Safe Haskell | None |
---|
Feldspar.Core.Types
Contents
- data a :> b = a :> b
- newtype WordN = WordN Word32
- newtype IntN = IntN Int32
- data N8
- data N16
- data N32
- data N64
- data NNative
- data BitWidth n where
- bitWidth :: BitWidth n -> String
- data U
- data S
- data Signedness s where
- U :: Signedness U
- S :: Signedness S
- signedness :: Signedness s -> String
- type family GenericInt s n
- type family WidthOf a
- type family SignOf a
- fromWordN :: BitWidth n -> WordN -> GenericInt U n
- fromIntN :: BitWidth n -> IntN -> GenericInt S n
- genericLen :: BitWidth n -> [a] -> GenericInt U n
- type Length = WordN
- type Index = WordN
- data TargetArr n a = TargetArr (GenericInt U n) [a]
- class MonadType m where
- voidTypeRep :: TypeRep (m ())
- type Mut = IO
- type MArr a = IOArray Index a
- type Par = Par
- type IV = IVar
- newtype FVal a = FVal {
- unFVal :: a
- data TypeRep a where
- UnitType :: TypeRep ()
- BoolType :: TypeRep Bool
- IntType :: (BoundedInt (GenericInt s n), Size (GenericInt s n) ~ Range (GenericInt s n)) => Signedness s -> BitWidth n -> TypeRep (GenericInt s n)
- FloatType :: TypeRep Float
- ComplexType :: RealFloat a => TypeRep a -> TypeRep (Complex a)
- ArrayType :: TypeRep a -> TypeRep [a]
- TargetArrType :: BitWidth n -> TypeRep a -> TypeRep (TargetArr n a)
- Tup2Type :: TypeRep a -> TypeRep b -> TypeRep (a, b)
- Tup3Type :: TypeRep a -> TypeRep b -> TypeRep c -> TypeRep (a, b, c)
- Tup4Type :: TypeRep a -> TypeRep b -> TypeRep c -> TypeRep d -> TypeRep (a, b, c, d)
- Tup5Type :: TypeRep a -> TypeRep b -> TypeRep c -> TypeRep d -> TypeRep e -> TypeRep (a, b, c, d, e)
- Tup6Type :: TypeRep a -> TypeRep b -> TypeRep c -> TypeRep d -> TypeRep e -> TypeRep f -> TypeRep (a, b, c, d, e, f)
- Tup7Type :: TypeRep a -> TypeRep b -> TypeRep c -> TypeRep d -> TypeRep e -> TypeRep f -> TypeRep g -> TypeRep (a, b, c, d, e, f, g)
- FunType :: TypeRep a -> TypeRep b -> TypeRep (a -> b)
- MutType :: TypeRep a -> TypeRep (Mut a)
- RefType :: TypeRep a -> TypeRep (IORef a)
- MArrType :: TypeRep a -> TypeRep (MArr a)
- ParType :: TypeRep a -> TypeRep (Par a)
- IVarType :: TypeRep a -> TypeRep (IV a)
- FValType :: TypeRep a -> TypeRep (FVal a)
- argType :: TypeRep (a -> b) -> TypeRep a
- resType :: TypeRep (a -> b) -> TypeRep b
- data TypeEq a b where
- defaultSize :: TypeRep a -> Size a
- signEq :: Signedness s1 -> Signedness s2 -> Maybe (TypeEq s1 s2)
- widthEq :: BitWidth n1 -> BitWidth n2 -> Maybe (TypeEq n1 n2)
- typeEq :: TypeRep a -> TypeRep b -> Maybe (TypeEq a b)
- showTup :: [String] -> String
- type family TargetType n a
- class (Eq a, Show a, Typeable a, Show (Size a), Lattice (Size a)) => Type a where
- typeRepByProxy :: Type a => Proxy a -> TypeRep a
- data AnySize = AnySize
- anySizeFun :: AnySize -> AnySize
- anySizeFun2 :: AnySize -> AnySize -> AnySize
- type family Size a
- data RangeSet a where
- sizeToRange :: forall a. Type a => Size a -> RangeSet a
- tIntN :: Patch IntN IntN
- tWordN :: Patch WordN WordN
- tIndex :: Patch Index Index
- tLength :: Patch Length Length
- tArr :: Patch a a -> Patch [a] [a]
Heterogenous lists
Integers
newtype WordN
Target-dependent unsigned integers
Instances
Bounded WordN | |
Enum WordN | |
Eq WordN | |
Integral WordN | |
Num WordN | |
Ord WordN | |
Real WordN | |
Show WordN | |
Ix WordN | |
Typeable WordN | |
Arbitrary WordN | |
Bits WordN | |
Type WordN | |
Numeric WordN | |
Eq WordN | |
Ord WordN | |
Integral WordN | |
Bits WordN | |
Show (MArr a) | |
Type a => Type (MArr a) | |
Slice sl => Slice (:. sl (Data Length)) | |
Shape sh => Shape (:. sh (Data Length)) |
newtype IntN
Target-dependent signed integers
data N8
Type representation of 8 bits
data N16
Type representation of 16 bits
data N32
Type representation of 32 bits
data N64
Type representation of 64 bits
data NNative
Type representation of the native number of bits on the target
data BitWidth n where
data U
Type representation of "unsigned"
data S
Type representation of "signed"
signedness :: Signedness s -> String
type family GenericInt s n
A generalization of unsigned and signed integers. The first parameter represents the signedness and the sectond parameter the number of bits.
type family WidthOf a
type family SignOf a
fromWordN :: BitWidth n -> WordN -> GenericInt U n
fromIntN :: BitWidth n -> IntN -> GenericInt S n
genericLen :: BitWidth n -> [a] -> GenericInt U n
Arrays
data TargetArr n a
Array whose length is represented by an n
-bit word
Constructors
TargetArr (GenericInt U n) [a] |
Monadic Types
class MonadType m where
This class is used to allow constructs to be abstract in the monad
Methods
voidTypeRep :: TypeRep (m ())
Mutable data
Par Monad
Future values
newtype FVal a
Type representation
data TypeRep a where
Representation of supported types
Constructors
defaultSize :: TypeRep a -> Size a
signEq :: Signedness s1 -> Signedness s2 -> Maybe (TypeEq s1 s2)
Type equality on Signedness
type family TargetType n a
class (Eq a, Show a, Typeable a, Show (Size a), Lattice (Size a)) => Type a where
The set of supported types
Instances
Type Bool | |
Type Float | |
Type Int8 | |
Type Int16 | |
Type Int32 | |
Type Int64 | |
Type Word8 | |
Type Word16 | |
Type Word32 | |
Type Word64 | |
Type () | |
Type IntN | |
Type WordN | |
Type a => Type [a] | |
(Type a, RealFloat a) => Type (Complex a) | |
(Type a, Show (IORef a)) => Type (IORef a) | |
Type a => Type (FVal a) | |
Type a => Type (IV a) | |
Type a => Type (MArr a) | |
(Type a, Type b) => Type (a, b) | |
(Type a, Type b, Type c) => Type (a, b, c) | |
(Type a, Type b, Type c, Type d) => Type (a, b, c, d) | |
(Type a, Type b, Type c, Type d, Type e) => Type (a, b, c, d, e) | |
(Type a, Type b, Type c, Type d, Type e, Type f) => Type (a, b, c, d, e, f) | |
(Type a, Type b, Type c, Type d, Type e, Type f, Type g) => Type (a, b, c, d, e, f, g) |
typeRepByProxy :: Type a => Proxy a -> TypeRep a
Sized types
anySizeFun :: AnySize -> AnySize
anySizeFun2 :: AnySize -> AnySize -> AnySize
type family Size a
data RangeSet a where
A generalization of Range
that serves two purposes: (1) Adding an extra
Universal
constructor to support unbounded types (Range
can only
represent bounded ranges), and (2) pack a BoundedInt
constraint with the
RangeSet
constructor. This is what allows sizeToRange
to be defined as a
total function with Type
as the only constraint.