")
l.insert("Lager")
Example.print(l)
l.length()
−−−−− produces the following output 
Lager
Stout
Ale
3

27.3.8 C++ Inheritance

The SWIG type−checker is fully aware of C++ inheritance. Therefore, if you have classes like this:

class Parent {
    ...
};

class Child : public Parent {
    ...
};

those classes are wrapped into a hierarchy of Ruby classes that reflect the same inheritance structure. All of the usual Ruby utility
methods work normally:

irb(main):001:0> c = Child.new
#<Bar:0x4016efd4>
irb(main):002:0> c.instance_of? Child
true
irb(main):003:0> b.instance_of? Parent
false
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irb(main):004:0> b.is_a? Child
true
irb(main):005:0> b.is_a? Parent
true
irb(main):006:0> Child < Parent
true
irb(main):007:0> Child > Parent
false

Furthermore, if you have a function like this:

void spam(Parent *f);

then the function spam() accepts Parent* or a pointer to any class derived from Parent.

Until recently, the Ruby module for SWIG didn't support multiple inheritance, and this is still the default behavior. This doesn't
mean that you can't wrap C++ classes which inherit from multiple base classes; it simply means that only the first base class listed
in the class declaration is considered, and any additional base classes are ignored. As an example, consider a SWIG interface file
with a declaration like this:

class Derived : public Base1, public Base2
{
    ...
};

For this case, the resulting Ruby class (Derived) will only consider Base1 as its superclass. It won't inherit any of Base2's
member functions or data and it won't recognize Base2 as an "ancestor" of Derived (i.e. the is_a? relationship would fail).
When SWIG processes this interface file, you'll see a warning message like:

example.i:5: Warning(802): Warning for Derived: Base Base2 ignored.
Multiple inheritance is not supported in Ruby.

Starting with SWIG 1.3.20, the Ruby module for SWIG provides limited support for multiple inheritance. Because the approach
for dealing with multiple inheritance introduces some limitations, this is an optional feature that you can activate with the
−minherit command−line option:

$ swig −c++ −ruby −minherit example.i

Using our previous example, if your SWIG interface file contains a declaration like this:

class Derived : public Base1, public Base2
{
    ...
};

and you run SWIG with the −minherit command−line option, then you will end up with a Ruby class Derived that appears
to "inherit" the member data and functions from both Base1 and Base2. What actually happens is that three different top−level
classes are created, with Ruby's Object class as their superclass. Each of these classes defines a nested module named Impl,
and it's in these nested Impl modules that the actual instance methods for the classes are defined, i.e.

class Base1
  module Impl
    # Define Base1 methods here
  end
  include Impl
end

class Base2
  module Impl
    # Define Base2 methods here
  end
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  include Impl
end

class Derived
  module Impl
    include Base1::Impl
    include Base2::Impl
    # Define Derived methods here
  end
  include Impl
end

Observe that after the nested Impl module for a class is defined, it is mixed−in to the class itself. Also observe that the
Derived::Impl module first mixes−in its base classes' Impl modules, thus "inheriting" all of their behavior.

The primary drawback is that, unlike the default mode of operation, neither Base1 nor Base2 is a true superclass of Derived
anymore:

obj = Derived.new
obj.is_a? Base1    # this will return false...
obj.is_a? Base2    # ... and so will this

In most cases, this is not a serious problem since objects of type Derived will otherwise behave as though they inherit from both
Base1 and Base2 (i.e. they exhibit "Duck Typing").

27.3.9 C++ Overloaded Functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Ruby in a straightforward manner:

irb(main):001:0> foo(3)           # foo(int)
irb(main):002:0> foo("Hello")     # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
    Foo();
    Foo(const Foo &);
    ...
};

you can write Ruby code like this:

irb(main):001:0> f = Foo.new          # Create a Foo
irb(main):002:0> g = Foo.new(f)       # Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);
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If declarations such as these appear, you will get a warning message like this:

example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);    
void spam(short);   // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);    
void spam(short);   // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

27.3.10 C++ Operators

For the most part, overloaded operators are handled automatically by SWIG and do not require any special treatment on your part.
So if your class declares an overloaded addition operator, e.g.

class Complex {
    ...
    Complex operator+(Complex &);
    ...
};

the resulting Ruby class will also support the addition (+) method correctly.

For cases where SWIG's built−in support is not sufficient, C++ operators can be wrapped using the %rename directive (available
on SWIG 1.3.10 and later releases). All you need to do is give the operator the name of a valid Ruby identifier. For example:

%rename(add_complex) operator+(Complex &, Complex &);
...
Complex operator+(Complex &, Complex &);

Now, in Ruby, you can do this:

a = Example::Complex.new(2, 3)
b = Example::Complex.new(4, −1)
c = Example.add_complex(a, b)

More details about wrapping C++ operators into Ruby operators is discussed in the section on operator overloading.

27.3.11 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example
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namespace foo {
   int fact(int n);
   struct Vector {
       double x,y,z;
   };
};

it works in Ruby as follows:

irb(main):001:0> require 'example'
true
irb(main):002:0> Example.fact(3)
6
irb(main):003:0> v = Example::Vector.new
#<Example::Vector:0x4016f4d4>
irb(main):004:0> v.x = 3.4
3.4
irb(main):004:0> v.y
0.0

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
    int spam();
}

namespace Bar {
    int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.

27.3.12 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example

%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
   typedef T1 first_type;
   typedef T2 second_type;
   T1 first;
   T2 second;
   pair();
   pair(const T1&, const T2&);
  ~pair();
};

%template(Pairii) pair<int,int>;
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In Ruby:

irb(main):001:0> require 'example'
true
irb(main):002:0> p = Example::Pairii.new(3, 4)
#<Example:Pairii:0x4016f4df>
irb(main):003:0> p.first
3
irb(main):004:0> p.second
4

On a related note, the standard SWIG library contains a number of modules that provide typemaps for standard C++ library
classes (such as std::pair, std::string and std::vector). These library modules don't provide wrappers around the
templates themselves, but they do make it convenient for users of your extension module to pass Ruby objects (such as arrays and
strings) to wrapped C++ code that expects instances of standard C++ templates. For example, suppose the C++ library you're
wrapping has a function that expects a vector of floats:

%module example

float sum(const std::vector<float>& values);

Rather than go through the hassle of writing an "in" typemap to convert an array of Ruby numbers into a std::vector<float>, you
can just use the std_vector.i module from the standard SWIG library:

%module example

%include std_vector.i

float sum(const std::vector<float>& values);

Obviously, there is a lot more to template wrapping than shown in these examples. More details can be found in the SWIG and
C++ chapter.

27.3.13 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
   ...
   T *operator−>();
   ...
}

Then, if you have a class like this,

class Foo {
public:
     int x;
     int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo();   // Created somehow (not shown)
...
p−>x = 3;                        // Foo::x
int y = p−>bar();                // Foo::bar
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To wrap this in Ruby, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:

%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Ruby, everything should just "work":

irb(main):001:0> p = Example::CreateFoo()          # Create a smart−pointer somehow
#<Example::SmartPtrFoo:0x4016f4df>
irb(main):002:0> p.x = 3                          # Foo::x
3
irb(main):003:0> p.bar()                          # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

irb(main):004:0> f = p.__deref__()     # Returns underlying Foo *

27.3.14 Cross−Language Polymorphism

SWIG's Ruby module supports cross−language polymorphism (a.k.a. the "directors" feature) similar to that for SWIG's Python
module. Rather than duplicate the information presented in the Python chapter, this secton just notes the differences that you need
to be aware of when using this feature with Ruby.

27.3.14.1 Exception Unrolling

Whenever a C++ director class routes one of its virtual member function calls to a Ruby instance method, there's always the
possibility that an exception will be raised in the Ruby code. By default, those exceptions are ignored, which simply means that
the exception will be exposed to the Ruby interpreter. If you would like to change this behavior, you can use the
%feature("director:except") directive to indicate what action should be taken when a Ruby exception is raised. The
following code should suffice in most cases:

%feature("director:except") {
    throw Swig::DirectorMethodException($error);
}

When this feature is activated, the call to the Ruby instance method is "wrapped" using the rb_rescue2() function from
Ruby's C API. If any Ruby exception is raised, it will be caught here and a C++ exception is raised in its place.

27.4 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
   *result = x + y;
}
or
int sub(int *x, int *y) {
   return *x−*y;
}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module Example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
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int  sub(int *INPUT, int *INPUT);

In Ruby, this allows you to pass simple values. For example:

a = Example.add(3,4)
puts a
7
b = Example.sub(7,4)
puts b
3

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module Example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};

void add(int x, int y, int *result);
int  sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
   *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Ruby, a mutated parameter shows up as a return value. For example:

a = Example.negate(3)
print a
−3

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, success code, and error_code */
int send_message(char *text, int *success, int *error_code);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
...
int send_message(char *, int *OUTPUT, int *OUTPUT);

When used in Ruby, the function will return an array of multiple values.

bytes, success, error_code = send_message("Hello World")
if not success
  print "error #{error_code} : in send_message"
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else
  print "Sent", bytes
end

Another way to access multiple return values is to use the %apply rule. In the following example, the parameters rows and
columns are related to SWIG as OUTPUT values through the use of %apply

%module Example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, int*columns);

In Ruby:

r, c = Example.get_dimensions(m)

27.5 Simple exception handling

The SWIG %exception directive can be used to define a user−definable exception handler that can convert C/C++ errors into
Ruby exceptions. The chapter on Customization Features contains more details, but suppose you have a C++ class like the
following :

class DoubleArray {
  private:
    int n;
    double *ptr;
  public:
    // Create a new array of fixed size
    DoubleArray(int size) {
      ptr = new double[size];
      n = size;
    }
    // Destroy an array
    ~DoubleArray() {
       delete ptr;
    }
    // Return the length of the array
    int   length() {
      return n;
    }

    // Get an array item and perform bounds checking.
    double getitem(int i) {
      if ((i >= 0) && (i < n))
        return ptr[i];
      else
        throw RangeError();
    }
    // Set an array item and perform bounds checking.
    void setitem(int i, double val) {
      if ((i >= 0) && (i < n))
        ptr[i] = val;
      else {
        throw RangeError();
      }
    }
  };

Since several methods in this class can throw an exception for an out−of−bounds access, you might want to catch this in the Ruby
extension by writing the following in an interface file:

%exception {
  try {
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    $action
  }
  catch (const RangeError&) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error.");
  }
}

class DoubleArray {
   ...
};

The exception handling code is inserted directly into generated wrapper functions. When an exception handler is defined, errors
can be caught and used to gracefully raise a Ruby exception instead of forcing the entire program to terminate with an uncaught
error.

As shown, the exception handling code will be added to every wrapper function. Because this is somewhat inefficient, you might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
  try {
    $action
  }
  catch (const RangeError&) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error in getitem.");
  }
}

%exception setitem {
  try {
    $action
  }
  catch (const RangeError&) {
    static VALUE cpperror = rb_define_class("CPPError", rb_eStandardError);
    rb_raise(cpperror, "Range error in setitem.");
  }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
Customization Features for more examples.

When raising a Ruby exception from C/C++, use the rb_raise() function as shown above. The first argument passed to
rb_raise() is the exception type. You can raise a custom exception type (like the cpperror example shown above) or one
of the built−in Ruby exception types. For a list of the standard Ruby exception classes, consult a Ruby reference such as
Programming Ruby.

27.6 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Ruby C API as well as the material in the "Typemaps"
chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Ruby interface.
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27.6.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Ruby to C, you might define a typemap like this:

%module example

%typemap(in) int {
  $1 = (int) NUM2INT($input);
  printf("Received an integer : %d\n",$1);
}

extern int fact(int n);

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variables prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input Ruby object.

When this example is compiled into a Ruby module, the following sample code:

require 'example'

puts Example.fact(6)

prints the result:

Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int n {
  $1 = (int) NUM2INT($input);
  printf("n = %d\n",$1);
}

extern int fact(int n);

In this case, the typemap code is only attached to arguments that exactly match "int n".

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
    $1 = (int) NUM2INT($input);
    printf("n = %d\n",$1);
}

typedef int Integer;
extern int fact(Integer n);    // Above typemap is applied

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.

Typemaps can also be defined for groups of consecutive arguments. For example:
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%typemap(in) (char *str, int len) {
    $1 = STR2CSTR($input);
    $2 = (int) RSTRING($input)−>len;
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Ruby object. This allows the function
count to be used as follows (notice how the length parameter is omitted):

puts Example.count('o','Hello World')
2

27.6.2 Ruby typemaps

The previous section illustrated an "in" typemap for converting Ruby objects to C. A variety of different typemap methods are
defined by the Ruby module. For example, to convert a C integer back into a Ruby object, you might define an "out" typemap like
this:

%typemap(out) int {
    $result = INT2NUM($1);
}

The following list details all of the typemap methods that can be used by the Ruby module:

%typemap(in)

Converts Ruby objects to input function arguments

%typemap(out)

Converts return value of a C function to a Ruby object

%typemap(varin)

Assigns a C global variable from a Ruby object

%typemap(varout)

Returns a C global variable as a Ruby object

%typemap(freearg)

Cleans up a function argument (if necessary)

%typemap(argout)

Output argument processing

%typemap(ret)

Cleanup of function return values

%typemap(memberin)

Setting of structure/class member data

%typemap(globalin)
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Setting of C global variables

%typemap(check)

Checks function input values.

%typemap(default)

Set a default value for an argument (making it optional).

%typemap(arginit)

Initialize an argument to a value before any conversions occur.

Examples of these typemaps appears in the section on typemap examples

27.6.3 Typemap variables

Within a typemap, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this
is a C local variable that is supposed to hold an argument value. For output values, this is the raw result that is
supposed to be returned to Ruby.

$input

A VALUE holding a raw Ruby object with an argument or variable value.

$result

A VALUE that holds the result to be returned to Ruby.

$1_name

The parameter name that was matched.

$1_type

The actual C datatype matched by the typemap.

$1_ltype

An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of
a C assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All
arguments and local variables in wrapper functions are declared using this type so that their values can be
properly assigned.

$symname

The Ruby name of the wrapper function being created.
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27.6.4 Useful Functions

When you write a typemap, you usually have to work directly with Ruby objects. The following functions may prove to be useful.
(These functions plus many more can be found in Programming Ruby, by David Thomas and Andrew Hunt.)

27.6.4.1 C Datatypes to Ruby Objects

INT2NUM(long or int)  − int to Fixnum or Bignum
INT2FIX(long or int)  − int to Fixnum (faster than INT2NUM)
CHR2FIX(char)         − char to Fixnum
rb_str_new2(char*)    − char* to String
rb_float_new(double)  − double to Float

27.6.4.2 Ruby Objects to C Datatypes

          int NUM2INT(Numeric)
          int FIX2INT(Numeric)
 unsigned int NUM2UINT(Numeric)
 unsigned int FIX2UINT(Numeric)
         long NUM2LONG(Numeric)
         long FIX2LONG(Numeric)
unsigned long FIX2ULONG(Numeric)
         char NUM2CHR(Numeric or String)
       char * STR2CSTR(String)
       char * rb_str2cstr(String, int*length)
       double NUM2DBL(Numeric)

27.6.4.3 Macros for VALUE

RSTRING(str)−>len

length of the Ruby string

RSTRING(str)−>ptr

pointer to string storage

RARRAY(arr)−>len

length of the Ruby array

RARRAY(arr)−>capa

capacity of the Ruby array

RARRAY(arr)−>ptr

pointer to array storage

27.6.4.4 Exceptions

void rb_raise(VALUE exception, const char *fmt, ...)

Raises an exception. The given format string fmt and remaining arguments are interpreted as with printf().

void rb_fatal(const char *fmt, ...)
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Raises a fatal exception, terminating the process. No rescue blocks are called, but ensure blocks will be called.
The given format string fmt and remaining arguments are interpreted as with printf().

void rb_bug(const char *fmt, ...)

Terminates the process immediately −− no handlers of any sort will be called. The given format string fmt and
remaining arguments are interpreted as with printf(). You should call this function only if a fatal bug has
been exposed.

void rb_sys_fail(const char *msg)

Raises a platform−specific exception corresponding to the last known system error, with the given string msg.

VALUE rb_rescue(VALUE (*body)(VALUE), VALUE args, VALUE(*rescue)(VALUE, VALUE), VALUE
rargs)

Executes body with the given args. If a StandardError exception is raised, then execute rescue with the
given rargs.

VALUE rb_ensure(VALUE(*body)(VALUE), VALUE args, VALUE(*ensure)(VALUE), VALUE eargs)

Executes body with the given args. Whether or not an exception is raised, execute ensure with the given rargs
after body has completed.

VALUE rb_protect(VALUE (*body)(VALUE), VALUE args, int *result)

Executes body with the given args and returns nonzero in result if any exception was raised.

void rb_notimplement()

Raises a NotImpError exception to indicate that the enclosed function is not implemented yet, or not
available on this platform.

void rb_exit(int status)

Exits Ruby with the given status. Raises a SystemExit exception and calls registered exit functions and
finalizers.

void rb_warn(const char *fmt, ...)

Unconditionally issues a warning message to standard error. The given format string fmt and remaining
arguments are interpreted as with printf().

void rb_warning(const char *fmt, ...)

Conditionally issues a warning message to standard error if Ruby was invoked with the −w flag. The given
format string fmt and remaining arguments are interpreted as with printf().

27.6.4.5 Iterators

void rb_iter_break()

Breaks out of the enclosing iterator block.

VALUE rb_each(VALUE obj)
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Invokes the each method of the given obj.

VALUE rb_yield(VALUE arg)

Transfers execution to the iterator block in the current context, passing arg as an argument. Multiple values may
be passed in an array.

int rb_block_given_p()

Returns true if yield would execute a block in the current context; that is, if a code block was passed to the
current method and is available to be called.

VALUE rb_iterate(VALUE (*method)(VALUE), VALUE args, VALUE (*block)(VALUE, VALUE),
VALUE arg2)

Invokes method with argument args and block block. A yield from that method will invoke block with the
argument given to yield, and a second argument arg2.

VALUE rb_catch(const char *tag, VALUE (*proc)(VALUE, VALUE), VALUE value)

Equivalent to Ruby's catch.

void rb_throw(const char *tag, VALUE value)

Equivalent to Ruby's throw.

27.6.5 Typemap Examples

This section includes a few examples of typemaps. For more examples, you might look at the examples in the Example/ruby
directory.

27.6.6 Converting a Ruby array to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Ruby Array instance to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
  /* Get the length of the array */
  int size = RARRAY($input)−>len;     
  int i;
  $1 = (char **) malloc((size+1)*sizeof(char *));
  /* Get the first element in memory */
  VALUE *ptr = RARRAY($input)−>ptr;   
  for (i=0; i < size; i++, ptr++)
    /* Convert Ruby Object String to char* */
    $1[i]= STR2CSTR(*ptr); 
  $1[i]=NULL;  /* End of list */
}

// This cleans up the char ** array created before 
// the function call

%typemap(freearg) char ** {
  free((char *) $1);
}

// Now a test function
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%inline %{
int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i,argv[i]);
         i++;
    }
    return i;
}
%}

When this module is compiled, the wrapped C function now operates as follows :

require 'Argv'
Argv.print_args(["Dave","Mike","Mary","Jane","John"])
argv[0] = Dave
argv[1] = Mike
argv[2] = Mary
argv[3] = Jane
argv[4] = John

In the example, two different typemaps are used. The "in" typemap is used to receive an input argument and convert it to a C
array. Since dynamic memory allocation is used to allocate memory for the array, the "freearg" typemap is used to later release
this memory after the execution of the C function.

27.6.7 Collecting arguments in a hash

Ruby's solution to the "keyword arguments" capability of some other languages is to allow the programmer to pass in one or more
key−value pairs as arguments to a function. All of those key−value pairs are collected in a single Hash argument that's presented
to the function. If it makes sense, you might want to provide similar functionality for your Ruby interface. For example, suppose
you'd like to wrap this C function that collects information about people's vital statistics:

void setVitalStats(const char *person, int nattributes, const char **names, int *values);

and you'd like to be able to call it from Ruby by passing in an arbitrary number of key−value pairs as inputs, e.g.

setVitalStats("Fred",
              'weight' => 270,
              'age' => 42
             )

To make this work, you need to write a typemap that expects a Ruby Hash as its input and somehow extracts the last three
arguments (nattributes, names and values) needed by your C function. Let's start with the basics:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
}

This %typemap directive tells SWIG that we want to match any function declaration that has the specified types and names of
arguments somewhere in the argument list. The fact that we specified the argument names (nattributes, names and values) in our
typemap is significant; this ensures that SWIG won't try to apply this typemap to other functions it sees that happen to have a
similar declaration with different argument names. The arguments that appear in the second set of parentheses (keys_arr, i, key
and val) define local variables that our typemap will need.

Since we expect the input argument to be a Hash, let's next add a check for that:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {

Check_Type($input, T_HASH);
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}

Check_Type() is just a macro (defined in the Ruby header files) that confirms that the input argument is of the correct type; if
it isn't, an exception will be raised.

The next task is to determine how many key−value pairs are present in the hash; we'll assign this number to the first typemap
argument ($1). This is a little tricky since the Ruby/C API doesn't provide a public function for querying the size of a hash, but
we can get around that by calling the hash's size method directly and converting its result to a C int value:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);

$1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
}

So now we know the number of attributes. Next we need to initialize the second and third typemap arguments (i.e. the two C
arrays) to NULL and set the stage for extracting the keys and values from the hash:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));

$2 = NULL;
  $3 = NULL;
  if ($1 > 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));
  }
}

There are a number of ways we could extract the keys and values from the input hash, but the simplest approach is to first call the
hash's keys method (which returns a Ruby array of the keys) and then start looping over the elements in that array:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
  $2 = NULL;
  $3 = NULL;
  if ($1 > 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));

keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
    for (i = 0; i < $1; i++) {
    }
  }
}

Recall that keys_arr and i are local variables for this typemap. For each element in the keys_arr array, we want to get the key
itself, as well as the value corresponding to that key in the hash:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
  $2 = NULL;
  $3 = NULL;
  if ($1 > 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));
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    keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
    for (i = 0; i < $1; i++) {

key = rb_ary_entry(keys_arr, i);
      val = rb_hash_aref($input, key);
    }
  }
}

To be safe, we should again use the Check_Type() macro to confirm that the key is a String and the value is a Fixnum:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
  $2 = NULL;
  $3 = NULL;
  if ($1 > 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));
    keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
    for (i = 0; i < $1; i++) {
      key = rb_ary_entry(keys_arr, i);
      val = rb_hash_aref($input, key);

Check_Type(key, T_STRING);
      Check_Type(val, T_FIXNUM);
    }
  }
}

Finally, we can convert these Ruby objects into their C equivalents and store them in our local C arrays:

%typemap(in) (int nattributes, const char **names, const int *values)
                             (VALUE keys_arr, int i, VALUE key, VALUE val) {
  Check_Type($input, T_HASH);
  $1 = NUM2INT(rb_funcall($input, rb_intern("size"), 0, NULL));
  $2 = NULL;
  $3 = NULL;
  if ($1 > 0) {
    $2 = (char **) malloc($1*sizeof(char *));
    $3 = (int *) malloc($1*sizeof(int));
    keys_arr = rb_funcall($input, rb_intern("keys"), 0, NULL);
    for (i = 0; i < $1; i++) {
      key = rb_ary_entry(keys_arr, i);
      val = rb_hash_aref($input, key);
      Check_Type(key, T_STRING);
      Check_Type(val, T_FIXNUM);

$2[i] = STR2CSTR(key);
      $3[i] = NUM2INT(val);
    }
  }
}

We're not done yet. Since we used malloc() to dynamically allocate the memory used for the names and values arguments, we
need to provide a corresponding "freearg" typemap to free that memory so that there is no memory leak. Fortunately, this typemap
is a lot easier to write:

%typemap(freearg) (int nattributes, const char **names, const int *values) {
  free((void *) $2);
  free((void *) $3);
}
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All of the code for this example, as well as a sample Ruby program that uses the extension, can be found in the
Examples/ruby/hashargs directory of the SWIG distribution.

27.6.8 Pointer handling

Occasionally, it might be necessary to convert pointer values that have been stored using the SWIG typed−pointer representation.
Since there are several ways in which pointers can be represented, the following two functions are used to safely perform this
conversion:

int SWIG_ConvertPtr(VALUE obj, void **ptr, swig_type_info *ty, int flags)

Converts a Ruby object obj to a C pointer whose address is ptr (i.e. ptr is a pointer to a pointer). The third
argument, ty, is a pointer to a SWIG type descriptor structure. If ty is not NULL, that type information is used to
validate type compatibility and other aspects of the type conversion. If flags is non−zero, any type errors
encountered during this validation result in a Ruby TypeError exception being raised; if flags is zero, such
type errors will cause SWIG_ConvertPtr() to return −1 but not raise an exception. If ty is NULL, no
type−checking is performed.

VALUE SWIG_NewPointerObj(void *ptr, swig_type_info *ty, int own)

Creates a new Ruby pointer object. Here, ptr is the pointer to convert, ty is the SWIG type descriptor structure
that describes the type, and own is a flag that indicates whether or not Ruby should take ownership of the
pointer (i.e. whether Ruby should free this data when the corresponding Ruby instance is garbage−collected).

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *foo;
SWIG_ConvertPtr($input, (void **) &foo, SWIGTYPE_p_Foo, 1);

VALUE obj;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
   SWIG_ConvertPtr($input, (void **) &$1, $1_descriptor, 1);
}

27.6.8.1 Ruby Datatype Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(void *), void (*free)(void *), void
*ptr)

Given a pointer ptr to some C data, and the two garbage collection routines for this data (mark and free), return
a VALUE for the Ruby object.

VALUE Data_Make_Struct(VALUE class, c−type, void (*mark)(void *), void (*free)(void *),
c−type *ptr)

Allocates a new instance of a C data type c−type, assigns it to the pointer ptr, then wraps that pointer with
Data_Wrap_Struct() as above.

Data_Get_Struct(VALUE obj, c−type, c−type *ptr)

Retrieves the original C pointer of type c−type from the data object obj and assigns that pointer to ptr.
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27.7 Operator overloading

SWIG allows operator overloading with, by using the %extend or %rename commands in SWIG and the following operator
names (derived from Python):

 General
__repr__      − inspect
__str__       − to_s
__cmp__       − <=>
__hash__      − hash
__nonzero__   − nonzero?

 Callable
__call__      − call

 Collection
__len__       − length
__getitem__   − []
__setitem__   − []=

 Numeric
__add__       − +
__sub__       − −
__mul__       − *
__div__       − /
__mod__       − %
__divmod__    − divmod
__pow__       − **
__lshift__    − <<
__rshift__    − >>
__and__       − &
__xor__       − ^
__or__        − |
__neg__       − −@
__pos__       − +@
__abs__       − abs
__invert__    − ~
__int__       − to_i
__float__     − to_f
__coerce__    − coerce

Additions in 1.3.13 
__lt__        − < 
__le__        − <=
__eq__        − ==
__gt__        − >
__ge__        − >=

Note that although SWIG supports the __eq__ magic method name for defining an equivalence operator, there is no separate
method for handling inequality since Ruby parses the expression a != b as !(a == b).

27.7.1 Example: STL Vector to Ruby Array

FIXME: This example is out of place here!

Another use for macros and type maps is to create a Ruby array from a STL vector of pointers. In essence, copy of all the pointers
in the vector into a Ruby array. The use of the macro is to make the typemap so generic that any vector with pointers can use the
type map. The following is an example of how to construct this type of macro/typemap and should give insight into constructing
similar typemaps for other STL structures:

%define PTR_VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(ruby, out) vectorclassname &, const vectorclassname & {
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  VALUE arr = rb_ary_new2($1−>size());
  vectorclassname::iterator i = $1−>begin(), iend = $1−>end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
  $result = arr;
}
%typemap(ruby, out) vectorclassname, const vectorclassname {
  VALUE arr = rb_ary_new2($1.size());
  vectorclassname::iterator i = $1.begin(), iend = $1.end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, *i));
  $result = arr;
}
%enddef

Note, that the "c ## classname.klass" is used in the preprocessor step to determine the actual object from the class name.

To use the macro with a class Foo, the following is used:

PTR_VECTOR_TO_RUBY_ARRAY(vector<foo *="">, Foo)

It is also possible to create a STL vector of Ruby objects:

%define RUBY_ARRAY_TO_PTR_VECTOR(vectorclassname, classname)
%typemap(ruby, in) vectorclassname &, const vectorclassname & {
  Check_Type($input, T_ARRAY);
  vectorclassname *vec = new vectorclassname;
  int len = RARRAY($input)−>len;
  for (int i=0; i!=len; i++) {
    VALUE inst = rb_ary_entry($input, i);
    //The following _should_ work but doesn't on HPUX
    //    Check_Type(inst, T_DATA);
    classname *element = NULL;
    Data_Get_Struct(inst, classname, element);
    vec−>push_back(element);
  }
  $1 = vec;
}

%typemap(ruby, freearg) vectorclassname &, const vectorclassname & {
  delete $1;
}
%enddef

It is also possible to create a Ruby array from a vector of static data types:

%define VECTOR_TO_RUBY_ARRAY(vectorclassname, classname)
%typemap(ruby, out) vectorclassname &, const vectorclassname & {
  VALUE arr = rb_ary_new2($1−>size()); 
  vectorclassname::iterator i = $1−>begin(), iend = $1−>end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &(*i)));
  $result = arr;
}
%typemap(ruby, out) vectorclassname, const vectorclassname {
  VALUE arr = rb_ary_new2($1.size()); 
  vectorclassname::iterator i = $1.begin(), iend = $1.end();
  for ( ; i!=iend; i++ )
    rb_ary_push(arr, Data_Wrap_Struct(c ## classname.klass, 0, 0, &(*i)));
  $result = arr;
}
%enddef
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27.8 Advanced Topics

27.8.1 Creating Multi−Module Packages

The chapter on Working with Modules discusses the basics of creating multi−module extensions with SWIG, and in particular the
considerations for sharing runtime type information among the different modules.

As an example, consider one module's interface file (shape.i) that defines our base class:

%module shape

%{
#include "Shape.h"
%}

class Shape {
protected:
    double xpos;
    double ypos;
protected:
    Shape(double x, double y);
public:
    double getX() const;
    double getY() const;
};

We also have a separate interface file (circle.i) that defines a derived class:

%module circle

%{
#include "Shape.h"
#include "Circle.h"
%}

// Import the base class definition from Shape module
%import shape.i

class Circle : public Shape {
protected:
    double radius;
public:
    Circle(double x, double y, double r);
    double getRadius() const;
};

We'll start by building the Shape extension module:

$ swig −c++ −ruby shape.i

SWIG generates a wrapper file named shape_wrap.cxx. To compile this into a dynamically loadable extension for Ruby,
prepare an extconf.rb script using this template:

require 'mkmf'

# Since the SWIG runtime support library for Ruby
# depends on the Ruby library, make sure it's in the list
# of libraries.
$libs = append_library($libs, Config::CONFIG['RUBY_INSTALL_NAME'])

# Create the makefile
create_makefile('shape')

SWIG−1.3 Documentation

27.8 Advanced Topics 398



Run this script to create a Makefile and then type make to build the shared library:

$ ruby extconf.rb
creating Makefile

$ make
g++ −fPIC −g −O2  −I. −I/usr/local/lib/ruby/1.7/i686−linux \
        −I. −c shape_wrap.cxx
gcc −shared −L/usr/local/lib −o shape.so shape_wrap.o −L. \
        −lruby −lruby −lc

Note that depending on your installation, the outputs may be slightly different; these outputs are those for a Linux−based
development environment. The end result should be a shared library (here, shape.so) containing the extension module code.
Now repeat this process in a separate directory for the Circle module:

Run SWIG to generate the wrapper code (circle_wrap.cxx);1. 
Write an extconf.rb script that your end−users can use to create a platform−specific Makefile for the extension;2. 
Build the shared library for this extension by typing make.3. 

Once you've built both of these extension modules, you can test them interactively in IRB to confirm that the Shape and
Circle modules are properly loaded and initialized:

$ irb
irb(main):001:0> require 'shape'
true
irb(main):002:0> require 'circle'
true
irb(main):003:0> c = Circle::Circle.new(5, 5, 20)
#<Circle::Circle:0xa097208>
irb(main):004:0> c.kind_of? Shape::Shape
true
irb(main):005:0> c.getX()
5.0

27.8.2 Defining Aliases

It's a fairly common practice in the Ruby built−ins and standard library to provide aliases for method names. For example,
Array#size is an alias for Array#length. If you'd like to provide an alias for one of your class' instance methods, one approach is to
use SWIG's %extend directive to add a new method of the aliased name that calls the original function. For example:

class MyArray {
public:
  // Construct an empty array
  MyArray();

  // Return the size of this array
  size_t length() const;
};

%extend MyArray {
  // MyArray#size is an alias for MyArray#length
  size_t size() const {
    return self−>length();
  }
}

A better solution is to instead use the %alias directive (unique to SWIG's Ruby module). The previous example could then be
rewritten as:

// MyArray#size is an alias for MyArray#length
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%alias MyArray::length "size";

class MyArray {
public:
  // Construct an empty array
  MyArray();

  // Return the size of this array
  size_t length() const;
};

Multiple aliases can be associated with a method by providing a comma−separated list of aliases to the %alias directive, e.g.

%alias MyArray::length "amount,quantity,size";

From an end−user's standpoint, there's no functional difference between these two approaches; i.e. they should get the same result
from calling either MyArray#size or MyArray#length. However, when the %alias directive is used, SWIG doesn't need to
generate all of the wrapper code that's usually associated with added methods like our MyArray::size() example.

Note that the %alias directive is implemented using SWIG's "features" mechanism and so the same name matching rules used
for other kinds of features apply (see the chapter on "Customization Features") for more details).

27.8.3 Predicate Methods

Predicate methods in Ruby are those which return either true or false. By convention, these methods' names end in a question
mark; some examples from built−in Ruby classes include Array#empty? (which returns true for an array containing no
elements) and Object#instance_of? (which returns true if the object is an instance of the specified class). For consistency with
Ruby conventions you would also want your interface's predicate methods' names to end in a question mark and return true or
false.

One cumbersome solution to this problem is to rename the method (using SWIG's %rename directive) and provide a custom
typemap that converts the function's actual return type to Ruby's true or false. For example:

%rename("is_it_safe?") is_it_safe();

%typemap(out) int is_it_safe 
   "$result = ($1 != 0) ? Qtrue : Qfalse;";

int is_it_safe();

A better solution is to instead use the %predicate directive (unique to SWIG's Ruby module) to designate certain methods as
predicate methods. For the previous example, this would look like:

%predicate is_it_safe();

int is_it_safe();

and to use this method from your Ruby code:

irb(main):001:0> Example::is_it_safe?
true

Note that the %predicate directive is implemented using SWIG's "features" mechanism and so the same name matching rules
used for other kinds of features apply (see the chapter on "Customization Features") for more details).

27.8.4 Specifying Mixin Modules

The Ruby language doesn't support multiple inheritance, but it does allow you to mix one or more modules into a class using
Ruby's include method. For example, if you have a Ruby class that defines an each instance method, e.g.
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class Set
  def initialize
    @members = []
  end

  def each
    @members.each { |m| yield m }
  end
end

then you can mix−in Ruby's Enumerable module to easily add a lot of functionality to your class:

class Set
include Enumerable

  def initialize
    @members = []
  end

  def each
    @members.each { |m| yield m }
  end
end

To get the same benefit for your SWIG−wrapped classes, you can use the %mixin directive to specify the names of one or more
modules that should be mixed−in to a class. For the above example, the SWIG interface specification might look like this:

%mixin Set "Enumerable";

class Set {
public:
  // Constructor
  Set();

  // Iterates through set members
  void each();
};

Multiple modules can be mixed into a class by providing a comma−separated list of module names to the %mixin directive, e.g.

%mixin Set "Fee,Fi,Fo,Fum";

Note that the %mixin directive is implemented using SWIG's "features" mechanism and so the same name matching rules used
for other kinds of features apply (see the chapter on "Customization Features") for more details).

27.8.5 Interacting with Ruby's Garbage Collector

This section is still unfinished!

By default, SWIG ensures that any C++ objects it creates are destroyed when the corresponding Ruby instance is
garbage−collected. For example, if you have an interface like this:

class Foo
{
public:
    // Construct a new Foo object
    Foo();
};

When a user of this extension creates a new Foo instance from Ruby, it will construct a new C++ Foo object behind the scenes,
and when that Ruby instance is garbage−collected, the same C++ object will be destroyed.
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But in the real world, things aren't always that simple.

It is often the case, especially for C++ libraries, that objects contain references to other objects. For example, consider a class
library that models a zoo and the animals in the zoo:

%module zoo

%{
#include <string>
#include <vector>

#include "zoo.h"
%}

class Animal
{
protected:
    std::string name;

public:
    // Construct an animal with this name
    Animal(const char* nm) : name(nm) {}

    // Return the animal's name
    const char* getName() const { return name.c_str(); }
};

class Zoo
{
protected:
    std::vector<animal *=""> animals;

public:
    // Construct an empty zoo
    Zoo() {}

    // Add a new animal to the zoo
    void addAnimal(Animal* animal) {
      animals.push_back(animal); 
    }

    // Return the number of animals in the zoo
    size_t getNumAnimals() const {
      return animals.size(); 
    }

    // Return a pointer to the ith animal
    Animal* getAnimal(size_t i) const {
      return animals[i]; 
    }
};

Basically, a Zoo is modeled as a "container" for animals. And we can SWIG this set of classes, and running irb gives the
following:

$ irb
irb(main):001:0> require 'zoo'
true
irb(main):002:0> zoo = Zoo::Zoo.new
#<Zoo::Zoo:0xa090458>
irb(main):003:0> zoo.addAnimal(Zoo::Animal.new("Lassie"))
nil
irb(main):004:0> zoo.addAnimal(Zoo::Animal.new("Felix"))
nil
irb(main):005:0> zoo.getNumAnimals()
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irb(main):006:0> zoo.getAnimal(0).getName()
"Lassie"
irb(main):007:0> GC.start
nil
irb(main):008:0> zoo.getAnimal(0).getName()
(irb):8: [BUG] Segmentation fault
ruby 1.7.2 (2002−03−25) [i386−cygwin]
Aborted (core dumped)

Observe that after the garbage collector runs (as a result of our call to GC.start) the call to Animal#getName causes a
segmentation fault. To understand what went wrong requires a basic understanding of Ruby's "mark and sweep" garbage
collection scheme.

Add brief discussion of mark and sweep here?

So the problem with our previous example is that during the GC "mark" phase, Ruby has no way of knowing that our two
Animal instances ("Lassie" and "Felix") are still in use. As far as Ruby can tell, both of these objects are unreachable and should
be garbage−collected. We'd like to fix things so that when the Zoo instance is visited during the "mark" phase, that it in turn
marks the two animals as in use.

The Ruby/C API provides for this need by allowing extension developers to specify customized "mark" functions for data objects
like our Zoo and Animal classes. This mark function takes a single argument, which is a pointer to the C++ object being
marked; it should, in turn, call rb_gc_mark() for any instances that are reachable from the current object. The mark function
for our Zoo class should therefore loop over all of the animals in the zoo and call rb_gc_mark() for each of the Ruby
instances associated with those C++ Animal objects:

void Zoo_markfunc(void *ptr)
{
    Animal *cppAnimal;
    VALUE   rubyAnimal;
    Zoo *zoo;

    zoo = static_cast<zoo
 *="">(ptr);
    for (size_t i = 0; i < zoo−>getNumAnimals(); i++) {
        cppAnimal = zoo−>getAnimal(i);
        rubyAnimal = SWIG_RubyInstanceFor(cppAnimal);
        rb_gc_mark(rubyAnimal);
    }
}

SWIG_RubyInstanceFor() is an imaginary function that takes a pointer to a C/C++ object as its input and returns a VALUE
corresponding to the Ruby instance that wraps this object. Currently, SWIG doesn't keep track of this kind of mapping at all.

You can use the %markfunc directive to associate the name of this function with a SWIGed class:

%markfunc Zoo "Zoo_markfunc";

Note that the %markfunc and %freefunc directives are implemented using SWIG's' "features" mechanism and so the same
name matching rules used for other kinds of features apply (see the chapter on "Customization Features") for more details).
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Caution: This chapter is under repair!

This chapter discusses SWIG's support of Tcl. SWIG currently requires Tcl 8.0 or a later release. Earlier releases of SWIG
supported Tcl 7.x, but this is no longer supported.
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28.1 Preliminaries

To build a Tcl module, run SWIG using the −tcl option :

$ swig −tcl example.i

If building a C++ extension, add the −c++ option:

$ swig −c++ −tcl example.i

This creates a file example_wrap.c or example_wrap.cxx that contains all of the code needed to build a Tcl extension
module. To finish building the module, you need to compile this file and link it with the rest of your program.

28.1.1 Getting the right header files

In order to compile the wrapper code, the compiler needs the tcl.h header file. This file is usually contained in the directory

/usr/local/include

Be aware that some Tcl versions install this header file with a version number attached to it. If this is the case, you should
probably make a symbolic link so that tcl.h points to the correct header file.

28.1.2 Compiling a dynamic module

The preferred approach to building an extension module is to compile it into a shared object file or DLL. To do this, you will need
to compile your program using comands like this (shown for Linux):

$ swig −tcl example.i
$ gcc −c example.c
$ gcc −c example_wrap.c −I/usr/local/include
$ gcc −shared example.o example_wrap.o −o example.so

The exact commands for doing this vary from platform to platform. SWIG tries to guess the right options when it is installed.
Therefore, you may want to start with one of the examples in the SWIG/Examples/tcl directory. If that doesn't work, you will
need to read the man−pages for your compiler and linker to get the right set of options. You might also check the SWIG Wiki for
additional information.

When linking the module, the name of the output file has to match the name of the module. If the name of your SWIG module is
"example", the name of the corresponding object file should be "example.so". The name of the module is specified using the
%module directive or the −module command line option.

28.1.3 Static linking

An alternative approach to dynamic linking is to rebuild the Tcl interpreter with your extension module added to it. In the past,
this approach was sometimes necesssary due to limitations in dynamic loading support on certain machines. However, the
situation has improved greatly over the last few years and you should not consider this approach unless there is really no other
option.

The usual procedure for adding a new module to Tcl involves writing a special function Tcl_AppInit() and using it to
initialize the interpreter and your module. With SWIG, the tclsh.i and wish.i library files can be used to rebuild the tclsh
and wish interpreters respectively. For example:

%module example

extern int fact(int);
extern int mod(int, int);
extern double My_variable;
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%include tclsh.i       // Include code for rebuilding tclsh

The tclsh.i library file includes supporting code that contains everything needed to rebuild tclsh. To rebuild the interpreter,
you simply do something like this:

$ swig −tcl example.i
$ gcc example.c example_wrap.c \
        −Xlinker −export−dynamic \
        −DHAVE_CONFIG_H −I/usr/local/include/ \
        −L/usr/local/lib −ltcl −lm −ldl \
        −o mytclsh

You will need to supply the same libraries that were used to build Tcl the first time. This may include system libraries such as
−lsocket, −lnsl, and −lpthread. If this actually works, the new version of Tcl should be identical to the default version
except that your extension module will be a built−in part of the interpreter.

Comment: In practice, you should probably try to avoid static linking if possible. Some programmers may be inclined to use
static linking in the interest of getting better performance. However, the performance gained by static linking tends to be rather
minimal in most situations (and quite frankly not worth the extra hassle in the opinion of this author).

28.1.4 Using your module

To use your module, simply use the Tcl load command. If all goes well, you will be able to this:

$ tclsh
% load ./example.so
% fact 4
24
%

A common error received by first−time users is the following:

% load ./example.so
couldn't find procedure Example_Init
% 

This error is almost always caused when the name of the shared object file doesn't match the name of the module supplied using
the SWIG %module directive. Double−check the interface to make sure the module name and the shared object file match.
Another possible cause of this error is forgetting to link the SWIG−generated wrapper code with the rest of your application when
creating the extension module.

Another common error is something similar to the following:

% load ./example.so
couldn't load file "./example.so": ./example.so: undefined symbol: fact
% 

This error usually indicates that you forgot to include some object files or libraries in the linking of the shared library file. Make
sure you compile both the SWIG wrapper file and your original program into a shared library file. Make sure you pass all of the
required libraries to the linker.

Sometimes unresolved symbols occur because a wrapper has been created for a function that doesn't actually exist in a library.
This usually occurs when a header file includes a declaration for a function that was never actually implemented or it was
removed from a library without updating the header file. To fix this, you can either edit the SWIG input file to remove the
offending declaration or you can use the %ignore directive to ignore the declaration.
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Finally, suppose that your extension module is linked with another library like this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
      −o example.so

If the foo library is compiled as a shared library, you might get the following problem when you try to use your module:

% load ./example.so
couldn't load file "./example.so": libfoo.so: cannot open shared object file:
No such file or directory
%        

This error is generated because the dynamic linker can't locate the libfoo.so library. When shared libraries are loaded, the
system normally only checks a few standard locations such as /usr/lib and /usr/local/lib. To fix this problem, there
are several things you can do. First, you can recompile your extension module with extra path information. For example, on Linux
you can do this:

$ gcc −shared example.o example_wrap.o −L/home/beazley/projects/lib −lfoo \
      −Xlinker −rpath /home/beazley/projects/lib \
      −o example.so

Alternatively, you can set the LD_LIBRARY_PATH environment variable to include the directory with your shared libraries. If
setting LD_LIBRARY_PATH, be aware that setting this variable can introduce a noticeable performance impact on all other
applications that you run. To set it only for Tcl, you might want to do this instead:

$ env LD_LIBRARY_PATH=/home/beazley/projects/lib tclsh

Finally, you can use a command such as ldconfig to add additional search paths to the default system configuration (this
requires root access and you will need to read the man pages).

28.1.5 Compilation of C++ extensions

Compilation of C++ extensions has traditionally been a tricky problem. Since the Tcl interpreter is written in C, you need to take
steps to make sure C++ is properly initialized and that modules are compiled correctly.

On most machines, C++ extension modules should be linked using the C++ compiler. For example:

% swig −c++ −tcl example.i
% g++ −c example.cxx
% g++ −c example_wrap.cxx −I/usr/local/include
% g++ −shared example.o example_wrap.o −o example.so

In addition to this, you may need to include additional library files to make it work. For example, if you are using the Sun C++
compiler on Solaris, you often need to add an extra library −lCrun like this:

% swig −c++ −tcl example.i
% CC −c example.cxx
% CC −c example_wrap.cxx −I/usr/local/include
% CC −G example.o example_wrap.o −L/opt/SUNWspro/lib −o example.so −lCrun

Of course, the extra libraries to use are completely non−portable−−−you will probably need to do some experimentation.

Sometimes people have suggested that it is necessary to relink the Tcl interpreter using the C++ compiler to make C++ extension
modules work. In the experience of this author, this has never actually appeared to be necessary. Relinking the interpreter with
C++ really only includes the special run−time libraries described above−−−as long as you link your extension modules with these
libraries, it should not be necessary to rebuild Tcl.

If you aren't entirely sure about the linking of a C++ extension, you might look at an existing C++ program. On many Unix
machines, the ldd command will list library dependencies. This should give you some clues about what you might have to
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include when you link your extension module. For example:

$ ldd swig
        libstdc++−libc6.1−1.so.2 => /usr/lib/libstdc++−libc6.1−1.so.2 (0x40019000)
        libm.so.6 => /lib/libm.so.6 (0x4005b000)
        libc.so.6 => /lib/libc.so.6 (0x40077000)
        /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)
$

As a final complication, a major weakness of C++ is that it does not define any sort of standard for binary linking of libraries. This
means that C++ code compiled by different compilers will not link together properly as libraries nor is the memory layout of
classes and data structures implemented in any kind of portable manner. In a monolithic C++ program, this problem may be
unnoticed. However, in Tcl, it is possible for different extension modules to be compiled with different C++ compilers. As long as
these modules are self−contained, this probably won't matter. However, if these modules start sharing data, you will need to take
steps to avoid segmentation faults and other erratic program behavior. If working with lots of software components, you might
want to investigate using a more formal standard such as COM.

28.1.6 Compiling for 64−bit platforms

On platforms that support 64−bit applications (Solaris, Irix, etc.), special care is required when building extension modules. On
these machines, 64−bit applications are compiled and linked using a different set of compiler/linker options. In addition, it is not
generally possible to mix 32−bit and 64−bit code together in the same application.

To utilize 64−bits, the Tcl executable will need to be recompiled as a 64−bit application. In addition, all libraries, wrapper code,
and every other part of your application will need to be compiled for 64−bits. If you plan to use other third−party extension
modules, they will also have to be recompiled as 64−bit extensions.

If you are wrapping commercial software for which you have no source code, you will be forced to use the same linking standard
as used by that software. This may prevent the use of 64−bit extensions. It may also introduce problems on platforms that support
more than one linking standard (e.g., −o32 and −n32 on Irix).

28.1.7 Setting a package prefix

To avoid namespace problems, you can instruct SWIG to append a package prefix to all of your functions and variables. This is
done using the −prefix option as follows :

swig −tcl −prefix Foo example.i

If you have a function "bar" in the SWIG file, the prefix option will append the prefix to the name when creating a command and
call it "Foo_bar".

28.1.8 Using namespaces

Alternatively, you can have SWIG install your module into a Tcl namespace by specifying the −namespace option :

swig −tcl −namespace example.i

By default, the name of the namespace will be the same as the module name, but you can override it using the −prefix option.

When the −namespace option is used, objects in the module are always accessed with the namespace name such as Foo::bar.

28.2 Building Tcl/Tk Extensions under Windows 95/NT

Building a SWIG extension to Tcl/Tk under Windows 95/NT is roughly similar to the process used with Unix. Normally, you will
want to produce a DLL that can be loaded into tclsh or wish. This section covers the process of using SWIG with Microsoft
Visual C++. although the procedure may be similar with other compilers.
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28.2.1 Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked as a custom build option. The
process roughly follows these steps :

Open up a new workspace and use the AppWizard to select a DLL project.• 
Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created
by SWIG (ie. example_wrap.c). Note : If using C++, choose a different suffix for the wrapper file such as
example_wrap.cxx. Don't worry if the wrapper file doesn't exist yet−−Developer studio will keep a reference to it
around.

• 

Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.• 
Enter "SWIG" in the description field.• 
Enter "swig −tcl −o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s)
field"

• 

Enter "$(ProjDir)\$(InputName)_wrap.c" in the "Output files(s) field".• 
Next, select the settings for the entire project and go to "C++:Preprocessor". Add the include directories for your Tcl
installation under "Additional include directories".

• 

Finally, select the settings for the entire project and go to "Link Options". Add the Tcl library file to your link libraries.
For example "tcl80.lib". Also, set the name of the output file to match the name of your Tcl module (ie.
example.dll).

• 

Build your project.• 

Now, assuming all went well, SWIG will be automatically invoked when you build your project. Any changes made to the
interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file. To run your new Tcl
extension, simply run tclsh or wish and use the load command. For example :

MSDOS > tclsh80
% load example.dll
% fact 4
24
%

28.2.2 Using NMAKE

Alternatively, SWIG extensions can be built by writing a Makefile for NMAKE. To do this, make sure the environment variables
for MSVC++ are available and the MSVC++ tools are in your path. Now, just write a short Makefile like this :

# Makefile for building various SWIG generated extensions

SRCS          = example.c
IFILE         = example
INTERFACE     = $(IFILE).i
WRAPFILE      = $(IFILE)_wrap.c

# Location of the Visual C++ tools (32 bit assumed)

TOOLS         = c:\msdev
TARGET        = example.dll
CC            = $(TOOLS)\bin\cl.exe
LINK          = $(TOOLS)\bin\link.exe
INCLUDE32     = −I$(TOOLS)\include
MACHINE       = IX86

# C Library needed to build a DLL

DLLIBC        = msvcrt.lib oldnames.lib  

# Windows libraries that are apparently needed
WINLIB        = kernel32.lib advapi32.lib user32.lib gdi32.lib comdlg32.lib 
winspool.lib
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# Libraries common to all DLLs
LIBS          = $(DLLIBC) $(WINLIB) 

# Linker options
LOPT      = −debug:full −debugtype:cv /NODEFAULTLIB /RELEASE /NOLOGO /
MACHINE:$(MACHINE) −entry:_DllMainCRTStartup@12 −dll

# C compiler flags

CFLAGS    = /Z7 /Od /c /nologo
TCL_INCLUDES  = −Id:\tcl8.0a2\generic −Id:\tcl8.0a2\win
TCLLIB        = d:\tcl8.0a2\win\tcl80.lib

tcl::
        ..\..\swig −tcl −o $(WRAPFILE) $(INTERFACE)
        $(CC) $(CFLAGS) $(TCL_INCLUDES) $(SRCS) $(WRAPFILE)
        set LIB=$(TOOLS)\lib
        $(LINK) $(LOPT) −out:example.dll $(LIBS) $(TCLLIB) example.obj example_wrap.obj

To build the extension, run NMAKE (you may need to run vcvars32 first). This is a pretty minimal Makefile, but hopefully its
enough to get you started. With a little practice, you'll be making lots of Tcl extensions.

28.3 A tour of basic C/C++ wrapping

By default, SWIG tries to build a very natural Tcl interface to your C/C++ code. Functions are wrapped as functions, classes are
wrapped in an interface that mimics the style of Tk widgets and [incr Tcl] classes. This section briefly covers the essential aspects
of this wrapping.

28.3.1 Modules

The SWIG %module directive specifies the name of the Tcl module. If you specify `%module example', then everything is
compiled into an extension module example.so. When choosing a module name, make sure you don't use the same name as a
built−in Tcl command.

One pitfall to watch out for is module names involving numbers. If you specify a module name like %module md5, you'll find
that the load command no longer seems to work:

% load ./md5.so
couldn't find procedure Md_Init

To fix this, supply an extra argument to load like this:

% load ./md5.so md5

28.3.2 Functions

Global functions are wrapped as new Tcl built−in commands. For example,

%module example
int fact(int n);

creates a built−in function fact that works exactly like you think it does:

% load ./example.so
% fact 4
24
% set x [fact 6]
%
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28.3.3 Global variables

C/C++ global variables are wrapped by Tcl global variables. For example:

// SWIG interface file with global variables
%module example
...
extern double density;
...

Now look at the Tcl interface:

% puts $density          # Output value of C global variable
1.0
% set density 0.95       # Change value

If you make an error in variable assignment, you will get an error message. For example:

% set density "hello"
can't set "density": Type error. expected a double.
%

If a variable is declared as const, it is wrapped as a read−only variable. Attempts to modify its value will result in an error.

To make ordinary variables read−only, you can use the %immutable directive. For example:

%immutable;
extern char *path;
%mutable;

The %immutable directive stays in effect until it is explicitly disabled using %mutable.

If you just want to make a specific variable immutable, supply a declaration name. For example:

%immutable path;
...
extern char *path;      // Read−only (due to %immutable)

28.3.4 Constants and enums

C/C++ constants are installed as global Tcl variables containing the appropriate value. To create a constant, use #define, enum,
or the %constant directive. For example:

#define PI 3.14159
#define VERSION "1.0"

enum Beverage { ALE, LAGER, STOUT, PILSNER };

%constant int FOO = 42;
%constant const char *path = "/usr/local";

For enums, make sure that the definition of the enumeration actually appears in a header file or in the wrapper file somehow−−−if
you just stick an enum in a SWIG interface without also telling the C compiler about it, the wrapper code won't compile.

Note: declarations declared as const are wrapped as read−only variables and will be accessed using the cvar object described
in the previous section. They are not wrapped as constants. For further discussion about this, see the SWIG Basics chapter.

Constants are not guaranteed to remain constant in Tcl−−−the value of the constant could be accidentally reassigned.You will just
have to be careful.
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A peculiarity of installing constants as variables is that it is necessary to use the Tcl global statement to access constants in
procedure bodies. For example:

proc blah {} {
   global FOO
   bar $FOO
}

If a program relies on a lot of constants, this can be extremely annoying. To fix the problem, consider using the following
typemap rule:

%apply int CONSTANT { int x };
#define FOO 42
...
void bar(int x);

When applied to an input argument, the CONSTANT rule allows a constant to be passed to a function using its actual value or a
symbolic identifier name. For example:

proc blah {} {
   bar FOO
}

When an identifier name is given, it is used to perform an implicit hash−table lookup of the value during argument conversion.
This allows the global statement to be ommitted.

28.3.5 Pointers

C/C++ pointers are fully supported by SWIG. Furthermore, SWIG has no problem working with incomplete type information.
Here is a rather simple interface:

%module example

FILE *fopen(const char *filename, const char *mode);
int fputs(const char *, FILE *);
int fclose(FILE *);

When wrapped, you will be able to use the functions in a natural way from Tcl. For example:

% load ./example.so
% set f [fopen junk w]
% fputs "Hello World\n" $f
% fclose $f

If this makes you uneasy, rest assured that there is no deep magic involved. Underneath the covers, pointers to C/C++ objects are
simply represented as opaque values−−normally an encoded character string like this:

% puts $f
_c0671108_p_FILE
% 

This pointer value can be freely passed around to different C functions that expect to receive an object of type FILE *. The only
thing you can't do is dereference the pointer from Tcl.

The NULL pointer is represented by the string NULL.

As much as you might be inclined to modify a pointer value directly from Tcl, don't. The hexadecimal encoding is not necessarily
the same as the logical memory address of the underlying object. Instead it is the raw byte encoding of the pointer value. The
encoding will vary depending on the native byte−ordering of the platform (i.e., big−endian vs. little−endian). Similarly, don't try
to manually cast a pointer to a new type by simply replacing the type−string. This may not work like you expect and it is
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particularly dangerous when casting C++ objects. If you need to cast a pointer or change its value, consider writing some helper
functions instead. For example:

%inline %{
/* C−style cast */
Bar *FooToBar(Foo *f) {
   return (Bar *) f;
}

/* C++−style cast */
Foo *BarToFoo(Bar *b) {
   return dynamic_cast<Foo*>(b);
}

Foo *IncrFoo(Foo *f, int i) {
    return f+i;
}
%}

Also, if working with C++, you should always try to use the new C++ style casts. For example, in the above code, the C−style cast
may return a bogus result whereas as the C++−style cast will return None if the conversion can't be performed.

28.3.6 Structures

If you wrap a C structure, it is wrapped by a Tcl interface that somewhat resembles a Tk widget. This provides a very natural
interface. For example,

struct Vector {
        double x,y,z;
};

is used as follows:

% Vector v
% v configure −x 3.5 −y 7.2
% puts "[v cget −x] [v cget −y] [v cget −z]"
3.5 7.2 0.0
% 

Similar access is provided for unions and the data members of C++ classes.

In the above example, v is a name that's used for the object. However, underneath the covers, there's a pointer to a raw C
structure. This can be obtained by looking at the −this attribute. For example:

% puts [v cget −this]
_88e31408_p_Vector

Further details about the relationship between the Tcl and the underlying C structure are covered a little later.

const members of a structure are read−only. Data members can also be forced to be read−only using the %immutable
directive. For example:

struct Foo {
   ...
   %immutable;
   int x;        /* Read−only members */
   char *name;
   %mutable;
   ...
};
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When char * members of a structure are wrapped, the contents are assumed to be dynamically allocated using malloc or new
(depending on whether or not SWIG is run with the −c++ option). When the structure member is set, the old contents will be
released and a new value created. If this is not the behavior you want, you will have to use a typemap (described later).

If a structure contains arrays, access to those arrays is managed through pointers. For example, consider this:

struct Bar {
    int  x[16];
};

If accessed in Tcl, you will see behavior like this:

% Bar b
% puts [b cget −x]
_801861a4_p_int
% 

This pointer can be passed around to functions that expect to receive an int * (just like C). You can also set the value of an
array member using another pointer. For example:

% Bar c
% c configure −x [b cget −x]   # Copy contents of b.x to c.x

For array assignment, SWIG copies the entire contents of the array starting with the data pointed to by b.x. In this example, 16
integers would be copied. Like C, SWIG makes no assumptions about bounds checking−−−if you pass a bad pointer, you may get
a segmentation fault or access violation.

When a member of a structure is itself a structure, it is handled as a pointer. For example, suppose you have two structures like
this:

struct Foo {
   int a;
};

struct Bar {
   Foo f;
};

Now, suppose that you access the f attribute of Bar like this:

% Bar b
% set x [b cget −f]

In this case, x is a pointer that points to the Foo that is inside b. This is the same value as generated by this C code:

Bar b;
Foo *x = &b−>f;       /* Points inside b */

However, one peculiarity of accessing a substructure like this is that the returned value does work quite like you might expect. For
example:

% Bar b
% set x [b cget −f]
% x cget −a
invalid command name "x"

This is because the returned value was not created in a normal way from the interpreter (x is not a command object). To make it
function normally, just evaluate the variable like this:

% Bar b
% set x [b cget −f]
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% $x cget −a
0
%

In this example, x points inside the original structure. This means that modifications work just like you would expect. For
example:

% Bar b
% set x [b cget −f]
% $x configure −a 3            # Modifies contents of f (inside b)
% [b cget −f] −configure −a 3  # Same thing

In many of these structure examples, a simple name like "v" or "b" has been given to wrapped structures. If necessary, this name
can be passed to functions that expect to receive an object. For example, if you have a function like this,

void blah(Foo *f);

you can call the function in Tcl as follows:

% Foo x            # Create a Foo object 
% blah x           # Pass the object to a function

It is also possible to call the function using the raw pointer value. For instance:

% blah [x cget −this]   # Pass object to a function

It is also possible to create and use objects using variables. For example:

% set b [Bar]            # Create a Bar
% $b cget −f             # Member access
% puts $b
_108fea88_p_Bar
%

Finally, to destroy objects created from Tcl, you can either let the object name go out of scope or you can explicitly delete the
object. For example:

% Foo f                 # Create object f
% rename f ""

or

% Foo f                 # Create object f
% f −delete

Note: Tcl only destroys the underlying object if it has ownership. See the memory management section that appears shortly.

28.3.7 C++ classes

C++ classes are wrapped as an extension of structure wrapping. For example, if you have this class,

class List {
public:
  List();
  ~List();
  int  search(char *item);
  void insert(char *item);
  void remove(char *item);
  char *get(int n);
  int  length;
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};

you can use it in Tcl like this:

% List x
% x insert Ale
% x insert Stout
% x insert Lager
% x get 1
Stout
% puts [l cget −length]
3
%

Class data members are accessed in the same manner as C structures.

Static class members are accessed as global functions or variables. To illustrate, suppose you have a class like this:

class Spam {
public:
   static void foo();
   static int bar;

};

In Tcl, the static member is accessed as follows:

% Spam_foo        # Spam::foo()
% puts $Spam_bar  # Spam::bar

28.3.8 C++ inheritance

SWIG is fully aware of issues related to C++ inheritance. Therefore, if you have classes like this

class Foo {
...
};

class Bar : public Foo {
...
};

An object of type Bar can be used where a Foo is expected. For example, if you have this function:

void spam(Foo *f);

then the function spam() accepts a Foo * or a pointer to any class derived from Foo. For instance:

% Foo f      # Create a Foo
% Bar b      # Create a Bar
% spam f     # OK
% spam b     # OK

It is safe to use multiple inheritance with SWIG.

28.3.9 Pointers, references, values, and arrays

In C++, there are many different ways a function might receive and manipulate objects. For example:

void spam1(Foo *x);      // Pass by pointer
void spam2(Foo &x);      // Pass by reference
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void spam3(Foo x);       // Pass by value
void spam4(Foo x[]);     // Array of objects

In Tcl, there is no detailed distinction like this. Because of this, SWIG unifies all of these types together in the wrapper code. For
instance, if you actually had the above functions, it is perfectly legal to do this:

% Foo f             # Create a Foo
% spam1 f           # Ok. Pointer
% spam2 f           # Ok. Reference
% spam3 f           # Ok. Value.
% spam4 f           # Ok. Array (1 element)

Similar behavior occurs for return values. For example, if you had functions like this,

Foo *spam5();
Foo &spam6();
Foo  spam7();

then all three functions will return a pointer to some Foo object. Since the third function (spam7) returns a value, newly allocated
memory is used to hold the result and a pointer is returned (Tcl will release this memory when the return value is garbage
collected).

28.3.10 C++ overloaded functions

C++ overloaded functions, methods, and constructors are mostly supported by SWIG. For example, if you have two functions like
this:

void foo(int);
void foo(char *c);

You can use them in Tcl in a straightforward manner:

% foo 3            # foo(int)
% foo Hello        # foo(char *c)

Similarly, if you have a class like this,

class Foo {
public:
    Foo();
    Foo(const Foo &);
    ...
};

you can write Tcl code like this:

% Foo f                # Create a Foo
% Foo g f              # Copy f

Overloading support is not quite as flexible as in C++. Sometimes there are methods that SWIG can't disambiguate. For example:

void spam(int);
void spam(short);

or

void foo(Bar *b);
void foo(Bar &b);

If declarations such as these appear, you will get a warning message like this:
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example.i:12: Warning(509): Overloaded spam(short) is shadowed by spam(int)
at example.i:11.

To fix this, you either need to ignore or rename one of the methods. For example:

%rename(spam_short) spam(short);
...
void spam(int);    
void spam(short);   // Accessed as spam_short

or

%ignore spam(short);
...
void spam(int);    
void spam(short);   // Ignored

SWIG resolves overloaded functions and methods using a disambiguation scheme that ranks and sorts declarations according to a
set of type−precedence rules. The order in which declarations appear in the input does not matter except in situations where
ambiguity arises−−in this case, the first declaration takes precedence.

Please refer to the "SWIG and C++" chapter for more information about overloading.

28.3.11 C++ operators

Certain C++ overloaded operators can be handled automatically by SWIG. For example, consider a class like this:

class Complex {
private:
  double rpart, ipart;
public:
  Complex(double r = 0, double i = 0) : rpart(r), ipart(i) { }
  Complex(const Complex &c) : rpart(c.rpart), ipart(c.ipart) { }
  Complex &operator=(const Complex &c);
  Complex operator+(const Complex &c) const;
  Complex operator−(const Complex &c) const;
  Complex operator*(const Complex &c) const;
  Complex operator−() const;

  double re() const { return rpart; }
  double im() const { return ipart; }
};

When wrapped, it works like this:

% Complex c 3 4
% Complex d 7 8
% set e [c + d]
% $e re
10.0
% $e im
12.0

It should be stressed that operators in SWIG have no relationship to operators in Tcl. In fact, the only thing that's happening here
is that an operator like operator + has been renamed to a method +. Therefore, the statement [c + d] is really just invoking
the + method on c. When more than operator is defined (with different arguments), the standard method overloading facilities are
used. Here is a rather odd looking example:

% Complex c 3 4
% Complex d 7 8
% set e [c − d]       # operator−(const Complex &)
% puts "[$e re] [$e im]"
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10.0 12.0
% set f [c −]         # operator−()
% puts "[$f re] [$f im]"
−3.0 −4.0
%

One restriction with operator overloading support is that SWIG is not able to fully handle operators that aren't defined as part of
the class. For example, if you had code like this

class Complex {
...
friend Complex operator+(double, const Complex &c);
...
};

then SWIG doesn't know what to do with the friend function−−in fact, it simply ignores it and issues a warning. You can still
wrap the operator, but you may have to encapsulate it in a special function. For example:

%rename(Complex_add_dc) operator+(double, const Complex &);
...
Complex operator+(double, const Complex &c);

There are ways to make this operator appear as part of the class using the %extend directive. Keep reading.

28.3.12 C++ namespaces

SWIG is aware of C++ namespaces, but namespace names do not appear in the module nor do namespaces result in a module that
is broken up into submodules or packages. For example, if you have a file like this,

%module example

namespace foo {
   int fact(int n);
   struct Vector {
       double x,y,z;
   };
};

it works in Tcl as follows:

% load ./example.so
% fact 3
6
% Vector v
% v configure −x 3.4

If your program has more than one namespace, name conflicts (if any) can be resolved using %rename For example:

%rename(Bar_spam) Bar::spam;

namespace Foo {
    int spam();
}

namespace Bar {
    int spam();
}

If you have more than one namespace and your want to keep their symbols separate, consider wrapping them as separate SWIG
modules. For example, make the module name the same as the namespace and create extension modules for each namespace
separately. If your program utilizes thousands of small deeply nested namespaces each with identical symbol names, well, then
you get what you deserve.
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28.3.13 C++ templates

C++ templates don't present a huge problem for SWIG. However, in order to create wrappers, you have to tell SWIG to create
wrappers for a particular template instantiation. To do this, you use the %template directive. For example:

%module example
%{
#include "pair.h"
%}

template<class T1, class T2>
struct pair {
   typedef T1 first_type;
   typedef T2 second_type;
   T1 first;
   T2 second;
   pair();
   pair(const T1&, const T2&);
  ~pair();
};

%template(pairii) pair<int,int>;

In Tcl:

% pairii p 3 4
% p cget −first
3
% p cget −second
4

Obviously, there is more to template wrapping than shown in this example. More details can be found in the SWIG and C++
chapter. Some more complicated examples will appear later.

28.3.14 C++ Smart Pointers

In certain C++ programs, it is common to use classes that have been wrapped by so−called "smart pointers." Generally, this
involves the use of a template class that implements operator−>() like this:

template<class T> class SmartPtr {
   ...
   T *operator−>();
   ...
}

Then, if you have a class like this,

class Foo {
public:
     int x;
     int bar();
};

A smart pointer would be used in C++ as follows:

SmartPtr<Foo> p = CreateFoo();   // Created somehow (not shown)
...
p−>x = 3;                        // Foo::x
int y = p−>bar();                // Foo::bar

To wrap this in Tcl, simply tell SWIG about the SmartPtr class and the low−level Foo object. Make sure you instantiate
SmartPtr using %template if necessary. For example:
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%module example
...
%template(SmartPtrFoo) SmartPtr<Foo>;
...

Now, in Tcl, everything should just "work":

% set p [CreateFoo]                  # Create a smart−pointer somehow
% $p configure −x 3                  # Foo::x
% $p bar                             # Foo::bar

If you ever need to access the underlying pointer returned by operator−>() itself, simply use the __deref__() method. For
example:

% set f [$p __deref__]    # Returns underlying Foo *

28.4 Further details on the Tcl class interface

In the previous section, a high−level view of Tcl wrapping was presented. A key component of this wrapping is that structures and
classes are wrapped by Tcl class−like objects. This provides a very natural Tcl interface and allows SWIG to support a number of
advanced features such as operator overloading. However, a number of low−level details were omitted. This section provides a
brief overview of how the proxy classes work.

28.4.1 Proxy classes

In the "SWIG basics" and "SWIG and C++" chapters, details of low−level structure and class wrapping are described. To
summarize those chapters, if you have a class like this

class Foo {
public:
     int x;
     int spam(int);
     ...

then SWIG transforms it into a set of low−level procedural wrappers. For example:

Foo *new_Foo() {
    return new Foo();
}
void delete_Foo(Foo *f) {
    delete f;
}
int Foo_x_get(Foo *f) {
    return f−>x;
}
void Foo_x_set(Foo *f, int value) {
    f−>x = value;
}
int Foo_spam(Foo *f, int arg1) {
    return f−>spam(arg1);
}

These wrappers are actually found in the Tcl extension module. For example, you can certainly do this:

% load ./example.so
% set f [new_Foo]
% Foo_x_get $f
0
% Foo_spam $f 3
1
%
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However, in addition to this, the classname Foo is used as an object constructor function. This allows objects to be encapsulated
objects that look a lot like Tk widgets as shown in the last section.

28.4.2 Memory management

Associated with each wrapped object, is an ownership flag thisown The value of this flag determines who is responsible for
deleting the underlying C++ object. If set to 1, the Tcl interpreter destroys the C++ object when the proxy class is garbage
collected. If set to 0 (or if the attribute is missing), then the destruction of the proxy class has no effect on the C++ object.

When an object is created by a constructor or returned by value, Tcl automatically takes ownership of the result. For example:

class Foo {
public:
    Foo();
    Foo bar();
};

In Tcl:

% Foo f
% f cget −thisown
1
% set g [f bar]
% $g cget −thisown
1

On the other hand, when pointers are returned to Tcl, there is often no way to know where they came from. Therefore, the
ownership is set to zero. For example:

class Foo {
public:
    ...
    Foo *spam();
    ...
};

% Foo f
% set s [f spam]
% $s cget −thisown
0
% 

This behavior is especially important for classes that act as containers. For example, if a method returns a pointer to an object that
is contained inside another object, you definitely don't want Tcl to assume ownership and destroy it!

Related to containers, ownership issues can arise whenever an object is assigned to a member or global variable. For example,
consider this interface:

%module example

struct Foo {
    int  value;
    Foo  *next;
};

Foo *head = 0;

When wrapped in Tcl, careful observation will reveal that ownership changes whenever an object is assigned to a global variable.
For example:

% Foo f
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% f cget −thisown
1
% set head f
% f cget −thisown
0

In this case, C is now holding a reference to the object−−−you probably don't want Tcl to destroy it. Similarly, this occurs for
members. For example:

% Foo f
% Foo g
% f cget −thisown
1
% g cget −thisown
1
% f configure −next g
% g cget −thisown 
0
%

For the most part, memory management issues remain hidden. However, there are occasionally situations where you might have
to manually change the ownership of an object. For instance, consider code like this:

class Node {
   Object *value;
public:
   void set_value(Object *v) { value = v; }
   ...
};

Now, consider the following Tcl code:

% Object v                 # Create an object
% Node n                   # Create a node
% n setvalue v             # Set value
% v cget −thisown
1
% 

In this case, the object n is holding a reference to v internally. However, SWIG has no way to know that this has occurred.
Therefore, Tcl still thinks that it has ownership of the object. Should the proxy object be destroyed, then the C++ destructor will
be invoked and n will be holding a stale−pointer. If you're lucky, you will only get a segmentation fault.

To work around this, it is always possible to flip the ownership flag. For example,

% v −disown              # Give ownership to C/C++
% v −acquire             # Acquire ownership

It is also possible to deal with situations like this using typemaps−−an advanced topic discussed later.

28.5 Input and output parameters

A common problem in some C programs is handling parameters passed as simple pointers. For example:

void add(int x, int y, int *result) {
   *result = x + y;
}

or perhaps

int sub(int *x, int *y) {
   return *x+*y;
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}

The easiest way to handle these situations is to use the typemaps.i file. For example:

%module example
%include "typemaps.i"

void add(int, int, int *OUTPUT);
int  sub(int *INPUT, int *INPUT);

In Tcl, this allows you to pass simple values instead of pointer. For example:

set a [add 3 4]
puts $a
7

Notice how the INPUT parameters allow integer values to be passed instead of pointers and how the OUTPUT parameter creates a
return result.

If you don't want to use the names INPUT or OUTPUT, use the %apply directive. For example:

%module example
%include "typemaps.i"

%apply int *OUTPUT { int *result };
%apply int *INPUT  { int *x, int *y};

void add(int x, int y, int *result);
int  sub(int *x, int *y);

If a function mutates one of its parameters like this,

void negate(int *x) {
   *x = −(*x);
}

you can use INOUT like this:

%include "typemaps.i"
...
void negate(int *INOUT);

In Tcl, a mutated parameter shows up as a return value. For example:

set a [negate 3]
puts $a
−3

The most common use of these special typemap rules is to handle functions that return more than one value. For example,
sometimes a function returns a result as well as a special error code:

/* send message, return number of bytes sent, along with success code */
int send_message(char *text, int len, int *success);

To wrap such a function, simply use the OUTPUT rule above. For example:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *success };
...
int send_message(char *text, int *success);
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When used in Tcl, the function will return multiple values as a list.

set r [send_message "Hello World"]
set bytes [lindex $r 0]
set success [lindex $r 1]

Another common use of multiple return values are in query functions. For example:

void get_dimensions(Matrix *m, int *rows, int *columns);

To wrap this, you might use the following:

%module example
%include "typemaps.i"
%apply int *OUTPUT { int *rows, int *columns };
...
void get_dimensions(Matrix *m, int *rows, *columns);

Now, in Perl:

set dim [get_dimensions $m]
set r  [lindex $dim 0]
set c  [lindex $dim 1]

28.6 Exception handling

The %exception directive can be used to create a user−definable exception handler in charge of converting exceptions in your
C/C++ program into Tcl exceptions. The chapter on customization features contains more details, but suppose you extended the
array example into a C++ class like the following :

class RangeError {};   // Used for an exception

class DoubleArray {
  private:
    int n;
    double *ptr;
  public:
    // Create a new array of fixed size
    DoubleArray(int size) {
      ptr = new double[size];
      n = size;
    }
    // Destroy an array
    ~DoubleArray() {
       delete ptr;
    }
    // Return the length of the array
    int   length() {
      return n;
    }

    // Get an item from the array and perform bounds checking.
    double getitem(int i) {
      if ((i >= 0) && (i < n))
        return ptr[i];
      else
        throw RangeError();
    }

    // Set an item in the array and perform bounds checking.
    void setitem(int i, double val) {
      if ((i >= 0) && (i < n))
        ptr[i] = val;
      else {
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        throw RangeError();
      }
    }
  };

The functions associated with this class can throw a C++ range exception for an out−of−bounds array access. We can catch this in
our Tcl extension by specifying the following in an interface file :

%exception {
  try {
    $action                // Gets substituted by actual function call
  }
  catch (RangeError) {
    Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
    return TCL_ERROR;
  }
}

As shown, the exception handling code will be added to every wrapper function. Since this is somewhat inefficient. You might
consider refining the exception handler to only apply to specific methods like this:

%exception getitem {
  try {
    $action
  }
  catch (RangeError) {
    Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
    return TCL_ERROR;
  }
}

%exception setitem {
  try {
    $action
  }
  catch (RangeError) {
    Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
    return TCL_ERROR;
  }
}

In this case, the exception handler is only attached to methods and functions named getitem and setitem.

If you had a lot of different methods, you can avoid extra typing by using a macro. For example:

%define RANGE_ERROR
{
  try {
    $action
  }
  catch (RangeError) {
    Tcl_SetStringObj(tcl_result,"Array index out−of−bounds");
    return TCL_ERROR;
  }
}
%enddef

%exception getitem RANGE_ERROR;
%exception setitem RANGE_ERROR;

Since SWIG's exception handling is user−definable, you are not limited to C++ exception handling. See the chapter on
"Customization Features" for more examples.
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28.7 Typemaps

This section describes how you can modify SWIG's default wrapping behavior for various C/C++ datatypes using the %typemap
directive. This is an advanced topic that assumes familiarity with the Tcl C API as well as the material in the "Typemaps" chapter.

Before proceeding, it should be stressed that typemaps are not a required part of using SWIG−−−the default wrapping behavior is
enough in most cases. Typemaps are only used if you want to change some aspect of the primitive C−Tcl interface.

28.7.1 What is a typemap?

A typemap is nothing more than a code generation rule that is attached to a specific C datatype. For example, to convert integers
from Tcl to C, you might define a typemap like this:

%module example

%typemap(in) int {
        if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
        printf("Received an integer : %d\n",$1);
}
extern int fact(int n);

Typemaps are always associated with some specific aspect of code generation. In this case, the "in" method refers to the
conversion of input arguments to C/C++. The datatype int is the datatype to which the typemap will be applied. The supplied C
code is used to convert values. In this code a number of special variable prefaced by a $ are used. The $1 variable is placeholder
for a local variable of type int. The $input variable is the input object of type Tcl_Obj *.

When this example is compiled into a Tcl module, it operates as follows:

% load ./example.so
% fact 6
Received an integer : 6
720

In this example, the typemap is applied to all occurrences of the int datatype. You can refine this by supplying an optional
parameter name. For example:

%module example

%typemap(in) int n {
        if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
        printf("n = %d\n",$1);
}
extern int fact(int n);

In this case, the typemap code is only attached to arguments that exactly match int n.

The application of a typemap to specific datatypes and argument names involves more than simple text−matching−−typemaps are
fully integrated into the SWIG type−system. When you define a typemap for int, that typemap applies to int and qualified
variations such as const int. In addition, the typemap system follows typedef declarations. For example:

%typemap(in) int n {
        if (Tcl_GetIntFromObj(interp,$input,&$1) == TCL_ERROR) return TCL_ERROR;
        printf("n = %d\n",$1);
}
typedef int Integer;
extern int fact(Integer n);    // Above typemap is applied

However, the matching of typedef only occurs in one direction. If you defined a typemap for Integer, it is not applied to
arguments of type int.
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Typemaps can also be defined for groups of consecutive arguments. For example:

%typemap(in) (char *str, int len) {
    $1 = Tcl_GetStringFromObj($input,&$2);
};

int count(char c, char *str, int len);

When a multi−argument typemap is defined, the arguments are always handled as a single Tcl object. This allows the function to
be used like this (notice how the length parameter is ommitted):

% count e "Hello World"
1

28.7.2 Tcl typemaps

The previous section illustrated an "in" typemap for converting Tcl objects to C. A variety of different typemap methods are
defined by the Tcl module. For example, to convert a C integer back into a Tcl object, you might define an "out" typemap like
this:

%typemap(out) int {
    Tcl_SetObjResult(interp,Tcl_NewIntObj($1));
}

The following list details all of the typemap methods that can be used by the Tcl module:

%typemap(in)

Converts Tcl objects to input function arguments

%typemap(out)

Converts return value of a C function to a Tcl object

%typemap(varin)

Assigns a C global variable from a Tcl object

%typemap(varout)

Returns a C global variable as a Tcl object

%typemap(freearg)

Cleans up a function argument (if necessary)

%typemap(argout)

Output argument processing

%typemap(ret)

Cleanup of function return values

%typemap(consttab)

Creation of Tcl constants (constant table)
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%typemap(constcode)

Creation of Tcl constants (init function)

%typemap(memberin)

Setting of structure/class member data

%typemap(globalin)

Setting of C global variables

%typemap(check)

Checks function input values.

%typemap(default)

Set a default value for an argument (making it optional).

%typemap(arginit)

Initialize an argument to a value before any conversions occur.

Examples of these methods will appear shortly.

28.7.3 Typemap variables

Within typemap code, a number of special variables prefaced with a $ may appear. A full list of variables can be found in the
"Typemaps" chapter. This is a list of the most common variables:

$1

A C local variable corresponding to the actual type specified in the %typemap directive. For input values, this
is a C local variable that's supposed to hold an argument value. For output values, this is the raw result that's
supposed to be returned to Tcl.

$input

A Tcl_Obj * holding a raw Tcl object with an argument or variable value.

$result

A Tcl_Obj * that holds the result to be returned to Tcl.

$1_name

The parameter name that was matched.

$1_type

The actual C datatype matched by the typemap.

$1_ltype
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An assignable version of the datatype matched by the typemap (a type that can appear on the left−hand−side of
a C assignment operation). This type is stripped of qualifiers and may be an altered version of $1_type. All
arguments and local variables in wrapper functions are declared using this type so that their values can be
properly assigned.

$symname

The Tcl name of the wrapper function being created.

28.7.4 Converting a Tcl list to a char **

A common problem in many C programs is the processing of command line arguments, which are usually passed in an array of
NULL terminated strings. The following SWIG interface file allows a Tcl list to be used as a char ** object.

%module argv

// This tells SWIG to treat char ** as a special case
%typemap(in) char ** {
     Tcl_Obj **listobjv;
     int       nitems;
     int       i;
     if (Tcl_ListObjGetElements(interp, $input, &nitems, &listobjv) == TCL_ERROR) {
        return TCL_ERROR;
     }
     $1 = (char **) malloc((nitems+1)*sizeof(char *));
     for (i = 0; i < nitems; i++) {
        $1[i] = Tcl_GetStringFromObj(listobjv[i],0);
     }
     $1[i] = 0;
}

// This gives SWIG some cleanup code that will get called after the function call
%typemap(freearg) char ** {
     if ($1) {
        free($1);
     }
}

// Now a test functions
%inline %{
int print_args(char **argv) {
    int i = 0;
    while (argv[i]) {
         printf("argv[%d] = %s\n", i,argv[i]);
         i++;
    }
    return i;
}
%}
%include tclsh.i

In Tcl:

% print_args {John Guido Larry}
argv[0] = John
argv[1] = Guido
argv[2] = Larry
3
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28.7.5 Returning values in arguments

The "argout" typemap can be used to return a value originating from a function argument. For example :

// A typemap defining how to return an argument by appending it to the result
%typemap(argout) double *outvalue {
     Tcl_Obj *o = Tcl_NewDoubleObj($1);
     Tcl_ListObjAppendElement(interp,$result,o);
}

// A typemap telling SWIG to ignore an argument for input
// However, we still need to pass a pointer to the C function
%typemap(in,numinputs=0) double *outvalue (double temp) {
     $1 = &temp;
}

// Now a function returning two values
int mypow(double a, double b, double *outvalue) {
        if ((a < 0) || (b < 0)) return −1;
        *outvalue = pow(a,b);
        return 0;
};

When wrapped, SWIG matches the argout typemap to the "double *outvalue" argument. The numinputs=0 specification
tells SWIG to simply ignore this argument when generating wrapper code. As a result, a Tcl function using these typemaps will
work like this :

% mypow 2 3     # Returns two values, a status value and the result
0 8
%

28.7.6 Useful functions

The following tables provide some functions that may be useful in writing Tcl typemaps.

Integers

Tcl_Obj   *Tcl_NewIntObj(int Value);
void       Tcl_SetIntObj(Tcl_Obj *obj, int Value);
int        Tcl_GetIntFromObj(Tcl_Interp *, Tcl_Obj *obj, int *ip);

Floating Point

Tcl_Obj  *Tcl_NewDoubleObj(double Value);
void      Tcl_SetDoubleObj(Tcl_Obj *obj, double value);
int       Tcl_GetDoubleFromObj(Tcl_Interp *, Tcl_Obj *o, double *dp);

Strings

Tcl_Obj  *Tcl_NewStringObj(char *str, int len);
void      Tcl_SetStringObj(Tcl_Obj *obj, char *str, int len);
char     *Tcl_GetStringFromObj(Tcl_Obj *obj, int *len);
void      Tcl_AppendToObj(Tcl_Obj *obj, char *str, int len);

Lists

Tcl_Obj  *Tcl_NewListObj(int objc, Tcl_Obj *objv);
int       Tcl_ListObjAppendList(Tcl_Interp *, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr);
int       Tcl_ListObjAppendElement(Tcl_Interp *, Tcl_Obj *listPtr, Tcl_Obj *element);
int       Tcl_ListObjGetElements(Tcl_Interp *, Tcl_Obj *listPtr, int *objcPtr,
                                 Tcl_Obj ***objvPtr);
int       Tcl_ListObjLength(Tcl_Interp *, Tcl_Obj *listPtr, int *intPtr);
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int       Tcl_ListObjIndex(Tcl_Interp *, Tcl_Obj *listPtr, int index,
                           Tcl_Obj_Obj **objptr);
int       Tcl_ListObjReplace(Tcl_Interp *, Tcl_Obj *listPtr, int first, int count,
                             int objc, Tcl_Obj *objv);

Objects

Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *obj);
void     Tcl_IncrRefCount(Tcl_Obj *obj);
void     Tcl_DecrRefCount(Tcl_Obj *obj);
int      Tcl_IsShared(Tcl_Obj *obj);

28.7.7 Standard typemaps

The following typemaps show how to convert a few common kinds of objects between Tcl and C (and to give a better idea of how
typemaps work)

Integer conversion

%typemap(in) int, short, long {
   int temp;
   if (Tcl_GetIntFromObj(interp, $input, &temp) == TCL_ERROR)
      return TCL_ERROR;
   $1 = ($1_ltype) temp;
}

%typemap(out) int, short, long {
   Tcl_SetIntObj($result,(int) $1);
}

Floating point conversion

%typemap(in) float, double {
   double temp;
   if (Tcl_GetDoubleFromObj(interp, $input, &temp) == TCL_ERROR)
       return TCL_ERROR;
   $1 = ($1_ltype) temp;
}

%typemap(out) float, double {
   Tcl_SetDoubleObj($result, $1);
}

String Conversion

%typemap(in) char * {
   int len;
   $1 = Tcl_GetStringFromObj(interp, &len);
   }
}

%typemap(out) char * {
   Tcl_SetStringObj($result,$1);
}

28.7.8 Pointer handling

SWIG pointers are mapped into Tcl strings containing the hexadecimal value and type. The following functions can be used to
create and read pointer values.

int SWIG_ConvertPtr(Tcl_Obj *obj, void **ptr, swig_type_info *ty, int flags)
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Converts a Tcl object obj to a C pointer. The result of the conversion is placed into the pointer located at ptr.
ty is a SWIG type descriptor structure. flags is used to handle error checking and other aspects of
conversion. It is currently reserved for future expansion. Returns 0 on success and −1 on error.

Tcl_Obj *SWIG_NewPointerObj(void *ptr, swig_type_info *ty, int flags)

Creates a new Tcl pointer object. ptr is the pointer to convert, ty is the SWIG type descriptor structure that
describes the type, and own is a flag reserved for future expansion.

Both of these functions require the use of a special SWIG type−descriptor structure. This structure contains information about the
mangled name of the datatype, type−equivalence information, as well as information about converting pointer values under C++
inheritance. For a type of Foo *, the type descriptor structure is usually accessed as follows:

Foo *f;
if (SWIG_ConvertPtr($input, (void **) &f, SWIGTYPE_p_Foo, 0) == −1) return NULL;

Tcl_Obj *;
obj = SWIG_NewPointerObj(f, SWIGTYPE_p_Foo, 0);

In a typemap, the type descriptor should always be accessed using the special typemap variable $1_descriptor. For example:

%typemap(in) Foo * {
   if ((SWIG_ConvertPtr($input,(void **) &$1, $1_descriptor,0)) == −1) return NULL;
}

If necessary, the descriptor for any type can be obtained using the $descriptor() macro in a typemap. For example:

%typemap(in) Foo * {
   if ((SWIG_ConvertPtr($input,(void **) &$1, $descriptor(Foo *), 0)) == −1) return NULL;
}

28.8 Turning a SWIG module into a Tcl Package.

Tcl 7.4 introduced the idea of an extension package. By default, SWIG generates all of the code necessary to create a package. To
set the package version, simply use the −pkgversion option. For example:

% swig −tcl −pkgversion 2.3 example.i

After building the SWIG generated module, you need to execute the "pkg_mkIndex" command inside tclsh. For example :

unix > tclsh
% pkg_mkIndex . example.so
% exit

This creates a file "pkgIndex.tcl" with information about the package. To use your package, you now need to move it to its
own subdirectory which has the same name as the package. For example :

./example/
           pkgIndex.tcl           # The file created by pkg_mkIndex
           example.so             # The SWIG generated module

Finally, assuming that you're not entirely confused at this point, make sure that the example subdirectory is visible from the
directories contained in either the tcl_library or auto_path variables. At this point you're ready to use the package as
follows :

unix > tclsh
% package require example
% fact 4
24
%
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If you're working with an example in the current directory and this doesn't work, do this instead :

unix > tclsh
% lappend auto_path .
% package require example
% fact 4
24

As a final note, most SWIG examples do not yet use the package commands. For simple extensions it may be easier just to use
the load command instead.

28.9 Building new kinds of Tcl interfaces (in Tcl)

One of the most interesting aspects of Tcl and SWIG is that you can create entirely new kinds of Tcl interfaces in Tcl using the
low−level SWIG accessor functions. For example, suppose you had a library of helper functions to access arrays :

/* File : array.i */
%module array

%inline %{
double *new_double(int size) {
        return (double *) malloc(size*sizeof(double));
}
void delete_double(double *a) {
        free(a);
}
double get_double(double *a, int index) {
        return a[index];
}
void set_double(double *a, int index, double val) {
        a[index] = val;
}
int *new_int(int size) {
        return (int *) malloc(size*sizeof(int));
}
void delete_int(int *a) {
        free(a);
}
int get_int(int *a, int index) {
        return a[index];
}
int set_int(int *a, int index, int val) {
        a[index] = val;
}
%}

While these could be called directly, we could also write a Tcl script like this :

proc Array {type size} {
    set ptr [new_$type $size]
    set code {
        set method [lindex $args 0]
        set parms [concat $ptr [lrange $args 1 end]]
        switch $method {
            get {return [eval "get_$type $parms"]}
            set {return [eval "set_$type $parms"]}
            delete {eval "delete_$type $ptr; rename $ptr {}"}
        }
    }
    # Create a procedure
    uplevel "proc $ptr args {set ptr $ptr; set type $type;$code}"
    return $ptr
}
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Our script allows easy array access as follows :

set a [Array double 100]                   ;# Create a double [100]
for {set i 0} {$i < 100} {incr i 1} {      ;# Clear the array
        $a set $i 0.0
}
$a set 3 3.1455                            ;# Set an individual element
set b [$a get 10]                          ;# Retrieve an element

set ia [Array int 50]                      ;# Create an int[50]
for {set i 0} {$i < 50} {incr i 1} {       ;# Clear it
        $ia set $i 0
}
$ia set 3 7                                ;# Set an individual element
set ib [$ia get 10]                        ;# Get an individual element

$a delete                                  ;# Destroy a
$ia delete                                 ;# Destroy ia

The cool thing about this approach is that it makes a common interface for two different types of arrays. In fact, if we were to add
more C datatypes to our wrapper file, the Tcl code would work with those as well−−without modification. If an unsupported
datatype was requested, the Tcl code would simply return with an error so there is very little danger of blowing something up
(although it is easily accomplished with an out of bounds array access).

28.9.1 Proxy classes

A similar approach can be applied to proxy classes (also known as shadow classes). The following example is provided by Erik
Bierwagen and Paul Saxe. To use it, run SWIG with the −noobject option (which disables the builtin object oriented interface).
When running Tcl, simply source this file. Now, objects can be used in a more or less natural fashion.

# swig_c++.tcl
# Provides a simple object oriented interface using
# SWIG's low level interface.
#

proc new {objectType handle_r args} {
    # Creates a new SWIG object of the given type,
    # returning a handle in the variable "handle_r".
    #
    # Also creates a procedure for the object and a trace on
    # the handle variable that deletes the object when the
    # handle varibale is overwritten or unset
    upvar $handle_r handle
    #
    # Create the new object
    #
    eval set handle \[new_$objectType $args\]
    #
    # Set up the object procedure
    #
    proc $handle {cmd args} "eval ${objectType}_\$cmd $handle \$args"
    #
    # And the trace ...
    #
    uplevel trace variable $handle_r uw "{deleteObject $objectType $handle}"
    #
    # Return the handle so that 'new' can be used as an argument to a procedure
    #
    return $handle
}

proc deleteObject {objectType handle name element op} {
    #
    # Check that the object handle has a reasonable form
    #
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    if {![regexp {_[0−9a−f]*_(.+)_p} $handle]} {
        error "deleteObject: not a valid object handle: $handle"
    }
    #
    # Remove the object procedure
    #
    catch {rename $handle {}}
    #
    # Delete the object
    #
    delete_$objectType $handle
}

proc delete {handle_r} {
    #
    # A synonym for unset that is more familiar to C++ programmers
    #
    uplevel unset $handle_r
}

To use this file, we simply source it and execute commands such as "new" and "delete" to manipulate objects. For example :

// list.i
%module List
%{
#include "list.h"
%}

// Very simple C++ example

class List {
public:
  List();  // Create a new list
  ~List(); // Destroy a list
  int  search(char *value);
  void insert(char *);  // Insert a new item into the list
  void remove(char *);  // Remove item from list
  char *get(int n);     // Get the nth item in the list
  int  length;          // The current length of the list
static void print(List *l);  // Print out the contents of the list
};

Now a Tcl script using the interface...

load ./list.so list       ; # Load the module
source swig_c++.tcl       ; # Source the object file

new List l
$l insert Dave
$l insert John
$l insert Guido
$l remove Dave
puts $l length_get

delete l

The cool thing about this example is that it works with any C++ object wrapped by SWIG and requires no special compilation.
Proof that a short, but clever Tcl script can be combined with SWIG to do many interesting things.
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Caution: This chapter is being rewritten! (11/25/01)

29.1 Introduction

This chapter describes SWIG's internal organization and the process by which new target languages can be developed. First, a
brief word of warning−−−SWIG has been undergoing a massive redevelopment effort that has focused extensively on its internal
organization. The information in this chapter is mostly up to date, but changes are ongoing. Expect a few inconsistencies.
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Also, this chapter is not meant to be a hand−holding tutorial. As a starting point, you should probably look at one of SWIG's
existing modules.

29.2 Prerequisites

In order to extend SWIG, it is useful to have the following background:

An understanding of the C API for the target language.• 
A good grasp of the C++ type system.• 
An understanding of typemaps and some of SWIG's advanced features.• 
Some familiarity with writing C++ (language modules are currently written in C++).• 

Since SWIG is essentially a specialized C++ compiler, it may be useful to have some prior experience with compiler design
(perhaps even a compilers course) to better understand certain parts of the system. A number of books will also be useful. For
example, "The C Programming Language" by Kernighan and Ritchie (a.k.a, "K&R") and the "C++ Annotated Reference Manual"
by Stroustrup (a.k.a, the "ARM") will be of great use.

Also, it is useful to keep in mind that SWIG primarily operates as an extension of the C++ type system. At first glance, this might
not be obvious, but almost all SWIG directives as well as the low−level generation of wrapper code are driven by C++ datatypes.

29.3 The Big Picture

SWIG is a special purpose compiler that parses C++ declarations to generate wrapper code. To make this conversion possible,
SWIG makes three fundamental extensions to the C++ language:

Typemaps. Typemaps are used to define the conversion/marshalling behavior of specific C++ datatypes. All type
conversion in SWIG is based on typemaps. Furthermore, the association of typemaps to datatypes utilizes an advanced
pattern matching mechanism that is fully integrated with the C++ type system.

• 

Declaration Annotation. To customize wrapper code generation, most declarations can be annotated with special
features. For example, you can make a variable read−only, you can ignore a declaration, you can rename a member
function, you can add exception handling, and so forth. Virtually all of these customizations are built on top of a
low−level declaration annotator that can attach arbitrary attributes to any declaration. Code generation modules can look
for these attributes to guide the wrapping process.

• 

Class extension. SWIG allows classes and structures to be extended with new methods and attributes (the %extend
directive). This has the effect of altering the API in the target language and can be used to generate OO interfaces to C
libraries.

• 

It is important to emphasize that virtually all SWIG features reduce to one of these three fundamental concepts. The type system
and pattern matching rules also play a critical role in making the system work. For example, both typemaps and declaration
annotation are based on pattern matching and interact heavily with the underlying type system.

29.4 Execution Model

When you run SWIG on an interface, processing is handled in stages by a series of system components:

An integrated C preprocessor reads a collection of configuration files and the specified interface file into memory. The
preprocessor performs the usual functions including macro expansion and file inclusion. However, the preprocessor also
performs some transformations of the interface. For instance, #define statements are sometimes transformed into
%constant declarations. In addition, information related to file/line number tracking is inserted.

• 

A C/C++ parser reads the preprocessed input and generates a full parse tree of all of the SWIG directives and C
declarations found. The parser is responsible for many aspects of the system including renaming, declaration annotation,
and template expansion. However, the parser does not produce any output nor does it interact with the target language
module as it runs. SWIG is not a one−pass compiler.

• 

A type−checking pass is made. This adjusts all of the C++ typenames to properly handle namespaces, typedefs, nested
classes, and other issues related to type scoping.

• 
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A semantic pass is made on the parse tree to collect information related to properties of the C++ interface. For example,
this pass would determine whether or not a class allows a default constructor.

• 

A code generation pass is made using a specific target language module. This phase is responsible for generating the
actual wrapper code. All of SWIG's user−defined modules are invoked during this stage of compilation.

• 

The next few sections briefly describe some of these stages.

29.4.1 Preprocessing

The preprocessor plays a critical role in the SWIG implementation. This is because a lot of SWIG's processing and internal
configuration is managed not by code written in C, but by configuration files in the SWIG library. In fact, when you run SWIG,
parsing starts with a small interface file like this (note: this explains the cryptic error messages that new users sometimes get when
SWIG is misconfigured or installed incorrectly):

%include "swig.swg"             // Global SWIG configuration
%include "langconfig.swg"       // Language specific configuration
%include "yourinterface.i"      // Your interface file

The swig.swg file contains global configuration information. In addition, this file defines many of SWIG's standard directives
as macros. For instance, part of of swig.swg looks like this:

...
/* Code insertion directives such as %wrapper %{ ... %} */

#define %init        %insert("init")
#define %wrapper     %insert("wrapper")
#define %header      %insert("header")
#define %runtime     %insert("runtime")

/* Access control directives */

#define %immutable   %feature("immutable","1")
#define %mutable     %feature("immutable")

/* Directives for callback functions */

#define %callback(x) %feature("callback") `x`;
#define %nocallback  %feature("callback");

/* %ignore directive */

#define %ignore         %rename($ignore)
#define %ignorewarn(x)  %rename("$ignore:" x)
...

The fact that most of the standard SWIG directives are macros is intended to simplify the implementation of the internals. For
instance, rather than having to support dozens of special directives, it is easier to have a few basic primitives such as %feature
or %insert.

The langconfig.swg file is supplied by the target language. This file contains language−specific configuration information.
More often than not, this file provides run−time wrapper support code (e.g., the type−checker) as well as a collection of typemaps
that define the default wrapping behavior. Note: the name of this file depends on the target language and is usually something like
python.swg or perl5.swg.

As a debugging aide, the text that SWIG feeds to its C++ parser can be obtained by running swig −E interface.i. This
output probably isn't too useful in general, but it will show how macros have been expanded as well as everything else that goes
into the low−level construction of the wrapper code.
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29.4.2 Parsing

The current C++ parser handles a subset of C++. Most incompatibilities with C are due to subtle aspects of how SWIG parses
declarations. Specifically, SWIG expects all C/C++ declarations to follow this general form:

storage type declarator initializer;

storage is a keyword such as extern, static, typedef, or virtual. type is a primitive datatype such as int or
void. type may be optionally qualified with a qualifier such as const or volatile. declarator is a name with additional
type−construction modifiers attached to it (pointers, arrays, references, functions, etc.). Examples of declarators include *x, **x,
x[20], and (*x)(int,double). The initializer may be a value assigned using = or body of code enclosed in braces {
... }.

This declaration format covers most common C++ declarations. However, the C++ standard is somewhat more flexible in the
placement of the parts. For example, it is technically legal, although uncommon to write something like int typedef const
a in your program. SWIG simply doesn't bother to deal with this case.

The other significant difference between C++ and SWIG is in the treatment of typenames. In C++, if you have a declaration like
this,

int blah(Foo *x, Bar *y);

it won't parse correctly unless Foo and Bar have been previously defined as types either using a class definition or a
typedef. The reasons for this are subtle, but this treatment of typenames is normally integrated at the level of the C
tokenizer−−−when a typename appears, a different token is returned to the parser instead of an identifier.

SWIG does not operate in this manner−−any legal identifier can be used as a type name. The reason for this is primarily motivated
by the use of SWIG with partially defined data. Specifically, SWIG is supposed to be easy to use on interfaces with missing type
information.

Because of the different treatment of typenames, the most serious limitation of the SWIG parser is that it can't process type
declarations where an extra (and unnecessary) grouping operator is used. For example:

int (x);         /* A variable x */
int (y)(int);    /* A function y */

The placing of extra parentheses in type declarations like this is already recognized by the C++ community as a potential source
of strange programming errors. For example, Scott Meyers "Effective STL" discusses this problem in a section on avoiding C++'s
"most vexing parse."

The parser is also unable to handle declarations with no return type or bare argument names. For example, in an old C program,
you might see things like this:

foo(a,b) {
...
}

In this case, the return type as well as the types of the arguments are taken by the C compiler to be an int. However, SWIG
interprets the above code as an abstract declarator for a function returning a foo and taking types a and b as arguments).

29.4.3 Parse Trees

The SWIG parser produces a complete parse tree of the input file before any wrapper code is actually generated. Each item in the
tree is known as a "Node". Each node is identified by a symbolic tag. Furthermore, a node may have an arbitrary number of
children. The parse tree structure and tag names of an interface can be displayed using swig −dump_tags. For example:

$ swig −c++ −python −dump_tags example.i
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 . top (example.i:1)
 . top . include (example.i:1)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/swig.swg:71)
 . top . include . typemap . typemapitem (/r0/beazley/Projects/lib/swig1.3/swig.swg:71)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/swig.swg:83)
 . top . include . typemap . typemapitem (/r0/beazley/Projects/lib/swig1.3/swig.swg:83)
 . top . include (example.i:4)
 . top . include . insert (/r0/beazley/Projects/lib/swig1.3/python/python.swg:7)
 . top . include . insert (/r0/beazley/Projects/lib/swig1.3/python/python.swg:8)
 . top . include . typemap (/r0/beazley/Projects/lib/swig1.3/python/python.swg:19)
...
 . top . include (example.i:6)
 . top . include . module (example.i:2)
 . top . include . insert (example.i:6)
 . top . include . include (example.i:9)
 . top . include . include . class (example.h:3)
 . top . include . include . class . access (example.h:4)
 . top . include . include . class . constructor (example.h:7)
 . top . include . include . class . destructor (example.h:10)
 . top . include . include . class . cdecl (example.h:11)
 . top . include . include . class . cdecl (example.h:11)
 . top . include . include . class . cdecl (example.h:12)
 . top . include . include . class . cdecl (example.h:13)
 . top . include . include . class . cdecl (example.h:14)
 . top . include . include . class . cdecl (example.h:15)
 . top . include . include . class (example.h:18)
 . top . include . include . class . access (example.h:19)
 . top . include . include . class . cdecl (example.h:20)
 . top . include . include . class . access (example.h:21)
 . top . include . include . class . constructor (example.h:22)
 . top . include . include . class . cdecl (example.h:23)
 . top . include . include . class . cdecl (example.h:24)
 . top . include . include . class (example.h:27)
 . top . include . include . class . access (example.h:28)
 . top . include . include . class . cdecl (example.h:29)
 . top . include . include . class . access (example.h:30)
 . top . include . include . class . constructor (example.h:31)
 . top . include . include . class . cdecl (example.h:32)
 . top . include . include . class . cdecl (example.h:33)

Even for the most simple interface, the parse tree structure is larger than you might expect. For example, in the above output, a
substantial number of nodes are actually generated by the python.swg configuration file which defines typemaps and other
directives. The contents of the user−supplied input file don't appear until the end of the output.

The contents of each parse tree node consist of a collection of attribute/value pairs. Internally, the nodes are simply represented by
hash tables. A display of the parse−tree structure can be obtained using swig −dump_tree. For example:

$ swig −c++ −python −dump_tree example.i
...
      +++ include −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      | name         − "example.i"

            +++ module −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | name         − "example"
            | 
            +++ insert −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | code         − "\n#include \"example.h\"\n"
            | 
            +++ include −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | name         − "example.h"

                  +++ class −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                  | abstract     − "1"
                  | sym:name     − "Shape"
                  | name         − "Shape"
                  | kind         − "class"
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                  | symtab       − 0x40194140
                  | sym:symtab   − 0x40191078

                        +++ access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | kind         − "public"
                        | 
                        +++ constructor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "Shape"
                        | name         − "Shape"
                        | decl         − "f()."
                        | code         − "{\n    nshapes++;\n  }"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ destructor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "~Shape"
                        | name         − "~Shape"
                        | storage      − "virtual"
                        | code         − "{\n    nshapes−−;\n  }"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "x"
                        | name         − "x"
                        | decl         − ""
                        | type         − "double"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "y"
                        | name         − "y"
                        | decl         − ""
                        | type         − "double"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "move"
                        | name         − "move"
                        | decl         − "f(double,double)."
                        | parms        − double ,double 
                        | type         − "void"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "area"
                        | name         − "area"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | value        − "0"
                        | type         − "double"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "perimeter"
                        | name         − "perimeter"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | value        − "0"
                        | type         − "double"
                        | sym:symtab   − 0x40194140
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "nshapes"
                        | name         − "nshapes"
                        | decl         − ""
                        | storage      − "static"
                        | type         − "int"
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                        | sym:symtab   − 0x40194140
                        | 
                  +++ class −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                  | sym:name     − "Circle"
                  | name         − "Circle"
                  | kind         − "class"
                  | bases        − 0x40194510
                  | symtab       − 0x40194538
                  | sym:symtab   − 0x40191078

                        +++ access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | kind         − "private"
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | name         − "radius"
                        | decl         − ""
                        | type         − "double"
                        | 
                        +++ access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | kind         − "public"
                        | 
                        +++ constructor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "Circle"
                        | name         − "Circle"
                        | parms        − double 
                        | decl         − "f(double)."
                        | code         − "{ }"
                        | sym:symtab   − 0x40194538
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "area"
                        | name         − "area"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | type         − "double"
                        | sym:symtab   − 0x40194538
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "perimeter"
                        | name         − "perimeter"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | type         − "double"
                        | sym:symtab   − 0x40194538
                        | 
                  +++ class −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                  | sym:name     − "Square"
                  | name         − "Square"
                  | kind         − "class"
                  | bases        − 0x40194760
                  | symtab       − 0x40194788
                  | sym:symtab   − 0x40191078

                        +++ access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | kind         − "private"
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | name         − "width"
                        | decl         − ""
                        | type         − "double"
                        | 
                        +++ access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | kind         − "public"
                        | 
                        +++ constructor −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "Square"
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                        | name         − "Square"
                        | parms        − double 
                        | decl         − "f(double)."
                        | code         − "{ }"
                        | sym:symtab   − 0x40194788
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "area"
                        | name         − "area"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | type         − "double"
                        | sym:symtab   − 0x40194788
                        | 
                        +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                        | sym:name     − "perimeter"
                        | name         − "perimeter"
                        | decl         − "f(void)."
                        | parms        − void 
                        | storage      − "virtual"
                        | type         − "double"
                        | sym:symtab   − 0x40194788

29.4.4 Attribute namespaces

Attributes of parse tree nodes are often prepended with a namespace qualifier. For example, the attributes sym:name and
sym:symtab are attributes related to symbol table management and are prefixed with sym:. As a general rule, only those
attributes which are directly related to the raw declaration appear without a prefix (type, name, declarator, etc.).

Target language modules may add additional attributes to nodes to assist the generation of wrapper code. The convention for
doing this is to place these attributes in a namespace that matches the name of the target language. For example, python:foo or
perl:foo.

29.4.5 Symbol Tables

During parsing, all symbols are managed in the space of the target language. The sym:name attribute of each node contains the
symbol name selected by the parser. Normally, sym:name and name are the same. However, the %rename directive can be
used to change the value of sym:name. You can see the effect of %rename by trying it on a simple interface and dumping the
parse tree. For example:

%rename(foo_i) foo(int);
%rename(foo_d) foo(double);

void foo(int);
void foo(double);
void foo(Bar *b);

Now, running SWIG:

$ swig −dump_tree example.i
...
            +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | sym:name     − "foo_i"
            | name         − "foo"
            | decl         − "f(int)."
            | parms        − int 
            | type         − "void"
            | sym:symtab   − 0x40165078
            | 
            +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | sym:name     − "foo_d"
            | name         − "foo"
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            | decl         − "f(double)."
            | parms        − double 
            | type         − "void"
            | sym:symtab   − 0x40165078
            | 
            +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            | sym:name     − "foo"
            | name         − "foo"
            | decl         − "f(p.Bar)."
            | parms        − Bar *
            | type         − "void"
            | sym:symtab   − 0x40165078

All symbol−related conflicts and complaints about overloading are based on sym:name values. For instance, the following
example uses %rename in reverse to generate a name clash.

%rename(foo) foo_i(int);
%rename(foo) foo_d(double;

void foo_i(int);
void foo_d(double);
void foo(Bar *b);

When you run SWIG on this you now get:

$ ./swig example.i
example.i:6. Overloaded declaration ignored.  foo_d(double )
example.i:5. Previous declaration is foo_i(int )
example.i:7. Overloaded declaration ignored.  foo(Bar *)
example.i:5. Previous declaration is foo_i(int )

29.4.6 The %feature directive

A number of SWIG directives such as %exception are implemented using the low−level %feature directive. For example:

%feature("except") getitem(int) {
  try {
     $action
  } catch (badindex) {
     ...
  }
}

...
class Foo {
public:
    Object *getitem(int index) throws(badindex);
    ...
};

The behavior of %feature is very easy to describe−−it simply attaches a new attribute to any parse tree node that matches the
given prototype. When a feature is added, it shows up as an attribute in the feature: namespace. You can see this when
running with the −dump_tree option. For example:

 +++ cdecl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 | sym:name     − "getitem"
 | name         − "getitem"
 | decl         − "f(int).p."
 | parms        − int 
 | type         − "Object"
 | feature:except − "{\n    try {\n       $action\n    } catc..."
 | sym:symtab   − 0x40168ac8
 | 
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Feature names are completely arbitrary and a target language module can be programmed to respond to any feature name that it
wants to recognized. The data stored in a feature attribute is usually just a raw unparsed string. For example, the exception code
above is simply stored without any modifications.

29.4.7 Code Generation

Language modules work by defining handler functions that know how to respond to different types of parse−tree nodes. These
handlers simply look at the attributes of each node in order to produce low−level code.

In reality, the generation of code is somewhat more subtle than simply invoking handler functions. This is because parse−tree
nodes might be transformed. For example, suppose you are wrapping a class like this:

class Foo {
public:
    virtual int *bar(int x);
};

When the parser constructs a node for the member bar, it creates a raw "cdecl" node with the following attributes:

nodeType    : cdecl
name        : bar
type        : int
decl        : f(int).p
parms       : int x
storage     : virtual
sym:name    : bar

To produce wrapper code, this "cdecl" node undergoes a number of transformations. First, the node is recognized as a function
declaration. This adjusts some of the type information−−specifically, the declarator is joined with the base datatype to produce
this:

nodeType    : cdecl
name        : bar
type        : p.int        <−− Notice change in return type
decl        : f(int).p
parms       : int x
storage     : virtual
sym:name    : bar

Next, the context of the node indicates that the node is really a member function. This produces a transformation to a low−level
accessor function like this:

nodeType    : cdecl
name        : bar
type        : int.p
decl        : f(int).p
parms       : Foo *self, int x            <−− Added parameter
storage     : virtual
wrap:action : result = (arg1)−>bar(arg2)  <−− Action code added
sym:name    : Foo_bar                     <−− Symbol name changed

In this transformation, notice how an additional parameter was added to the parameter list and how the symbol name of the node
has suddenly changed into an accessor using the naming scheme described in the "SWIG Basics" chapter. A small fragment of
"action" code has also been generated−−notice how the wrap:action attribute defines the access to the underlying method.
The data in this transformed node is then used to generate a wrapper.

Language modules work by registering handler functions for dealing with various types of nodes at different stages of
transformation. This is done by inheriting from a special Language class and defining a collection of virtual methods. For
example, the Python module defines a class as follows:

class PYTHON : public Language {
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protected:
public :
  virtual void main(int, char *argv[]);
  virtual int  top(Node *); 
  virtual int  functionWrapper(Node *);
  virtual int  constantWrapper(Node *);
  virtual int  variableWrapper(Node *);
  virtual int  nativeWrapper(Node *);
  virtual int  membervariableHandler(Node *);
  virtual int  memberconstantHandler(Node *);
  virtual int  memberfunctionHandler(Node *);
  virtual int  constructorHandler(Node *);
  virtual int  destructorHandler(Node *);
  virtual int  classHandler(Node *);
  virtual int  classforwardDeclaration(Node *);
  virtual int  insertDirective(Node *);
  virtual int  importDirective(Node *);
};

The role of these functions is described shortly.

29.4.8 SWIG and XML

Much of SWIG's current parser design was originally motivated by interest in using XML to represent SWIG parse trees.
Although XML is not currently used in any direct manner, the parse tree structure, use of node tags, attributes, and attribute
namespaces are all influenced by aspects of XML parsing. Therefore, in trying to understand SWIG's internal data structures, it
may be useful keep XML in the back of your mind as a model.

29.5 Primitive Data Structures

Most of SWIG is constructed using three basic data structures: strings, hashes, and lists. These data structures are dynamic in
same way as similar structures found in many scripting languages. For instance, you can have containers (lists and hash tables) of
mixed types and certain operations are polymorphic.

This section briefly describes the basic structures so that later sections of this chapter make more sense.

When describing the low−level API, the following type name conventions are used:

String. A string object.• 
Hash. A hash object.• 
List. A list object.• 
String_or_char. A string object or a char *.• 
Object_or_char. An object or a char *.• 
Object. Any object (string, hash, list, etc.)• 

In most cases, other typenames in the source are aliases for one of these primitive types. Specifically:

typedef String SwigType;
typedef Hash   Parm;
typedef Hash   ParmList;
typedef Hash   Node;
typedef Hash   Symtab;
typedef Hash   Typetab;

29.5.1 Strings

String *NewString(const String_or_char *val)

Creates a new string with initial value val. val may be a char * or another String object. If you want to
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create an empty string, use "" for val.

String *NewStringf(const char *fmt, ...)

Creates a new string whose initial value is set according to a C printf style format string in fmt. Additional
arguments follow depending on fmt.

String *Copy(String *s)

Make a copy of the string s.

void Delete(String *s)

Deletes s.

int Len(String_or_char *s)

Returns the length of the string.

char *Char(String_or_char *s)

Returns a pointer to the first character in a string.

void Append(String *s, String_or_char *t)

Appends t to the end of string s.

void Insert(String *s, int pos, String_or_char *t)

Inserts t into s at position pos. The contents of s are shifted accordingly. The special value DOH_END can be
used for pos to indicate insertion at the end of the string (appending).

int Strcmp(const String_or_char *s, const String_or_char *t)

Compare strings s and t. Same as the C strcmp() function.

int Strncmp(const String_or_char *s, const String_or_char *t, int len)

Compare the first len characters of strings s and t. Same as the C strncmp() function.

char *Strstr(const String_or_char *s, const String_or_char *pat)

Returns a pointer to the first occurrence of pat in s. Same as the C strstr() function.

char *Strchr(const String_or_char *s, char ch)

Returns a pointer to the first occurrence of character ch in s. Same as the C strchr() function.

void Chop(String *s)

Chops trailing whitespace off the end of s.

int Replace(String *s, const String_or_char *pat, const String_or_char *rep, int flags)

Replaces the pattern pat with rep in string s. flags is a combination of the following flags:
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DOH_REPLACE_ANY       − Replace all occurrences
DOH_REPLACE_ID        − Valid C identifiers only
DOH_REPLACE_NOQUOTE   − Don't replace in quoted strings
DOH_REPLACE_FIRST     − Replace first occurrence only.

Returns the number of replacements made (if any).

29.5.2 Hashes

Hash *NewHash()

Creates a new empty hash table.

Hash *Copy(Hash *h)

Make a shallow copy of the hash h.

void Delete(Hash *h)

Deletes h.

int Len(Hash *h)

Returns the number of items in h.

Object *Getattr(Hash *h, String_or_char *key)

Gets an object from h. key may be a string or a simple char * string. Returns NULL if not found.

int Setattr(Hash *h, String_or_char *key, Object_or_char *val)

Stores val in h. key may be a string or a simple char *. If val is not a standard object (String, Hash, or
List) it is assumed to be a char * in which case it is used to construct a String that is stored in the hash. If
val is NULL, the object is deleted. Increases the reference count of val. Returns 1 if this operation replaced
an existing hash entry, 0 otherwise.

int Delattr(Hash *h, String_or_char *key)

Deletes the hash item referenced by key. Decreases the reference count on the corresponding object (if any).
Returns 1 if an object was removed, 0 otherwise.

List *Keys(Hash *h)

Returns the list of hash table keys.

29.5.3 Lists

List *NewList()

Creates a new empty list.

List *Copy(List *x)

Make a shallow copy of the List x.

void Delete(List *x)
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Deletes x.

int Len(List *x)

Returns the number of items in x.

Object *Getitem(List *x, int n)

Returns an object from x with index n. If n is beyond the end of the list, the last item is returned. If n is
negative, the first item is returned.

int *Setitem(List *x, int n, Object_or_char *val)

Stores val in x. If val is not a standard object (String, Hash, or List) it is assumed to be a char * in which
case it is used to construct a String that is stored in the list. n must be in range. Otherwise, an assertion will
be raised.

int *Delitem(List *x, int n)

Deletes item n from the list, shifting items down if necessary. To delete the last item in the list, use the special
value DOH_END for n.

void Append(List *x, Object_or_char *t)

Appends t to the end of x. If t is not a standard object, it is assumed to be a char * and is used to create a
String object.

void Insert(String *s, int pos, Object_or_char *t)

Inserts t into s at position pos. The contents of s are shifted accordingly. The special value DOH_END can be
used for pos to indicate insertion at the end of the list (appending). If t is not a standard object, it is assumed to
be a char * and is used to create a String object.

29.5.4 Common operations

The following operations are applicable to all datatypes.

Object *Copy(Object *x)

Make a copy of the object x.

void Delete(Object *x)

Deletes x.

void Setfile(Object *x, String_or_char *f)

Sets the filename associated with x. Used to track objects and report errors.

String *Getfile(Object *x)

Gets the filename associated with x.

void Setline(Object *x, int n)

Sets the line number associated with x. Used to track objects and report errors.
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int Getline(Object *x)

Gets the line number associated with x.

29.5.5 Iterating over Lists and Hashes

To iterate over the elements of a list or a hash table, the following functions are used:

Iterator First(Object *x)

Returns an iterator object that points to the first item in a list or hash table. The item attribute of the Iterator
object is a pointer to the item. For hash tables, the key attribute of the Iterator object additionally points to the
corresponding Hash table key. The item and key attributes are NULL if the object contains no items or if
there are no more items.

Iterator Next(Iterator i)

Returns an iterator that points to the next item in a list or hash table.

Here are two examples of iteration:

List *l = (some list);
Iterator i;

for (i = First(l); i.item; i = Next(i)) {
    Printf(stdout,"%s\n", i.item);
}

Hash *h = (some hash);
Iterator j;

for (j = First(j); j.item; j= Next(j)) {
    Printf(stdout,"%s : %s\n", j.key, j.item);
}

29.5.6 I/O

Special I/O functions are used for all internal I/O. These operations work on C FILE * objects, String objects, and special File
objects (which are merely a wrapper around FILE *).

int Printf(String_or_FILE *f, const char *fmt, ...)

Formatted I/O. Same as the C fprintf() function except that output can also be directed to a string object.
Note: the %s format specifier works with both strings and char *. All other format operators have the same
meaning.

int Printv(String_or_FILE *f, String_or_char *arg1,..., NULL)

Prints a variable number of strings arguments to the output. The last argument to this function must be NULL.
The other arguments can either be char * or string objects.

int Putc(int ch, String_or_FILE *f)

Same as the C fputc() function.

int Write(String_or_FILE *f, void *buf, int len)

Same as the C write() function.
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int Read(String_or_FILE *f, void *buf, int maxlen)

Same as the C read() function.

int Getc(String_or_FILE *f)

Same as the C fgetc() function.

int Ungetc(int ch, String_or_FILE *f)

Same as the C ungetc() function.

int Seek(String_or_FILE *f, int offset, int whence)

Same as the C seek() function. offset is the number of bytes. whence is one of SEEK_SET,SEEK_CUR,
or SEEK_END..

long Tell(String_or_FILE *f)

Same as the C tell() function.

File *NewFile(const char *filename, const char *mode)

Create a File object using the fopen() library call. This file differs from FILE * in that it can be placed in
the standard SWIG containers (lists, hashes, etc.).

File *NewFileFromFile(FILE *f)

Create a File object wrapper around an existing FILE * object.

int Close(String_or_FILE *f)

Closes a file. Has no effect on strings.

The use of the above I/O functions and strings play a critical role in SWIG. It is common to see small code fragments of code
generated using code like this:

/* Print into a string */
String *s = NewString("");
Printf(s,"Hello\n");
for (i = 0; i < 10; i++) {
    Printf(s,"%d\n", i);
}
...
/* Print string into a file */
Printf(f, "%s\n", s);

Similarly, the preprocessor and parser all operate on string−files.

29.6 Navigating and manipulating parse trees

Parse trees are built as collections of hash tables. Each node is a hash table in which arbitrary attributes can be stored. Certain
attributes in the hash table provide links to other parse tree nodes. The following macros can be used to move around the parse
tree.

String *nodeType(Node *n)
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Returns the node type tag as a string. The returned string indicates the type of parse tree node.

Node *nextSibling(Node *n)

Returns the next node in the parse tree. For example, the next C declaration.

Node *previousSibling(Node *n)

Returns the previous node in the parse tree. For example, the previous C declaration.

Node *firstChild(Node *n)

Returns the first child node. For example, if n was a C++ class node, this would return the node for the first
class member.

Node *lastChild(Node *n)

Returns the last child node. You might use this if you wanted to append a new node to the of a class.

Node *parentNode(Node *n)

Returns the parent of node n. Use this to move up the pass tree.

The following macros can be used to change all of the above attributes. Normally, these functions are only used by the parser.
Changing them without knowing what you are doing is likely to be dangerous.

void set_nodeType(Node *n, const String_or_char)

Change the node type. tree node.

void set_nextSibling(Node *n, Node *s)

Set the next sibling.

void set_previousSibling(Node *n, Node *s)

Set the previous sibling.

void set_firstChild(Node *n, Node *c)

Set the first child node.

void set_lastChild(Node *n, Node *c)

Set the last child node.

void set_parentNode(Node *n, Node *p)

Set the parent node.

The following utility functions are used to alter the parse tree (at your own risk)

void appendChild(Node *parent, Node *child)

Append a child to parent. The appended node becomes the last child.
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void deleteNode(Node *node)

Deletes a node from the parse tree. Deletion reconnects siblings and properly updates the parent so that sibling
nodes are unaffected.

29.7 Working with attributes

Since parse tree nodes are just hash tables, attributes are accessed using the Getattr(), Setattr(), and Delattr()
operations. For example:

int functionHandler(Node *n) {
    String *name    = Getattr(n,"name");
    String *symname = Getattr(n,"sym:name");
    SwigType *type  = Getattr(n,"type");
    ...
}

New attributes can be freely attached to a node as needed. However, when new attributes are attached during code generation,
they should be prepended with a namespace prefix. For example:

...
Setattr(n,"python:docstring", doc);     /* Store docstring */
...

A quick way to check the value of an attribute is to use the checkAttribute() function like this:

if (checkAttribute(n,"storage","virtual")) {
   /* n is virtual */
   ...
}

Changing the values of existing attributes is allowed and is sometimes done to implement node transformations. However, if a
function/method modifies a node, it is required to restore modified attributes to their original values. To simplify the task of
saving/restoring attributes, the following functions are used:

int Swig_save(const char *ns, Node *n, const char *name1, const char *name2, ..., NIL)

Saves a copy of attributes name1, name2, etc. from node n. Copies of the attributes are actually resaved in the
node in a different namespace which is set by the ns argument. For example, if you call
Swig_save("foo",n,"type",NIL), then the "type" attribute will be copied and saved as "foo:type".
The namespace name itself is stored in the "view" attribute of the node. If necessary, this can be examined to
find out where previous values of attributes might have been saved.

int Swig_restore(Node *n)

Restores the attributes saved by the previous call to Swig_save(). Those attributes that were supplied to
Swig_save() will be restored to their original values.

The Swig_save() and Swig_restore() functions must always be used as a pair. That is, every call to Swig_save()
must have a matching call to Swig_restore(). Calls can be nested if necessary. Here is an example that shows how the
functions might be used:

int variableHandler(Node *n) {
    Swig_save("variableHandler",n,"type","sym:name",NIL);
    String *symname = Getattr(n,"sym:name");
    SwigType *type  = Getattr(n,"type");
    ...
    Append(symname,"_global");         // Change symbol name
    SwigType_add_pointer(type);        // Add pointer
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    ...
    generate wrappers
    ...
    Swig_restore(n);                  // Restore original values
    return SWIG_OK;
}

int Swig_require(const char *ns, Node *n, const char *name1, const char *name2, ...,
NIL)

This is an enhanced version of Swig_save() that adds error checking. If an attribute name is not present in n,
a failed assertion results and SWIG terminates with a fatal error. Optionally, if an attribute name is specified as
"*name", a copy of the attribute is saved as with Swig_save(). If an attribute is specified as "?name", the
attribute is optional. Swig_restore() must always be called after using this function.

29.8 Type system

SWIG implements the complete C++ type system including typedef, inheritance, pointers, references, and pointers to members. A
detailed discussion of type theory is impossible here. However, let's cover the highlights.

29.8.1 String encoding of types

All types in SWIG consist of a base datatype and a collection of type operators that are applied to the base. A base datatype is
almost always some kind of primitive type such as int or double. The operators consist of things like pointers, references,
arrays, and so forth. Internally, types are represented as strings that are constructed in a very precise manner. Here are some
examples:

C datatype                     SWIG encoding (strings)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  −−−−−−−−−−−−−−−−−−−−−−−−−−
int                            "int"
int *                          "p.int"
const int *                    "p.q(const).int"
int (*x)(int,double)           "p.f(int,double).int"
int [20][30]                   "a(20).a(30).int"
int (F::*)(int)                "m(F).f(int).int"
vector<int> *                  "p.vector<(int)>"

Reading the SWIG encoding is often easier than figuring out the C code−−−just read it from left to right. For a type of
"p.f(int,double).int" is a "pointer to a function(int,double) that returns int".

The following operator encodings are used in type strings:

Operator              Meaning
−−−−−−−−−−−−−−−−−−−   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
p.                    Pointer to
a(n).                 Array of dimension n
r.                    C++ reference
m(class).             Member pointer to class
f(args).              Function.
q(qlist).             Qualifiers

In addition, type names may be parameterized by templates. This is represented by enclosing the template parameters in <( ...
)>. Variable length arguments are represented by the special base type of v(...).

If you want to experiment with type encodings, the raw type strings can be inserted into an interface file using backticks ``
wherever a type is expected. For instance, here is an extremely perverted example:

`p.a(10).p.f(int,p.f(int).int)` foo(int, int (*x)(int));

This corresponds to the immediately obvious C declaration:
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(*(*foo(int,int (*)(int)))[10])(int,int (*)(int));

Aside from the potential use of this declaration on a C programming quiz, it motivates the use of the special SWIG encoding of
types. The SWIG encoding is much easier to work with because types can be easily examined, modified, and constructed using
simple string operations (comparison, substrings, concatenation, etc.). For example, in the parser, a declaration like this

int *a[30];

is processed in a few pieces. In this case, you have the base type "int" and the declarator of type "a(30).p.". To make the
final type, the two parts are just joined together using string concatenation.

29.8.2 Type construction

The following functions are used to construct types. You should use these functions instead of trying to build the type strings
yourself.

void SwigType_add_pointer(SwigType *ty)

Adds a pointer to ty.

void SwigType_del_pointer(SwigType *ty)

Removes a single pointer from ty.

void SwigType_add_reference(SwigType *ty)

Adds a reference to ty.

void SwigType_add_array(SwigType *ty, String_or_char *dim)

Adds an array with dimension dim to ty.

void SwigType_add_qualifier(SwigType *ty, String_or_char *q)

Adds a type qualifier q to ty. q is typically "const" or "volatile".

void SwigType_add_memberpointer(SwigType *ty, String_or_char *cls)

Adds a pointer to a member of class cls to ty.

void SwigType_add_function(SwigType *ty, ParmList *p)

Adds a function to ty. p is a linked−list of parameter nodes as generated by the parser. See the section on
parameter lists for details about the representation.

void SwigType_add_template(SwigType *ty, ParmList *p)

Adds a template to ty. p is a linked−list of parameter nodes as generated by the parser. See the section on
parameter lists for details about the representation.

SwigType *SwigType_pop(SwigType *ty)

Removes the last type constructor from ty and returns it. ty is modified.

void SwigType_push(SwigType *ty, SwigType *op)
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Pushes the type operators in op onto type ty. The opposite of SwigType_pop().

SwigType *SwigType_pop_arrays(SwigType *ty)

Removes all leading array operators from ty and returns them. ty is modified. For example, if ty is
"a(20).a(10).p.int", then this function would return "a(20).a(10)." and modify ty so that it has
the value "p.int".

SwigType *SwigType_pop_function(SwigType *ty)

Removes a function operator from ty including any qualification. ty is modified. For example, if ty is
"f(int).int", then this function would return "f(int)." and modify ty so that it has the value "int".

SwigType *SwigType_base(SwigType *ty)

Returns the base type of a type. For example, if ty is "p.a(20).int", this function would return "int".
ty is unmodified.

SwigType *SwigType_prefix(SwigType *ty)

Returns the prefix of a type. For example, if ty is "p.a(20).int", this function would return
"p.a(20).". ty is unmodified.

29.8.3 Type tests

The following functions can be used to test properties of a datatype.

int SwigType_ispointer(SwigType *ty)

Checks if ty is a standard pointer.

int SwigType_ismemberpointer(SwigType *ty)

Checks if ty is a member pointer.

int SwigType_isreference(SwigType *ty)

Checks if ty is a C++ reference.

int SwigType_isarray(SwigType *ty)

Checks if ty is an array.

int SwigType_isfunction(SwigType *ty)

Checks if ty is a function.

int SwigType_isqualifier(SwigType *ty)

Checks if ty is a qualifier.

int SwigType_issimple(SwigType *ty)

Checks if ty is a simple type. No operators applied.

int SwigType_isconst(SwigType *ty)
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Checks if ty is a const type.

int SwigType_isvarargs(SwigType *ty)

Checks if ty is a varargs type.

int SwigType_istemplate(SwigType *ty)

Checks if ty is a templatized type.

29.8.4 Typedef and inheritance

The behavior of typedef declaration is to introduce a type alias. For instance, typedef int Integer makes the identifier
Integer an alias for int. The treatment of typedef in SWIG is somewhat complicated due to the pattern matching rules that get
applied in typemaps and the fact that SWIG prefers to generate wrapper code that closely matches the input to simplify debugging
(a user will see the typedef names used in their program instead of the low−level primitive C datatypes).

To handle typedef, SWIG builds a collection of trees containing typedef relations. For example,

typedef int Integer;
typedef Integer *IntegerPtr;
typedef int Number;
typedef int Size;

produces two trees like this:

                 int               p.Integer
               ^  ^  ^                 ^ 
              /   |   \                |
             /    |    \               |
        Integer  Size   Number    IntegerPtr

To resolve a single typedef relationship, the following function is used:

SwigType *SwigType_typedef_resolve(SwigType *ty)

Checks if ty can be reduced to a new type via typedef. If so, returns the new type. If not, returns NULL.

Typedefs are only resolved in simple typenames that appear in a type. For example, the type base name and in function
parameters. When resolving types, the process starts in the leaf nodes and moves up the tree towards the root. Here are a few
examples that show how it works:

Original type            After typedef_resolve()
−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−
Integer                  int
a(30).Integer            int
p.IntegerPtr             p.p.Integer
p.p.Integer              p.p.int

For complicated types, the process can be quite involved. Here is the reduction of a function pointer:

p.f(Integer, p.IntegerPtr, Size).Integer          : Start
p.f(Integer, p.IntegerPtr, Size).int
p.f(int, p.IntegerPtr, Size).int
p.f(int, p.p.Integer, Size).int
p.f(int, p.p.int, Size).int
p.f(int, p.p.int, int).int                        : End

Two types are equivalent if their full type reductions are the same. The following function will fully reduce a datatype:
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SwigType *SwigType_typedef_resolve_all(SwigType *ty)

Fully reduces ty according to typedef rules. Resulting datatype will consist only of primitive typenames.

29.8.5 Lvalues

When generating wrapper code, it is necessary to emit datatypes that can be used on the left−hand side of an assignment operator
(an lvalue). However, not all C datatypes can be used in this way−−−especially arrays and const−qualified types. To generate a
type that can be used as an lvalue, use the following function:

SwigType *SwigType_ltype(SwigType *ty)

Converts type ty to a type that can be used as an lvalue in assignment. The resulting type is stripped of
qualifiers and arrays are converted to a pointers.

The creation of lvalues is fully aware of typedef and other aspects of the type system. Therefore, the creation of an lvalue may
result in unexpected results. Here are a few examples:

typedef double Matrix4[4][4];
Matrix4 x;    // type = 'Matrix4', ltype='p.a(4).double'

typedef const char * Literal;
Literal y;    // type = 'Literal', ltype='p.char'

29.8.6 Output functions

The following functions produce strings that are suitable for output.

String *SwigType_str(SwigType *ty, String_or_char *id = 0)

Generates a C string for a datatype. id is an optional declarator. For example, if ty is "p.f(int).int" and id is
"foo", then this function produces "int (*foo)(int)". This function is used to convert string−encoded
types back into a form that is valid C syntax.

String *SwigType_lstr(SwigType *ty, String_or_char *id = 0)

This is the same as SwigType_str() except that the result is generated from the type's lvalue (as generated
from SwigType_ltype).

String *SwigType_lcaststr(SwigType *ty, String_or_char *id = 0)

Generates a casting operation that converts from type ty to its lvalue. id is an optional name to include in the
cast. For example, if ty is "q(const).p.char" and id is "foo", this function produces the string "(char
*) foo".

String *SwigType_rcaststr(SwigType *ty, String_or_char *id = 0)

Generates a casting operation that converts from a type's lvalue to a type equivalent to ty. id is an optional
name to include in the cast. For example, if ty is "q(const).p.char" and id is "foo", this function
produces the string "(const char *) foo".

String *SwigType_manglestr(SwigType *ty)

Generates a mangled string encoding of type ty. The mangled string only contains characters that are part of a
valid C identifier. The resulting string is used in various parts of SWIG, but is most commonly associated with
type−descriptor objects that appear in wrappers (e.g., SWIGTYPE_p_double).
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29.9 Parameters

Several type−related functions involve parameter lists. These include functions and templates. Parameter list are represented as a
list of nodes with the following attributes:

"type"        −  Parameter type  (required)
"name"        −  Parameter name  (optional)
"value"       −  Initializer     (optional)

Typically parameters are denoted in the source by using a typename of Parm * or ParmList *. To walk a parameter list,
simply use code like this:

Parm *parms;
Parm *p;
for (p = parms; p; p = nextSibling(p)) {
    SwigType *type  = Getattr(p,"type");
    String   *name  = Getattr(p,"name");
    String   *value = Getattr(p,"value");
    ...
}

Note: this code is exactly the same as what you would use to walk parse tree nodes.

An empty list of parameters is denoted by a NULL pointer.

Since parameter lists are fairly common, the following utility functions are provided to manipulate them:

Parm *CopyParm(Parm *p);

Copies a single parameter.

ParmList *CopyParmList(ParmList *p);

Copies an entire list of parameters.

int ParmList_len(ParmList *p);

Returns the number of parameters in a parameter list.

String *ParmList_str(ParmList *p);

Converts a parameter list into a C string. For example, produces a string like "(int *p, int n, double
x);".

String *ParmList_protostr(ParmList *p);

The same as ParmList_str() except that parameter names are not included. Used to emit prototypes.

int ParmList_numrequired(ParmList *p);

Returns the number of required (non−optional) arguments in p.

29.10 Writing a Language Module

This section briefly outlines the steps needed to create a bare−bones language module. For more advanced techniques, you should
look at the implementation of existing modules. Since the code is relatively easy to read, this section describes the creation of a
minimal Python module. You should be able to extrapolate this to other languages.
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29.10.1 Execution model

Code generation modules are defined by inheriting from the Language class, currently defined in the Source/Modules1.1
directory of SWIG. Starting from the parsing of command line options, all aspects of code generation are controlled by different
methods of the Language that must be defined by your module.

29.10.2 Starting out

To define a new language module, first create a minimal implementation using this example as a guide:

#include "swigmod.h"

#ifndef MACSWIG
#include "swigconfig.h"
#endif

class PYTHON : public Language {
public:

  virtual void main(int argc, char *argv[]) {
    printf("I'm the Python module.\n");
  }

  virtual int top(Node *n) {
    printf("Generating code.\n");
    return SWIG_OK;
  }

};

extern "C" Language *
swig_python(void) {
  return new PYTHON();
}

The "swigmod.h" header file contains, among other things, the declaration of the Language base class and so you should include
it at the top of your language module's source file. Similarly, the "swigconfig.h" header file contains some other useful definitions
that you may need. Note that you should not include any header files that are installed with the target language. That is to say, the
implementation of the SWIG Python module shouldn't have any dependencies on the Python header files. The wrapper code
generated by SWIG will almost always depend on some language−specific C/C++ header files, but SWIG itself does not.

Give your language class a reasonable name, usually the same as the target language. By convention, these class names are all
uppercase (e.g. "PYTHON" for the Python language module) but this is not a requirement. This class will ultimately consist of a
number of overrides of the virtual functions declared in the Language base class, in addition to any language−specific member
functions and data you need. For now, just use the dummy implementations shown above.

The language module ends with a factory function, swig_python(), that simply returns a new instance of the language class.
As shown, it should be declared with the extern "C" storage qualifier so that it can be called from C code. It should also return
a pointer to the base class (Language) so that only the interface (and not the implementation) of your language module is
exposed to the rest of SWIG.

Save the code for your language module in a file named "python.cxx" and. place this file in the Source/Modules1.1
directory of the SWIG distribution. To ensure that your module is compiled into SWIG along with the other language modules,
modify the file Source/Modules1.1/Makefile.in to include the additional source files. Look for the lines that define the
SRCS and OBJS variables and add entries for your language. In addition, modify the file
Source/Modules1.1/swigmain.cxx with an additional command line option that activates the module. Read the
source−−−it's straightforward.

Next, at the top level of the SWIG distribution, re−run the autogen.sh script to regenerate the various build files:
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$ sh autogen.sh

Next re−run configure to regenerate all of the Makefiles:

$ ./configure

Finally, rebuild SWIG with your module added:

$ make

Once it finishes compiling, try running SWIG with the command−line option that activates your module. For example, swig
−python foo.i. The messages from your new module should appear.

29.10.3 Command line options

When SWIG starts, the command line options are passed to your language module. This occurs before any other processing
occurs (preprocessing, parsing, etc.). To capture the command line options, simply use code similar to this:

void Language::main(int argc, char *argv[]) {
  for (int i = 1; i < argc; i++) {
      if (argv[i]) {
          if(strcmp(argv[i],"−interface") == 0) {
            if (argv[i+1]) {
              interface = NewString(argv[i+1]);
              Swig_mark_arg(i);
              Swig_mark_arg(i+1);
              i++;
            } else {
              Swig_arg_error();
            }
          } else if (strcmp(argv[i],"−globals") == 0) {
            if (argv[i+1]) {
              global_name = NewString(argv[i+1]);
              Swig_mark_arg(i);
              Swig_mark_arg(i+1);
              i++;
            } else {
              Swig_arg_error();
            }
          } else if ( (strcmp(argv[i],"−proxy") == 0)) {
            proxy_flag = 1;
            Swig_mark_arg(i);
          } else if (strcmp(argv[i],"−keyword") == 0) {
            use_kw = 1;
            Swig_mark_arg(i);
          } else if (strcmp(argv[i],"−help") == 0) {
            fputs(usage,stderr);
          }
          ...
      }
  }
}

The exact set of options depends on what you want to do in your module. Generally, you would use the options to change code
generation modes or to print diagnostic information.

If a module recognizes an option, it should always call Swig_mark_arg() to mark the option as valid. If you forget to do this,
SWIG will terminate with an unrecognized command line option error.
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29.10.4 Configuration and preprocessing

In addition to looking at command line options, the main() method is responsible for some initial configuration of the SWIG
library and preprocessor. To do this, insert some code like this:

void main(int argc, char *argv[]) {
   ... command line options ...

   /* Set language−specific subdirectory in SWIG library */
   SWIG_library_directory("python"); 

   /* Set language−specific preprocessing symbol */
   Preprocessor_define("SWIGPYTHON 1", 0);

   /* Set language−specific configuration file */
   SWIG_config_file("python.swg");

   /* Set typemap language (historical) */
   SWIG_typemap_lang("python");
}

The above code does several things−−it registers the name of the language module with the core, it supplies some preprocessor
macro definitions for use in input files (so that they can determine the target language), and it registers a start−up file. In this case,
the file python.swg will be parsed before any part of the user−supplied input file.

Before proceeding any further, create a directory for your module in the SWIG library (The Lib directory). Now, create a
configuration file in the directory. For example, python.swg.

Just to review, your language module should now consist of two files−− an implementation file python.cxx and a
configuration file python.swg.

29.10.5 Entry point to code generation

SWIG is a multi−pass compiler. Once the main() method has been invoked, the language module does not execute again until
preprocessing, parsing, and a variety of semantic analysis passes have been performed. When the core is ready to start generating
wrappers, it invokes the top() method of your language class. The argument to top is a single parse tree node that corresponds
to the top of the entire parse tree.

To get the code generation process started, the top() procedure needs to do several things:

Initialize the wrapper code output.• 
Set the module name.• 
Emit common initialization code.• 
Emit code for all of the child nodes.• 
Finalize the wrapper module and cleanup.• 

An outline of top() might be as follows:

int Python::top(Node *n) {

   /* Get the module name */
   String *module = Getattr(n,"name");  

   /* Get the output file name */
   String *outfile = Getattr(n,"outfile");

   /* Initialize I/O (see next section) */
   ...

   /* Output module initialization code */
   ...
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   /* Emit code for children */
   Language::top(n); 

   ...
   /* Cleanup files */
   ...

   return SWIG_OK;
}

29.10.6 Module I/O and wrapper skeleton

29.10.7 Low−level code generators

29.10.8 Configuration files

At the time of this writing, SWIG supports nearly a dozen languages, which means that for continued sanity in maintaining the
configuration files, the language modules need to follow some conventions. These are outlined here along with the admission that,
yes it is ok to violate these conventions in minor ways, as long as you know where to apply the proper kludge to keep the overall
system regular and running. Engineering is the art of compromise, see...

Much of the maintenance regularity depends on choosing a suitable nickname for your language module (and then using it in a
controlled way). Nicknames should be all lower case letters with an optional numeric suffix (no underscores, no dashes, no
spaces). Some examples are: foo, bar, qux99.

The numeric suffix variant, as in the last example, is somewhat tricky to work with because sometimes people expect to refer to
the language without this number but sometimes that number is extremely relevant (especially when it corresponds to language
implementation versions with incompatible interfaces). New language modules that unavoidably require a numeric suffix in their
nickname should include that number in all uses, or be prepared to kludge.

The nickname is used in four places:

usage transform

"skip" tag (none)

Examples/ subdir name (none)

Examples/GIFPlot/ subdir name
capitalize (upcase first
letter)

Examples/test−suite/ subdir name (none)

As you can see, most usages are direct.

configure.in
This file is processed by autoconf to generate the configure script. This is where you need to add shell script
fragments and autoconf macros to detect the presence of whatever development support your language module requires,
typically directories where headers and libraries can be found, and/or utility programs useful for integrating the generated
wrapper code.

Use the AC_ARG_WITH, AC_MSG_CHECKING, AC_SUBST macros and so forth (see other languages for examples).
Avoid using the [ and ] character in shell script fragments. The variable names passed to AC_SUBST should begin with
the nickname, entirely upcased.

At the end of the new section is the place to put the aforementioned nickname kludges (should they be needed). See Perl5
and Php4 for examples of what to do. [If this is still unclear after you've read the code, ping me and I'll expand on this
further. −−ttn]

Makefile.in
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Some of the variables AC_SUBSTitutued are essential to the support of your language module. Fashion these into a shell
script "test" clause and assign that to a skip tag using "−z" and "−o":

skip−qux99 = [ −z "@QUX99INCLUDE@" −o −z "@QUX99LIBS" ]

This means if those vars should ever be empty, qux99 support should be considered absent and so it would be a good
idea to skip actions that might rely on it.

Here is where you may also define an alias (but then you'll need to kludge −−− don't do this):

skip−qux = $(skip−qux99)

Lastly, you need to modify each of check−aliveness, check−examples, check−test−suite,
check−gifplot (all targets) and lib−languages (var). Use the nickname for these, not the alias. Note that you
can do this even before you have any tests or examples set up; the Makefile rules do some sanity checking and skip
around these kinds of problems.

Examples/Makefile.in
Nothing special here; see comments at top the of this file and look to the existing languages for examples.

Examples/qux99/check.list
Do cp ../python/check.list . and modify to taste. One subdir per line.

Examples/GIFPlot/Qux99/check.list
Do cp ../Python/check.list . and modify to taste. One subdir per line.

Lib/qux99/extra−install.list
If you add your language to the top−level Makefile.in var lib−languages, then make install will install all *.i
and *.swg files from the language−specific subdirectory of Lib. Use (optional) file extra−install.list in that
directory to name additional files to install (see ruby for example).

Runtime/Makefile.in
Add another make invocation to all, and a section for your language module.

Source/Modules1.1/Makefile.in
Add appropriate entries for vars OBJS and SRCS. That's it!

At some point it would be a good idea to use automake to handle some of these configuration tasks, but that point is now long
past. If you are interested in working on that, feel free to raise the issue in the context of a next−generation clean−slate SWIG.

29.10.9 Runtime support

Discuss the kinds of functions typically needed for SWIG runtime support (e.g. SWIG_ConvertPtr() and
SWIG_NewPointerObj()) and the names of the SWIG files that implement those functions.

29.10.10 Standard library files

Discuss the standard library files that most language modules provide, e.g.

typemaps.i• 
std_string.i• 
std_vector.i• 
stl.i• 

29.10.11 Examples and test cases

Each of the language modules provides one or more examples. These examples are used to demonstrate different features of the
language module to SWIG end−users, but you'll find that they're useful during development and testing of your language module
as well. You can use examples from the existing SWIG language modules for inspiration.

Each example is self−contained and consists of (at least) a Makefile, a SWIG interface file for the example module, and a
script that demonstrates the functionality for that module. All of these files are stored in the same subdirectory, and that directory
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should be nested under Examples/python. For example, the files for the Python "simple" example are found in
Examples/python/simple.

By default, all of the examples are built and run when the user types make check. To ensure that your examples are
automatically run during this process, see the section on configuration files.

29.10.12 Documentation

Don't forget to write end−user documentation for your language module. Currently, each language module has a dedicated chapter
(although this structure may change in the future). You shouldn't rehash things that are already covered in sufficient detail in the
SWIG Basics and SWIG and C++ chapters. There is no fixed format for what, exactly, you should document about your language
module, but you'll obviously want to cover issues that are unique to your language.

Some topics that you'll want to be sure to address include:

Command line options unique to your language module.• 
Non−obvious mappings between C/C++ and scripting language concepts. For example, if your scripting language
provides a single floating point type, it should be no big surprise to find that C/C++ float and double types are
mapped to it. On the other hand, if your scripting language doesn't provide support for "classes" or something similar,
you'd want to discuss how C++ classes are handled.

• 

How to compile the SWIG−generated wrapper code into shared libraries that can actually be used. For some languages,
there are well−defined procedures for doing this, but for others it's an ad hoc process. Provide as much detail as
appropriate, and links to other resources if available.

• 

29.11 Typemaps

29.11.1 Proxy classes

29.12 Guide to parse tree nodes

This section describes the different parse tree nodes and their attributes.

cdecl

Describes general C declarations including variables, functions, and typedefs. A declaration is parsed as
"storage T D" where storage is a storage class, T is a base type, and D is a declarator.

"name"          − Declarator name
"type"          − Base type T
"decl"          − Declarator type (abstract)
"storage"       − Storage class (static, extern, typedef, etc.)
"parms"         − Function parameters (if a function)
"code"          − Function body code (if supplied)
"value"         − Default value (if supplied)

constructor

C++ constructor declaration.

"name"          − Name of constructor
"parms"         − Parameters
"decl"          − Declarator (function with parameters)
"code"          − Function body code (if any)
"feature:new"   − Set to indicate return of new object.

destructor

SWIG−1.3 Documentation

29.10.12 Documentation 466



C++ destructor declaration.

"name"          − Name of destructor
"code"          − Function body code (if any)
"storage"       − Storage class (set if virtual)
"value"         − Default value (set if pure virtual).

access

C++ access change.

"kind"          − public, protected, private

constant

Constant created by %constant or #define.

"name"          − Name of constant.
"type"          − Base type.
"value"         − Value.
"storage"       − Set to %constant
"feature:immutable" − Set to indicate read−only

class

C++ class definition or C structure definition.

"name"          − Name of the class.
"kind"          − Class kind ("struct", "union", "class")
"symtab"        − Enclosing symbol table.
"tdname"        − Typedef name. Use for typedef struct { ... } A.
"abstract"      − Set if class has pure virtual methods.
"baselist"      − List of base class names.
"storage"       − Storage class (if any)
"unnamed"       − Set if class is unnamed.

enum

Enumeration.

"name"          − Name of the enum (if supplied).
"storage"       − Storage class (if any)
"tdname"        − Typedef name (typedef enum { ... } name).
"unnamed"       − Set if enum is unnamed.

enumitem

Enumeration value.

"name"          − Name of the enum value.
"type"          − Type (integer or char)
"value"         − Enum value (if given)
"feature:immutable" − Set to indicate read−only

namespace

C++ namespace.

"name"          − Name of the namespace.
"symtab"        − Symbol table for enclosed scope.
"unnamed"       − Set if unnamed namespace
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"alias"         − Alias name. Set for namespace A = B;

using

C++ using directive.

"name"          − Name of the object being referred to.
"uname"         − Qualified name actually given to using.
"node"          − Node being referenced.
"namespace"     − Namespace name being reference (using namespace name)

classforward

A forward C++ class declaration.

"name"          − Name of the class.
"kind"          − Class kind ("union", "struct", "class")

insert

Code insertion directive. For example, %{ ... %} or %insert(section).

"code"          − Inserted code
"section"       − Section name ("header", "wrapper", etc.)

top

Top of the parse tree.

"module"        − Module name

extend

%extend directive.

"name"          − Module name
"symtab"        − Symbol table of enclosed scope.

apply

%apply pattern { patternlist }.

"pattern"       − Source pattern.
"symtab"        − Symbol table of enclosed scope.

clear

%clear patternlist;

"firstChild"    − Patterns to clear

include

%include directive.

"name"         − Filename
"firstChild"   − Children

import
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%import directive.

"name"         − Filename
"firstChild"   − Children

module

%module directive.

"name"         − Name of the module

typemap

%typemap directive.

"method"       − Typemap method name.
"code"         − Typemap code.
"kwargs"       − Keyword arguments (if any)
"firstChild"   − Typemap patterns

typemapcopy

%typemap directive with copy.

"method"       − Typemap method name.
"pattern"      − Typemap source pattern.
"firstChild"   − Typemap patterns

typemapitem

%typemap pattern. Used with %apply, %clear, %typemap.

"pattern"      − Typemap pattern (a parameter list)
"parms"        − Typemap parameters.

types

%types directive.

"parms"        − List of parameter types.

extern

extern "X" { ... } declaration.

"name"       − Name "C", "Fortran", etc.
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