NS4

Configuration Management Tool
by Chris Mason (chris@noodles.org.uk)

User Guide
V4.3

24 November 2009

Contents
I [o Y Ui e o PRSP RR 4
2. MiniMumM ReqUIr@MIENTS ..o e 5
T L 151 = =Yoo F PRSPPI 6
4. COMMANA LINE ATGUIMENTS. ..ottt ettt b e et et e be e st e b e e ene e e e eenas 8
A DR @ 4 =] - TP 8
N 1 Lo =PRI 9
e T @ o [0 o L F PO U P PP POPPPP 13
Lely. ENVIFONMENT VAADIES . ..ot e e e e e e e e e e e e e eans 14
5. SPeCial Variables.oo e 14
5.1, STANAArd Variables ... e 15
5.2. CUSTOM VAriables ...ttt ettt be e e st e e sate e s e enbe e nneeeenee 15
5.3. Manipulating Special Variables 15
6. CONFIGUIALION FIlES ...t 17
6.1. CArtridges.yaml.....c..oi i e 17
0.2 NS YAM Lttt b ek e bt na et nb et e e e ree e 22
6.2.1. El@mMeNt ENCOAING ..ttt ettt 24
T I] QN d o TV PSP 25
(330 T €1 FoY o Y-1 @ o} 41 - E 26
T e TR e 013 27
T A I -1] oo SRR PPRP 30
ST A T i -1 0 1 oo sl 1 o OSSR 30
Y0 I T 1 - 1] o Lo ot 1 o TSRS 30
T Y 1= o £ S PTUPROURPRPTRN 31
T TR 1 1= o = oo o USSP RRIN 31
N I - 1 1=T o 31t o OSSPSR 32
o T @0 o) = 11 1= 34
303y 80 N[o 1= RSP RR 35
6.2.7.1. DYyNamic TransformMationsooiiiriiie ettt e e enreeesneee s 35
6.2.8. CONtAINET OPTIONS ..ciiiiiiiiiitite ittt e e e e e e e e e e e r et e e e e s e aanbbb e e e e e e e e e s annnrees 36
T T Y = Lo F= T e I @ o) o o L= OSSR 36
6.2.8.2. CUSTOM OPTIONS .. .eiiiiiiiiie ettt e e e e e e e s e e e e e e e e s bbb e e e e e e e e s annnbreeeeeens 40
2 Yo 1o AT T o] o =T SRR 43
I e o] g =TT Lo OO YA

v4.3.6

ST o o) AV =1 £ (o T =TT TP PPPPPPPPPPPRPPN L4
ST I o Yo [=X (oY TSR L
LT = L 2 (T g W o T L= RO PPTPRRN 46
1 o T Yal o TP PP PP TPPPPPPP 47
10.1. Pre-Defined Script Variablesoo oo 47
o e e T] o V7= 1 (o] o F PP 47
Ko B el o ol) (=] - OO 48

i Ko T e TR o YA V=T 1 o o (TP 48
10.1.4. SCHPE_HIMEBOUL ... e 49
10.2. Script Defined Variables ..o 49
Lo T T o X o T =T T OSSR 49
Lo A1 o o o T- Y1 o SRR 49
B Lo LU o o Yo 1) (SRR 49
10.6. RETUIN COUBS ..ottt ettt e oottt e e e a et e e e e st e e e e e ante e e e e anbeeeesamseeeesannaeeeeanbeeaeanes 49
20.7. SCIPTODJECT ...ttt 50
o Ty 8 TR 11 SRS 50
Lo Yy 20 T ol o Uo FER SO PUPRPPPPRR 50
o Ty 8 TR - | SRR 52
o Ty A« V- | PPN 52
Ko Ty 20 R oV Y-S SPPR 52
o Ty 28 ST [Tl S PPPR 53
Lo T Ay AV o1 Lo Yol QUSROS 53
10.7.8. Create_CONTIG_TIBE ettt ettt b et e et et e b e ne e e e e b e nneeennas 53
Lo By e 01U 4 o 10| ol 1 4 o 4 <1 RSP 54
10.7.20. QIff_CONTIGS 1ottt 54
10.7.11. OULPUL_CONTIG_diff .o s 54
10.8. DEMONSTIratioN SCIIPE ..utiiiiiiiiiiiiiiitiiit ettt e e e e et e e e e ee e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeees 54

V4.3.6

1. Introduction

ns4 is a powerful configuration management tool that allows running commands on just about anything that has a
CLI. Commands are defined within a configuration file, and when they are executed, the output can be sent to a
series of different types of server (transports) for archiving. As well as archiving configurations, it allows scripts to be
run on nodes; this allows configurations to be applied en masse and allows conditional logic so different bits of scripts
are run on different nodes.

ns4 started off as a tool to help in the automated backup of Cisco routers within a Service Provider's network. The
initial requirement of Cisco routers soon exploded into a series of other pieces of equipment made by numerous
vendors. Once simplistic configuration backup was sorted | started to look at how to automate tasks within our
network and the scripting capabilities were added to allow me to deploy configuration changes en masse. This
allowed people to write scripts which allowed them to audit their entire network by collecting information from the
nodes within the network and format it into a tabular view for easy auditing.

The main design goal of ns4 was to be stable and extremely fast - when you have 5,000 nodes you wish to process
you need to be very efficient. To be able to process that many devices efficiently | adopted a pre-forking model within
the code which allowed me to have an array of the nodes that each pre-forked child was able to process a batch of.
Once the children have finished processing a node it would send a status back to the parent through a Unix domain
socket. | devised an algorithm which determines the loading across pre-forked children and how many children to
pre-fork to provide optimal loading.

Be warned though, as nss is extremely powerful, it has the potential to do things very quickly so you need to be
careful as you could trash a network quite quickly if you try running the wrong commands. | claim no responsibility for
any network losses you experience as a result of running this tool.

You can always obtain the latest version of ns4 from http://www.noodles.org.uk/ns4.html or by going to
http://www.freshmeat.net/projects/ns.

v4.3.6

2. Minimum Requirements

ns4 doesn't really have any minimum requirements - except a Unix environment. ns is written in Perl so it requires a
Perl runtime environment to be able to run, but 9% of UNIX systems come with Perl as standard or can have Perl
installed quite easily. On top of the default Perl installation, ns4 requires the following mandatory additional Perl
modules to be installed:

Expect
YAML::Syck
File::Path

There are also additional optional modules which you will need to install depending on your configuration. Alerts and
Transports use different modules, but as you won't be using every different type of Transport then you won't need
every Perl module to be installed.

alert_smtp Net::SMTP
alert_http LWP::UserAgent
transport_ftp Net::FTP

transport_sftp Net::SSH2
Finally there are a few more Perl modules which are optional depending on the configuration:

Sys::Syslog
MIME::Base64
Net::SNMP

Without the Expect module then ns4 would be nothing, it uses this module extensively to be able to login to routers
and switches and run commands. However, be aware that the Expect module can sometimes be a complete arse to
install on some UNIX systems, but persistence usually works in the end (and the ability to hack Makefiles)!

Although | specifically mention UNIX, nsz is not limited to UNIX alone and was mostly developed under Linux. There
is also support under Microsoft Windows, not natively, but under Cygwin which allows you to have a UNIX
environment within Windows which provides a complete run-time environment for nss. Further information on
Cygwin can be found at http://www.cygwin.com.

v4.3.6

3. Installation
Within the ns4 distribution you will find the following files:
ns4 This is the main ns4 binary which contains all the complex stuff and black magic.
cfg/cartridges.yaml This is a sample cartridge file which contains some of the cartridges out of this document.

cfg/nsg.yaml This is a sample configuration file which contains the nodes which are used within the
examples in this document.

doc/ns43-ug.pdf This is the ns4 user guide which you are currently reading.

doc/changelog.txt This is the detailed change log which | maintain from version to version. It contains all the
major changes from one release to another.

scripts/meshping.nss This is an example script which can be used on Cisco routers that use IS-IS as their IGP. It
attempts to do a connectivity test from the node it is being run on to all the other nodes
within the IS-IS domain.

scripts/cdiff.nss This is an example script which shows an easy way to mimic basic RANCID functionality
through an nsg script. It performs a functional diff of a configuration files from routers.
You setup a local repository and then it will email out details of all the configuration
changes. It can easily be adapted to mimic full RANCID functionality.

Note: The files in red are mandatory files that are required for ns4 to work on a system. The other files are optional
and are not absolutely necessary.

Although the nss4 binary can be situated anywhere on your system, the default path for "cartridges.yaml" and
"ns4.yaml" is within "fetc/ns4". This default can be changed with the "-C" and "-R" command line options or through
environment variables.

If you are deploying ns4 into a shared user environment you are going to need to ensure you restrict the whole world
from running ns4. Normally you need a username and password before you are able to login to a node, but if ns4 is
incorrectly protected then anyone who has a shell account on the UNIX box could potentially have full access to your
data network.

Not only do you need to ensure there is adequate protection around the ns4 binary, but you also need to ensure you
have protected the configuration files from prying eyes. The encoding for passwords within the configuration file is
just that - encoding, it is not encryption and it isn't meant to be and is also optional. It is there to stop people looking
over your shoulder and reading your passwords when you are editing the configuration file.

If you are planning to be the only user running ns4 and you have it self-contained within your home directory then
you shouldn't have any concerns. However, you do need to ensure you have set sensible file permissions of 700 for
the ns4 binary and 600 for the configuration files.

From experience the best way to deploy nss in a shared user environment is by creating an ns4 group:

You would then ensure that the ns4 binary and configuration files are only readable by either root or people within
the ns4 group:

$ chown root:ns4 /usr/local/bin/ns4
+$ chmod 750 /usr/local/bin/ns4

V4.3.6

: $ chown root:ns4 /etc/ns4/cartridges.yaml
: $ chmod 640 /etc/ns4/cartridges.yaml

*'$ chown root:ns4 /etc/ns4/ns4.yaml
: $ chmod 640 /etc/ns4/ns4.yaml

This will ensure that only people within the nss4 group have access to execute the ns4 binary or read the configuration
files. You can then add users to the nss4 group when you wish to grant them access:

Note: The above syntax may be different on different flavours of UNIX. The above syntax was verified against Linux.

If you have a scenario where different sets of users have access to different nodes then you can create multiple
groups and multiple configuration files with different ownership.

v4.3.6

4. Command Line Arguments

We are going to start off by ignoring configuration files and cartridges and start getting a feel of what ns4 can do. We

are going to assume
Cisco routers.

If we run nss without

“ns4 v4.3.6

we have already written a configuration file and a cartridge for a small network consisting of

any arguments we are going to get the following usage screen:

- Configuration Management Tool
2 url http://www.noodles.org.uk/ns4.html
© by Chris Mason <chris@noodles.org.uk>

- Usage: ns4 <criteria> <action> [options]

Criteria:
-a
or -n 're'
or -N 'file'
or/and -t 're'@
Actions:
-r '[type]”
where 'type' is:
'byproxy "'
'bytag’
"raw’
'detail’
or -c 'xX[,X,..1,y
or -1 'x,y’
or -s 'x[,a=x,..]
or -d '[file]’
or -x
or -p '[logfile]’
Options:
-C 'file’
-R 'file'
-f '[file]’
-A
-V
-v@

4.1. Criteria

all nodes

node pattern
node list file
tag pattern

node summary report

group by proxy (default)

group by tag

raw output

detailed output

command = 'x', output file = 'y’
list file = 'x', output file = 'y’
script file = 'x', variables ('a=x', etc)
execute commands from configuration
test mode (verify node login only)

simple snmp poller

alternative configuration file
alternative cartridges file
create failed node list file
enable alerting of failures
output version information
verbosity level (max 4)

You must specify a set of criteria so ns4 knows what nodes you want to process. There are four separate ways you can
do this and each has its own advantages:

-a

-n 're'

This option allows you to select all nodes which are defined within the configuration file. It is a

synonym of "-n'.+".

This option allows you to specify a regular expression to select nodes. You can only specify this
option once, but you have the power of Perl extended regular expressions to be able to be as
flexible as you want.

-n'.+ Include all nodes.

-n '\PE' Include all nodes which begin with "PE".

-n '\(PE|PP|RR)' Include all nodes which begin with "PE", "PP" or "RR".
-n 'o1$' Include all nodes which end in "o1".

-n'A(?!.*PE)' Include all nodes which don't contain "PE". This uses a negative look
ahead assertion.

v4.3.6

-N 'file' This option allows you to specify a list of node names within a file. They will be treated as literal
values and won't get evaluated as regular expressions. Spaces or lines beginning with "#" are
ignored and it will expect to see a single node name on each line. The following can be used as
an example to select five nodes:

Any values which don't match a valid node name will be ignored.

-t're' This option allows you to specify a regular expression to select nodes which are associated with
certain tags. Tags allow you to group certain types of nodes together and a node can have as
many tags as you want. Tags are defined within the configuration file.

-t Include all nodes (this is the default if you omit this option). We use a "*"
here as you don't need to set a tag on a node.

-t '\PEs' Include all nodes which are associated with the "PE" tag.

-t'IP' Include all nodes which are associated with any tag that has the word "IP"
in it.

-t 'A?L*IP) Include all nodes which are associated with any tag that doesn't have the

word "IP" in it. This uses a negative look ahead assertion.
-t'Ng' Include all nodes which are not associated with a tag.

You may specify as many tag options as you like and they are all ANDed together so they must
all be true for a node to be selected.
You are only allowed to specify either "-a", "-n" or "-N" options as they are mutually exclusive, but you can specify the
"-t" option with any of them to limit down the scope of selected nodes. You don't have to specify either the "-a", "-n"
or "-N" options as you can just select nodes using the "-t" option.

Note: All node names and regular expressions are treated as case-insensitive so there is no difference between "PE"
and "pe".

4.2. Actions

Once you have selected the criteria you must select an action to perform on the nodes you have selected. Each action
is mutually exclusive with every other action so you can only specify a single action.

You have the ability within the configuration file to specify a list of commands as well as having the ability to run
adhoc commands from the command line. The reason why you can do both is for flexibility. Normally you would
configure your configuration backup commands within the configuration file, i.e. "show running-config" for your
Cisco routers. You would then schedule nsg4 to run through a crontab using the "-d" option and your configurations
are backed up, but you also have the ability of running adhoc commands or scripts on all or a selection of your nodes
any time you want.

The output from the commands defined within the configuration file is not written to a local file. They are sent using

a transport to your archive server - admittedly you could configure a transport on localhost. On the other side of the
coin, when you run adhoc commands from the command line they are written to a local file and don't get sent to your

V4.3.6

10
archive server. This decision was made so you don't get every user running this tool making a mess of your config
archive with every single different adhoc command they want to run from the command line.

Normal users shouldn't be allowed to modify your configuration file so the administrator has complete control over
what outputs are sent to the archive server on a regular basis.

-r '[type]' This option generates a node summar report of all the nodes which match the criteria. You have
the ability to pass an optional "type" parameter which can be one of the following:

byproxy This is the default report output type and will sort and group the nodes
into their different proxy servers and then group by tag.

bytag This output looks the same as "byproxy", except that it will group by tag
and then by proxy.
raw This format allows you to export the data so you are able to look at the

raw inventory in Excel. The format is comma separated.

detail This format allows you to see all the relevant data associated with a node
in ns4. It outputs all the data that has been input into the configuration
file.

If you run ns4 without specifying any "type" field then we get the default format which gives us
the following:

1 ns4 v4.3.6

E Configuration Management Tool

url http://www.noodles.org.uk/ns4.html
E by Chris Mason <chris@noodles.org.uk>

: [Proxy: ssh-proxy.mysite.org.uk] (nodes = 9)
[Tags: CISCO, SP-LAB]

- PE@1-201 .. 172.16.0.201 /SP-LAB
- PE@2-202 .. 172.16.0.202 /SP-LAB
- PE@3-203 .. 172.16.0.203 /SP-LAB
- PE@4-204 .. 172.16.0.204 /SP-LAB
- PE49-249 .. 172.16.0.249 /SP-LAB
- PPO1-101 .. 172.16.0.101 /SP-LAB
- PPO2-102 .. 172.16.0.102 /SP-LAB
- PPO3-103 .. 172.16.0.103 /SP-LAB
- PPO4-104 .. 172.16.0.104 /SP-LAB

* [Proxy: host.jump.org -> LAB-TS] (nodes = 6)
[Tags: ALCATEL, SDD-LAB]

- PE-01 100.100.100.1 /SDD-LAB
- PE-02 100.100.100.2 /SDD-LAB
- PE-03 100.100.100.3 /SDD-LAB
- PE-04 100.100.100.4 /SDD-LAB
- PE-05 100.100.100.5 /SDD-LAB
- PE-06 100.100.100.6 /SDD-LAB

* Total Nodes: 15

The above output is first grouped into proxies, then grouped into tags and within each group we
have the node name, address and then the optional location which will define the directory
structure on the archive server. At this point some of the columns might not make much sense,
but we will deal with them when we look at the configuration files.

-d ‘[file]’ This option allows you to run ns4 and capture the output from the commands defined within the

configuration file. The outputs are sent to your defined transports and this allows you to create a
configuration backup archive.

V4.3.6

-¢'x[,...1,y'

-1 leyl

11

There is an optional ‘[file]’ parameter which allows you to store the outputs locally as opposed to
sending to a transport. This could be useful if you wanted to send a local copy of the outputs to a
customers, etc.

This option allows you to run adhoc commands, but the output will be sent to a local file. Within
the syntax you need to specify a command(s) (x) and a local file to output the results to (y).

-n '"PEo1s'
-c 'show clock, PEo1.txt'

This will run the command on the node "PEo1" and will
send the output to a local file called "PEoz1.txt".

-a This will run the command on all nodes and will create
-c 'show clock, [Node].[Date].txt' dynamic local files based on the values within the
brackets® at run-time.

-a This will run the command on all nodes and will output all
-c 'show clock, all-nodes.txt' the nodes to the same file. If you select multiple nodes
then the output is appended to the local file.

Within the syntax you can specify as many commands as you want, but you must ensure that
the last element is a local file to output the results to. An example of this could be:

-a This will run the command on all nodes and will create
-c 'show run, show diag, show dynamic local files based on the values within the
environment, [Node].[Date].txt' brackets® at run-time.

*The values within brackets ([Node] and [Date]) are called special variables. Special variables are
talked about later on, but they allow dynamic content to be substituted at run-time.

This option allows you to run an adhoc list of commands and the output will be appended to a
local file. Within the syntax you need to specify a list file (x) and a local file to output the results
to (y).

In the below example of a list file we are going to assume we are doing a health check of a Cisco
router before an upgrade so it contains some commands which you might use:

- show version
: show interfaces description

: show running-config
* show mpls forwarding-table

In the examples below we are going to assume the above list is contained within a file called
"cmds.txt";

-n '"PEo1s'
-I'cmds.txt, PEo1.txt'

This will run the commands within "cmds.txt" on the
node "PEo1" and will send the output to a local file called
"PEo1.txt". The output from the different commands will
be appended to "PEo1.txt".

-a This will run the commands within "cmds.txt" on all

-I'cmds.txt, [Node].[Date].txt' nodes and will create dynamic local files based on the
values within the brackets™ at run-time. This will generate
a separate local file for each node which will have all the
commands within "cmds.txt" appended to each file.

-a
-l'ecmds.txt, all-nodes.txt'

This will run the commands within "cmds.txt" on all
nodes and will output all the nodes with all the

v4.3.6

-p ‘[logfile]’

12

commands to the same file. If you select multiple nodes
then the output is appended to the local file.

ns4 also supports entering sub-modes so we are able to enter different modes of operation to
allow us to collect the output from different commands without the need of a script. If you wish
to do this then you can use the braces syntax demonstrated below to specify the command and
the new prompt that will be used (it redefines the default prompt for all subsequent commands
until it is redefined again). If we omit the prompt then we will use the default node prompt.

. show running-config

* {admin, ~.*[Node]\(admin\)#}

: show running-config (admin show running-config)
- {exit}

In the above example we also have the ability to set an alias for the command in case we
experience the example above when the command is the same within both modes. This will
allow us to include the command alias within the output file.

Note: The prompt within the above syntax for sub-modes is treated as a reqular expression so
you need to ensure that it has been escaped if you are using characters which could potentially
be treated as regular expressions that you wouldn't want to.

Note: If you do enter a sub-mode then you need to ensure that you leave the sub-mode before
ns4 attempts to finish otherwise it will not see the correct prompt that it expects.

‘The "-I" argument also supports special variables like the "-c" argument. Please see the "-c"
argument for brief information on special variables.

This option tells ns4 to login to a node to verify that the login credentials work, etc. It won't
execute any commands on a node — the only exception being commands which are defined
within the “pre” and “post” statements of cartridges.

This options can be used when you are adding new nodes to the ns4 configuration and you don't
want to mask our all the commands you have defined within the configuration.

This is a new addition to ns4 which some people may say doesn’t really fit in with the premise of
ns4. However, due to the framework that ns4 provides it makes it very simple to implement.
This feature only works for nodes which are directly connected as you are unable to proxy SNMP
requests — nss will check that a node doesn’t have a proxy defined.

Within the container options you then define the “snmp_community” and “snmp_oids"
attributes which are used when polling the devices. Optionally you can specify a “logfile” which
is used to store the results to, as well as the screen.

In the snippet below is an example of specifying a couple of SNMP OIDs to monitor free memory
and CPU utilisation of a router:

- container:
node:
- {id: "R1", address: "172.16.0.101"}
options:
snmp_oids:
- {id: "Free Mem", oid: "1.3.6.1.4.1.9.9.48.1.1.1.6.1"}
- {id: "cpu", oid: "1.3.6.1.4.1.9.9.109.1.1.1.1.7.1"}

snmp_community: "CISCO"

V4.3.6

-s 'x[,a=x,...]"

4.3. Options

13

This option allows you to run a custom script on all the nodes which match the criteria. This is a
very powerful option and you can do really bad things if you get this wrong. Please test all
scripts in a lab environment before you attempt to run them on a production network.

There is a separate section later on which deals with scripts in quite a lot of detail, but at the
moment all you need to know is that you can pass variables into scripts from the command line.
You would normally specify the name of the script file (x) and then you can pass numerous script
variables using the syntax "variable_name=value".

The only part of this program which requires you to know a programming language is scripts.
However, this program allows you to do an awful lot without ever touching scripts. If you wish to
write your own scripts then a basic knowledge of Perl is recommended.

-n '"PEo1s$' This would run the script "script.nss" on the node "PEo1".
-s 'script.nss’

-n 'APE' This would run the script "script.nss" on all nodes which
-s 'script.nss,mtu=1500"' start with the letters "PE". It would also pass through a

script variable called "mtu" which you could access
through your script.

-a This is a potentially very dangerous syntax as you are

-s 'script.nss, protocol=bfd' running a script on all nodes within the configuration file.
Be aware that it is very unlikely that you can write a
generic script which can be run on multiple different
nodes made by different vendors.

Once you have specified the criteria and action arguments you can then specify some optional options.

-C 'file'

-R 'file'

-f'[file]'

-V

By default the configuration file is "fetc/ns4/nsg.yaml", but if you wish to define a different
configuration file for each of your different networks then you can specify an alternative one on
the command line. This option takes the highest precedence against ns4 defaults and
environment variables.

By default the cartridges file is "/etc/ns4/cartridges.yaml”, but if you wish to define a different
cartridges file then you can specify an alternative one on the command line. This option takes
the highest precedence against nss4 defaults and environment variables.

If you specify this option then ns4 will create a file in the current directory which contains a list of
the nodes which failed. Once this file has been created it can then be passed back to nss using
the "-N" parameter to troubleshoot the nodes to determine why they failed. If you don't specify
an optional file then ns4 will use "ns4.[PID].failed" in the current directory, but you do have the
option to overwrite this with a specific file.

Within the configuration file you can define alerts which allow you to define different methods
of informing people about failed nodes. Defining alerts within the configuration file will be dealt
with in the forthcoming sections on the configuration files.

You would usually use this option if you ran ns4 from a crontab backing up node configurations
on a daily basis. Not only is it useful to know if a config backup failed, but it can also alert you to
connectivity issues with nodes in your network which could be affecting customers.

This option is used to output version information about Perl and the different versions of

modules which you have loaded that nss depends on. This option can be used on it's own
without any critieria or action parameters and is used to output information which should be

v4.3.6

14

used when reporting bugs.

-v This option is more of a troubleshooting option than one you would use regularly. You can
specify this option more than once to increase the verbosity level. There are two main verbosity
levels at the moment:

This will show you informative messages about what ns4 is currently doing. Within the
current version it tells you when it is connecting to proxies and nodes and it also outputs
the last line that didn't match on login/command/script timeouts.

This will show you what commands nsg is executing on what nodes — even if they are being
executed through scripts.

This will show you what nsg4 is doing and what responses it is getting back. If you are
having issues logging into a node then this could tell you where it is failing. Be careful
when running this command when you have selected multiple nodes as the output could
get quite messy and intertwined.

4

This will go one step further from 3 above and will include the internal Expect logic used to
match strings so you can see where it is actually failing.

4.4. Environment Variables

ns4 supports the use of environment variables to enable the user to change some defaults which are specified within
the nsz program. This can be useful if you deploy ns4 into a user environment where you don't have root access and
you don't want to keep on specifying the "-C" and "-R" command line options every time you run ns4:

NS4_CFG_FILE

NS4_CARTRIDGES_FILE

NS4_Al

This allows you to overwrite the default ns4 configuration file of "/etc/ns4/ns4.yaml"
with the contents of this environment variable. You can still use the "-C" command line
option to overwrite this value.

This allows you to overwrite the default ns4 cartridges file of "/etc/nss/cartridges.yaml|"
with the contents of this environment variable. You can still use the "-R" command line
option to overwrite this value.

When logging commands to a syslog server using the “syslog_facility” global option the
current user that ns4 is running under is also written to syslog to provide accountability
of what users run what commands on your network. If using ns4 in a web environment
where nsg is launched from a CGl script the actual user will be hidden as ns4 will be run
as the same user as the CGI script — this user is usually “www-data”. By setting this
environment variable just before you launch ns4 allows you to pass additional
information that is written to syslog to allow you to identify users.

Note: Environment variables are ignored if they don't contain any textual value and the ns4 defaults will be used.

5. Special Variables

We have looked at special variables briefly during our look at the command line arguments, but as the next few
sections use special variables it is probably about time we covered them in detail. Special variables allow dynamic
content to be used at run-time so we can do something based upon the node which we are currently dealing with.

V4.3.6

15

Special variables are defined through the use of brackets [] and will be substituted for the literal text. This is the
standard format on the command line and within cartridges, but they are referred to slightly differently in scripts. In
scripts they use the "dvar" method of the ScriptObject and the brackets are then omitted - but the same format is
used that would have been used within the brackets. This will come apparent when we look at scripts in later
sections.

5.1. Standard Variables

These are variables which are defined within the core ns4 program as they are not vendor specific. These allow users
to access information which has been specified in the configuration file:
[Node] Thisisthe current name of the node (i.e. PEo1)
[PID] Thisis the current parent PID of nsy4
[Proxy] Thisisthe current name of the proxy (i.e. ssh-proxy)
[Date] Thisisthe current date in the format of YYYYMMDD (i.e. 20080122)
[Time] Thisisthe current time in the format of HHMMSS (i.e. 170322)
[P:Username] This is the current username of the proxy (i.e. guest)
[P:Address] This is the current address of the proxy (i.e. 172.16.0.101)
[N:Username] This is the current username of the node (i.e. guest)
[N:Address] Thisisthe current address of the node (i.e. 172.16.0.101)
[N:Prompt] Thisis the current prompt of the node (i.e. [Node]#)
[N:Tags] This contains a comma separated list of all the tags associated with the node (i.e. CISCO)
[N:Location] This contains the “location” that is defined within the configuration file
5.2. Custom Variables
Custom variables, also known as Custom Container Options allow you to specify vendor specific information within
the configuration file without having to place vendor specific code within nss. The enable password on a Cisco router
is a prime example of a custom variable:

[C:*] You would substitute the * for a valid custom container option.

If you defined a customer container option called "enable" within the configuration file, then you could use that value
within the cartridge by using the syntax "[C:Enable]".

Note: If you attempt to use a custom variable which doesn't exist then no substitution will occur.
5.3. Manipulating Special Variables

These are special variables which allow you to manipulate the contents of special variables. There are four of these
variables which allow you to match contents at the beginning or at the end.

[MATCH_L* X,C] Within this syntax the X is replaced with the name of a special variable that you wish to
[MATCH_L?,X,C]1 manipulate. The Cis a single character that will specify where the match stops and the '*' or '?'

indicates whether it is a greedy or standard match.

To demonstrate this we can use a node of 'PE_oo1_RP1' and then see what happens with the
following examples:

v4.3.6

16

: [MATCH_L*,Node, _]

In the above example this will return all the characters within the special variable [Node] that are
before the last'_". So, if we use our example above then we are going to swap this for 'PE_oo1".

In the above example this will return all the characters within the special variable [Node] that are
before the first'_'. So, if we use our example above then we are going to swap this for 'PE'.

Note: If the character 'C' is not detected within the string then it will return the entire string.

[MATCH_R*,X,C] This command uses the same syntax from the above example, but instead of matching from the
[MATCH_R?,X,C] left, we use the same theory but match from the right.

v4.3.6

17

6. Configuration Files

ns¢ uses two different configuration files: "cartridges.yaml" and "ns4.yaml". | have picked YAML, a data-centric mark-
up language for the format of the configuration files because it is best suited for hierarchical configuration files which
fits our requirements nicely. | did originally start off with XML, but its bloat soon become apparent when it started to
affect loading times of ns4, so | decided to move to a more lightweight approach.

| am not going to go into the details of YAML, as | intend that you learn how to write configuration files for ns4 as
opposed to learning how to write YAML. | use an extremely basic subset of the YAML language and don't touch some
of the more complicated constructs, but if you wish to learn it in more detail then you can find more information at
http://yaml.org/spec/current.html. We currently only support version 1.0 of the YAML specification as it covers
everything which we need.

YAML uses indentation to denote hierarchy, but be aware that indentation is done by the use of spaces and not tabs -
tabs are strictly prohibited in YAML. This is something to be aware of if your editor doesn't automatically convert
tabs into spaces when it saves your file.

As with most modern languages there are multiple different ways to write the same thing, YAML is no exception. It
supports a compressed view as well as an expanded view of data or a mixture of both. Throughout this guide | have
ensured that | have used the fully expanded format of YAML, to be consistent, but there are shortcuts which can be
used to create a more compact view.

Note: The YAML specification defines that all YAML files (including "cartridges.yaml" and "ns4.yaml") must start with
the "---" sequence on a single line to denote the beginning of the file.

6.1. cartridges.yaml

Based on my early requirements of multi-vendor | needed a way to define cartridges that allowed me to define rules
about how to login to different pieces of kit. It was important that people could write cartridges who didn't know how
to program and | needed a modular approach so | could keep them isolated from the main program. By using
modular cartridges this allowed nss to be completely multi-vendor as there was no vendor specific logic found within
the main program.

Every node within the configuration file must be associated with a cartridge - it is like a label which tells the program
what sort of node it is and how to login/logout from it.

The excerpt below is the cartridge schema written in YAML. It defines the hierarchical rules about what elements can
exist where within a cartridge. Within YAML, the hyphen "-" denotes that it is a list of objects following (i.e. the
hyphen under the cartridge indicates that we are expecting one or more cartridges below). The hyphen can be
omitted if there is only a single element within the list.

* cartridge: MANDATORY
id: MANDATORY
prompt: MANDATORY

expect: OPTIONAL
value: MANDATORY
send: MANDATORY
value: DEPENDS
pre: OPTIONAL

expect: OPTIONAL
value: MANDATORY
send: MANDATORY

prompt: OPTIONAL

value: DEPENDS

v4.3.6

18

expect: OPTIONAL

value: MANDATORY
send: MANDATORY
prompt: OPTIONAL
value: DEPENDS
options: OPTIONAL
tag: OPTIONAL

terminator: OPTIONAL
pre_login_seq: OPTIONAL
logout_cmd: OPTIONAL

rawpty: OPTIONAL
alt_username_prompt: OPTIONAL
alt_password_prompt: OPTIONAL

| am going to start by creating a basic cartridge for us to use for Cisco routers and then we are going to extend this
cartridge as we explain more from the schema. The basic concept of a cartridge is to define the prompt that you
expect to see when you login to a node. Within a cartridge there are two mandatory elements: id and prompt.

- cartridge:
= id: cisco-ios
- prompt: "~.*[Node].*>\\s*"

Note: The value of prompt is a reqular expression and we support the use of Perl's special escape sequences (i.e. \w,
\W, \s, \S, \d, \D, etc), but they need to be escaped so the meaning can reach the interpreter and can be interpreted
correctly.

Now ns4 is able to determine when it has successfully logged into a node as it knows what prompt it is expecting. You
will see the use of special variables in the above example which allows us to customise the prompt for every different
node we login to. Normally, once we are logged into a node we would run through the commands defined within the
configuration file then we would exit. When we exit from a node we would expect to see the prompt we have defined
within our proxy configuration to know we have logged out from the node successfully.

As well as the id and prompt elements, cartridges also support pre and post elements. The pre element allows us to
run commands defined within the cartridge before we declare that we are logged into a node and give control back to
ns4. The post element allows us to run commands before we logout from a node, or it can be used to actually logout
from a node if the logout procedure is slightly different from what ns4 does by default.

Normally, when you run a command on a Cisco router it uses a pager which pauses at the end of every page. This
doesn't really work that well on non-interactive scripts so there is a command which we can type that disables this:
"terminal length o". We can use the pre element to execute this command before control is given back:

: cartridge:
id: cisco-ios
prompt: "~.*[Node].*>\\s*"
pre: terminal length ©

Note: When we see the word "DEPENDS" within the YAML schema it usually relates to the value element. Within
YAML, if you are only defining a single value within an element then that value will get assigned to the value element.
If you define multiple elements within an element then you need to specially define the value element. There are two
special elements which can coexist alongside the value element within the cartridge configuration file: expect and
prompt.

Another way of writing the above example to explain this is:

V4.3.6

19

: cartridge:
id:
value: cisco-ios
prompt:
value: "~.*[Node].*>\\s*"
pre:
value: terminal length ©

The above example doesn't really help us on a Cisco router if we need to execute commands from privileged mode
(i.e. enable mode). By default you are put into un-privileged mode and you need to execute the "enable" command
before you enter privileged mode. The two different modes are differentiated through the prompt (in privileged
mode the prompt ends with a "#" as opposed to a ">" in un-privileged mode).

As there is no vendor specific logic within nsg it doesn't know what privileged mode is or an enable password. This
means we have to define one using custom container options within the configuration file and you have to program
the cartridge yourself. There are generally multiple different ways to do the same thing in life, and this is no
exception. We can either use the prompt element, or we can extend the pre element to support this. They have a very
subtle difference - the prompt element will do something based upon the prompt it finds, but the pre element will do
it regardless of the prompt. In this scenario we only want to attempt to enter privileged mode if we are not already in
it so the prompt element works well, however, we are going to extend the pre element to start with.

We have this idea of an expect element which allows us to do something based on what we find. It allows us to put
conditional logic into cartridges and is what makes them so powerful and flexible. Within the schema above the pre
element is defined as a list, so we can support multiple occurrences:

cartridge:

id: cisco-ios

prompt: "~.*[Node].*>\\s*"
pre:

terminal length ©

value: enable

expect:

value: "Password:"

send: "[C:Enable]"
prompt: "~.*[Node].*#\\s*"

Note: If we have a blank send element then we will send a single CR or whatever the default terminator is.

Both the pre and post elements support a prompt element, but this prompt element is slightly different from the main
prompt element at the top level of the cartridge. The prompt element within the pre and post elements allows us to
rewrite the prompt as we go along, so every time we hit a prompt element we change what ns4 expects the prompt to
be for the next action. The main prompt element at the top level specifies what we should initially get when we login
to the node.

So, we start off by sending through "terminal length o" and we expect the prompt to still be the same prompt we
defined at the beginning (i.e. "A.*[Node].*>\\s*"). We then send through "enable" and we are expecting the prompt
to be "A.*[Node].*#\\s*", however, we know that we are going to be prompted for a password and if we get that
prompt we are going to send "[C:Enable]" which is the enable password defined within the custom container options
(explained later). If the password is accepted then the prompt is going to match and ns4 will set the internal prompt it
expects, to be the privileged version.

However, this cartridge has quite a serious flaw - you can login to a Cisco router and be put automatically into
privileged mode. If this happens then you would never match the top level prompt element of "A.*[Node].*>\\s*" and
it would time out waiting for this prompt. This is where we can use the expect element within the prompt element to
allow us to work regardless of the mode you login as:

v4.3.6

20

: cartridge:
id: cisco-ios
prompt:
expect:

value: "~.*[Node].*>\\s*"
send: enable

value: "Password:"

send: "[C:Enable]"
value: "~.*[Node].*#\\s*"
pre: terminal length ©

In the example above we define the value of the prompt to be what we expect to see (i.e. the privileged prompt) and
we can define expect elements in case we find something else. This works slightly different to the pre element as it
allows us to do something before we hit the initial prompt, whereas the pre element must match the initial prompt
first. The expect elements are optional elements which define what to send if we see the text which they refer to.

So, if we come across an un-privileged prompt then we are going to send the command "enable". When we receive
the prompt for the password we are going to send the enable password. Hopefully at the end of this we should get
the correct prompt and then we are going to move onto the pre element.

The pre element has a partner which is the post element which works when you are logging off from a node. This can
be used to dismiss messages asking you to save configs or messages asking if you are sure you want to quit. As our
Cisco routers don't generally prompt when you logoff we are going to assume it asks if you are sure you want to quit:

‘ cartridge:
id: cisco-ios
prompt:
expect:

value: "~.*[Node].*>\\s*"
send: enable

value: "Password:"
send: "[C:Enable]"
value: "~.*[Node].*#\\s*"
pre: terminal length ©
post:
value: exit
expect:
value: "are you sure"
send: yes

The post element is going to cause ns4 to send "exit", however we have omitted the prompt element because a little
bit of magic happens here. ns4 knows that the last element within a post element needs to logout from the node, this
means it knows that the next prompt it should receive will be the proxies' prompt, or an EOF when we aren't using a
proxy. In the above example, if we are prompted with the text "are you sure" then we are going to send "yes". The
above is a very simple example, but it works exactly the same as the pre element.

Note: If you specify the post element, then nsz assumes you are going to deal with logging off from the node and will
not send the logout sequence, even if it is specified through the logout_cmd element. You will need to ensure that the
last element within a post element is the logout sequence and the prompt element will be ignored if you provide it. As
stated above, ns4 will automatically determine what prompt it expects.

Note: The value you specify within the pre and post element will be treated as literal values, with the exception of a
special escape sequence. The sequence "\cC", when specified as the complete value element will disconnect the

v4.3.6

21

session and report a successful logout. This sequence is for terminal server support which will generally require you to
send an escape sequence to be able to disconnect from the line:

id: cisco-ios-via-ts
pre: terminal length ©
prompt:
expect:
- {value: "console disabled", send: "\cC"}
- {value: "~.*[Node].*>\\s*", send: "enable"}
- {value: "Password:", send: "[C:Enable]"}
value: "~.*[Node].*#\\s*"
post:
expect: {value: "\r\n\r\n\r\n", send: "\cC"}
value: exit
options:
pre_login_seq: "\r

Within the above configuration you will see an example of implementing a cartridge that allows you to connect
through a terminal server. When you are connecting to nodes through a terminal server it is advisable to use the null
proxy - if your sessions go through a proxy to reach a terminal server then ns4 will need to reconnect through the
proxy for every session.

Although my examples are not overly complex, | hope they do the job. As you can see, when you use the pre, post and
prompt elements with the expect element you could potentially log into any node regardless of what it throws at you!

Finally we have the cartridge options which are listed below:

pre_login_seq This element has been introduced for terminal server support. This enables you to
connect to a node which is connected to a line of a terminal server. The reason for this
command is to be able to "wake up" the line to let the terminal server know there is
someone connected to the line. Normally when you connect to a node behind a
terminal server you need to send an initial carriage return before you are connected to
the device. The pre_login_seq element allows you to specify what character is initially
sent.

alt_username_prompt By default nsz will look for a specific prompt to identify the username prompt. If the
node has a custom login prompt then we may specify a regex within this element which
will be used instead of the default regex. As with the prompt element you need to
ensure that you escape all special characters.

alt_password_prompt By default ns4 will look for a specific prompt to identify the password prompt. If the
node has a custom password prompt then we may specify a regex within this element
which will be used instead of the default regex. As with the prompt element you need to
ensure that you escape all special characters.

rawpty This element allows you to specify whether the node supports disabling of local echo.
By default ns4 will attempt to disable local echo as it makes the transfer more
pipelined, but it is unaware if it is successful or not so it needs to be told if a node
supports disabling of local echo. By default it assumes that no nodes support disabling
of local echo which is why you need to specifically state whether it does support it. If
you don't specify a node supports disabling of local echo and it does, then you will find
the first line of your output missing. The rawpty element within the cartridge cannot be
used to disable ns4 attempting to disable local echo (except for null proxy - explained
below), but the rawpty element within the proxy can be used to disable it as nsg4
attempts to disable local echo on a per-connection basis.

If we decide to access our node without going through a proxy (null proxy) then the
rawpty element within the cartridge will not attempt to disable local echo if you

V4.3.6

22

explicitly set this value to "no".

terminator This element controls the end-of-line termination character that ns4 sends when it is

(default: "LF") sending commands to a node. By default ns4 will use LF (\n) as the default line
terminator, but some nodes require CRLF (\r\n). You can specify as many variants of the
terms CR or LF within this value.

logout_cmd This element allows you to tell ns4 to send a separate exit sequence as opposed to

(default: "exit") "exit". This allows you to send "logout" as an alternative if the node supports this.
However the use of the post element will overwrite the exit sequence and ns4 expects
you to logout from the node using the post element if supplied.

[tag] This element works the same as the tag element within the node options. Any tags
which you specify within this element are combined with the tag elements within the
node options. This allows you to set tags related to different vendors. You can select all
the Cisco routers, or switches based on tags without having to define them within the
node options.

Note: The brackets [] indicate that this element supports a list to specify multiple entries.
6.2. nsg.yaml

Compared to cartridges, the main configuration file is relatively easy. The only slightly complex difference between
cartridges and the main configuration file is that the latter supports hierarchical inheritance. Nodes have to be
defined within containers and containers can be defined within containers to provide inheritance. The schema for the
main configuration file is as follows:

: syslog_facility: OPTIONAL

. gpg_path: OPTIONAL

: terminator: OPTIONAL

. default_report_type: OPTIONAL

: explicit_null_tag: OPTIONAL

: min_nps_null_proxy: OPTIONAL

© max_sessions_null_proxy: OPTIONAL
* socks_wrapper: OPTIONAL

. max_buffer_kb: OPTIONAL

. proxy: MANDATORY

id: MANDATORY

address: OPTIONAL

username: MANDATORY

ask: OPTIONAL

type: DEPENDS

password: MANDATORY
encoding: OPTIONAL

value: DEPENDS

ask: OPTIONAL

type: DEPENDS
method: MANDATORY

prompt: MANDATORY
socks_wrapper: OPTIONAL
local_socks_port: OPTIONAL
terminal: OPTIONAL
terminator: OPTIONAL
logout_cmd: OPTIONAL
rawpty: OPTIONAL

tag: OPTIONAL

max_sessions: OPTIONAL
min_nodes_per_session: OPTIONAL
max_proxy_retries: OPTIONAL
alt_username_prompt: OPTIONAL

v4.3.6

23

timeout: OPTIONAL

: container: MANDATORY

container: OPTIONAL

node: MANDATORY
id: MANDATORY
address: OPTIONAL
options: MANDATORY
cartridge: MANDATORY
username: MANDATORY
ask: OPTIONAL
type: DEPENDS
password: MANDATORY
encoding: OPTIONAL
value: DEPENDS
ask: OPTIONAL
type: DEPENDS
method: MANDATORY
alert: OPTIONAL
transport: OPTIONAL
proxy: OPTIONAL
location: OPTIONAL
command: OPTIONAL
alias: OPTIONAL
value: DEPENDS
tag: OPTIONAL

custom: OPTIONAL

encoding: OPTIONAL
value: DEPENDS
ask: OPTIONAL
type: DEPENDS
gpg_keyid: OPTIONAL

max_node_retries: OPTIONAL
timeout: OPTIONAL
snmp_community: OPTIONAL
snmp_oids: OPTIONAL

id: MANDATORY

oid: MANDATORY

. transport_ftp: OPTIONAL
id: MANDATORY
address: MANDATORY
username: MANDATORY
password: MANDATORY

encoding: OPTIONAL
value: DEPENDS
max_retries: OPTIONAL

: transport_sftp: OPTIONAL

id: MANDATORY

address: MANDATORY
username: MANDATORY
password: MANDATORY
encoding: OPTIONAL
value: DEPENDS

max_retries: OPTIONAL

: alert_smtp: OPTIONAL
id: MANDATORY
relay: MANDATORY
username: OPTIONAL
password: OPTIONAL

V4.3.6

24

from: MANDATORY
to: MANDATORY

cc: OPTIONAL

timeout: OPTIONAL

* alert_http: OPTIONAL

id: MANDATORY
post_url: MANDATORY
proxy_url: OPTIONAL
timeout: OPTIONAL

Note: When we see the word "DEPENDS" within the YAML schema it usually relates to the value element. Within
YAML, if you are only defining a single value within an element then that value will get assigned to the value element.
If you define multiple elements within an element then you need to specially define the value element. There are two
special elements which can coexist alongside the value element within the main configuration file: encoding and alias.

The hierarchical inheritance model allows container options defined within a higher layer to be used within a child
container. Container options defined within a lower layer overwrite previously defined values in a higher layer as
opposed to being merged.

* container:
container:
- # Child Container 1
node:
id: PE@1
address: 172.16.0.101
- # Child Container 2
node:
id: PE@6
address: 172.16.0.106
options:
command: show version
options:
command:

show running-config

show startup-config
tag: PE

In the above example only the command element is overwritten for PEo6 and the tag element is inherited down. PEo1
will use the commands defined within the top container, but PEo6 re-defines those commands. | hope the above
example has explained the hierarchical inheritance model that nss adopts. If you are still unsure about how it works
then hopefully the examples in the next few sections will help to explain it further.

6.2.1. Element Encoding

Some elements support the use of the encoding element which allows you to encode the value within the
configuration file. Within the current version of nss the only element which allows the encoding element is the
password element and any element which is a custom container option.

At the moment ns4 supports two different encoding schemes: "rot13" and "base64". For "rot13" there is a webpage at
http://www.rot13.com which allows you to encode values. For "base64" encoding you need to have the
MIME::Base64 module installed, however, | believe this is part of the core Perl distribution. Encoding is not
encryption and is there to stop people with prying eyes looking over your shoulder when you are working on a
configuration file. You should configure your Unix file permissions so that only people who have access to ns4 will
have access to the configuration files. As a general rule you should only give access to ns4 to people who already have
access to your data network.

v4.3.6

25

The following examples demonstrate the difference between encoding and not encoding:

container:
options:
password: secret

: container:
options:
password:
encoding: rotil3
value: frperg

> container:
options:
password:
encoding: base64
value: c2Vjcmve

6.2.2. Ask Attribute

Some elements support the “ask” attribute which tells ns4 to prompt the user when it runs to determine what value
to use for this attribute. At the moment this is supported on “username”, “password” attributes and custom container
options. When a user runs ns4 they need to have access to the configuration file to access the login details for nodes —
this could be a security risk for certain people — even though only people with access to the nodes should be allowed

to use ns.

This option allows us to remove the sensitive information from within the configuration file and prompt the user
when they run ns4. nsz will only ask for the information once per item and will only ask for it if it actually needs it —i.e.
if you are running the report it won't ask for it and if you only select a single node then it will only ask you for the
information that it needs to connect to that node.

As an example let us prompt the user for the username and password when connecting to a proxy — this would be
achieved through the following configuration:

* proxy:
id: “nms.myisp.org”
username: {ask: “nms.myisp.org Username”}
password: {ask: “nms.myisp.org Password”, type: “password”}

v4.3.6

26

As well as the “ask” attribute we also support the optional “type” attribute only if it precedes an “ask” attribute. The
only valid value for the “type” attribute is “password” at the moment and it is used to turn off local echo when nsz
prompts for this value.

The value you specify after the “ask” keyword is the text that ns4 will prompt the user with and is also used as the key
for ns4 when storing the value. If you used that same text in another “ask” attribute for a different proxy then ns4 will
use the same value and won't prompt the user for the same value twice.

:ns4 v4.3.6

: Configuration Management Tool

S url http://www.noodles.org.uk/ns4.html
* by Chris Mason <chris@noodles.org.uk>

: nms.myisp.org Password:
* nms.myisp.org Username:

As we can see from the above output it has asked for the password before the username which some people may
object to. By default nss4 will sort the values based on the text and ask for them in that order. To get around this
limitation there is a special syntax which we can use to force ns4 to ask in a different order:

- proxy:
id: “nms.myisp.org”
username: {ask: “l|nms.myisp.org Username”}
password: {ask: “2|nms.myisp.org Password”, type: “password”}

In the above example we have added a number followed by the pipe “|” sign to the beginning of the text. This won't
actually be used in the text output, but ns4 will use this as a sorting key — you can actually put anything before the
pipe, and if the pipe is omitted then the text is used as the sorting key. If we run ns4 again we can now see our desired
effect:

\\|II

:ns4 v4.3.6

- Configuration Management Tool

url http://www.noodles.org.uk/ns4.html
-~ by Chris Mason <chris@noodles.org.uk>

- nms.myisp.org Username:
: nms.myisp.org Password:

6.2.3. Global Options

Global options are defined at the root of the configuration file. These allow you to control things which are not really
specific to anything in particular, but are there to control ns4 core functions.

syslog_facility By setting this option to a valid SYSLOG facility, ns4 will send auditing information for
all commands which are run — even through scripts, to the local syslog server using the
Perl module Sys::Syslog.

gpg_path This allows you to specify the path to the gpg binary if you have GnuPG installed on
your system. This option is mandatory if you are using the "gpg_keyid" for a node. This
allows you to encrypt the output before sending it via ftp with a GnuPG public key for

security.
terminator The terminator element controls the end-of-line termination character that ns4 uses
(default: "LF/CRLF") when it is writing local files. Local files are generated as a result of the various action

command line options. Under Unix environments ns4 will use LF (\n) as the default line

v4.3.6

27

terminator. When running under Cygwin on Windows ns4 will use CRLF (\r\n). You can
specify as many variants of the terms CR or LF within this value.

default_report_type This allows you to change the default report type without having to keep specifying a
(default: "byproxy") different type when using the "-r" parameter. This option takes the same values which
are valid for the "-r" parameter mentioned earlier.

explicit_null_tag If this option exists, regardless of what it is set to, then it will enable the use of a "NULL"
tag on all nodes which use the null proxy. As we have proxy implied tags, this allows us
to also tag the null proxy nodes.

min_nps_null_proxy This controls the loading algorithm and determines when to spawn new children. This

(default: 1) option is identical to "min_nodes_per_session" which is defined on the proxy, but this
option is relevant to sessions which use the null proxy option. The defaults for this value
are slightly lower than when using a proxy and they provide a speed benefit. The
default values work very well and are generally left alone.

max_sessions_null_proxy This controls the amount of sessions that ns4 will spawn when using the null proxy. This

(default: 12) option is identical to "max_sessions" which is defined on the proxy, but this option is
relevant to sessions which use the null proxy option. The defaults for this value are
slightly higher than when using a proxy and they provide a speed benefit. The default
values work very well and are generally left alone.

max_buffer_kb This option allows you to specify the maximum amount of data in KB that nss will

(default: unlimited) attempt to retrieve from a node per command. In some circumstances the output from
a command can be quite considerable (i.e. “show tech-support” on a Cisco router) and
it can be useful to limit it. This will cause ns4 to stop as soon as this value is exceeded.

socks_wrapper Please see section 7—"Socks Wrapper”

6.2.3. Proxies

A proxy defines a device which you can hop through to be able to connect to the node. We also support the ability to
hop through multiple proxies to reach your node. In the stereotypical Service Provider's network you would have your
network devices situated within a different security zone to your desktop PCs. You would have an NMS DMZ which
contains various proxy servers that limit access to your network devices as not everyone within your desktop
environment should have access to them.

When you login to a device you would normally require Telnet or SSH access (telnet is a serious security risk as
passwords are sent in clear text and should not be permitted). Following our above model you would SSH to your
NMS proxy and then you SSH to your nodes.

Proxies have various elements to control how ns4 works and | am hoping that most of them look obvious, but just in-
case they are explained below:

id This is the id of the proxy which is used to allow container options to reference the
proxy.
address[:port] This is the IP address of the proxy server. However, this doesn't necessarily need to be

an IP address and a hostname will also be accepted. You can also specify an optional
port if you wish to change the default.

This value is optional and if omitted ns4 will use the “id” for the address. It will also
output "DNS” as the address in report outputs.

username This is the username for the proxy server.

v4.3.6

password

method

prompt

socks_wrapper
local_socks_port

terminal

terminator
(default: "LF")

logout_cmd
(default: "exit")

rawpty
(default: yes)

28

This is the password for the proxy server.

This is a string which determines what command is going to be run to connect to the
proxy. It will consist of the binary (i.e. telnet/ssh) and the parameters to pass to it. We
allow three different dynamic variables within brackets which can be used to construct
this string: [Host], [Port], [User] (case insensitive).

This string is passed directly to the Unix "exec" function call, so you need to ensure that
you place a comma between parameters. | am hoping that the following examples will
demonstrate this:

"Jusr/bin/telnet [host], [port]"
This will connect by running "/usr/bin/telnet" and it will substitute the [host] and
[port] parameters for the real values at runtime.

"fusr/bin/ssh -p [port], [user]@[host]"
This will connect by running "fusr/bin/ssh" and it will substitute the [host], [port]
and [user] parameters for the real values at runtime.

"Jusr/bin/ssh -v, -p [port], -l[user], [host]"
This is an extension to the example above and demonstrates the flexibility in
being able to enable ssh to be more vocal for you to diagnose any connection
related issues. Each parameter needs to be separated by a comma.

Note: So ns4 is able to work out default port numbers the binary at the left of the string
must contain either "ssh" or "telnet".

This is the prompt that you expect to see when you login to the proxy. The value is a
regular expression and we support the use of Perl's special escape sequences (i.e. \w,
\W, \s, \S, \d, \D, etc), but they need to be escaped so the meaning can reach the
interpreter and can be interpreted correctly.

Please see section 7—"Socks Wrapper”
Please see section 7 — “Socks Wrapper”

This allows you to specify the terminal when you login to the proxy before you attempt
to connect to any nodes. Some nodes require the terminal to be set otherwise the
output can be screwed on non-interactive sessions. A good value to use for this is
"vt100" which would cause the command "export TERM=vt100" to be executed on the
proxy before connecting to the node.

The terminator element controls the end-of-line termination character that ns4 uses
when it is sending commands through Expect for the proxy. By default ns4 will use LF
(\n) as the default line terminator which matches Unix, but some other proxies require
other terminators. You can specify as many variants of the terms CR or LF within this
value.

This allows you to specify an alternative command that Expect will send when you
attempt to logout from the proxy. By default ns4 will send "exit", but some proxies may
require you to use the "logout" command instead.

This determines if ns4 will attempt to set a raw pty (attempt to disable local echo)
before it spawns the session. You can either specify "yes" or "no". If this is set on nodes
which support raw pty, it will stop commands being echo'ed back to the client and also

v4.3.6

29

make command processing cleaner. As a general rule this option is left alone and the
"rawpty" option within the container options is set to "yes" if the node supports it.

Note: You may need to disable this option if you use a Solaris box as your proxy. From
experience, SunOs 5.8 doesn't allow setting a raw pty otherwise it misinterprets "\n"
when sending commands.

alt_username_prompt By default nss will look for a specific prompt to identify the username prompt. If the
proxy has a custom login prompt then we may specify a regex within this element
which will be used instead of the default regex. As with the prompt element you need to
ensure that you escape all special characters.

alt_password_prompt By default ns4 will look for a specific prompt to identify the password prompt. If the
poxy has a custom password prompt then we may specify a regex within this element
which will be used instead of the default regex. As with the prompt element you need to
ensure that you escape all special characters.

[tag] This element works the same as the tag element within the node options. Any tags
which you specify within this element are combined with the tag elements within the
node options. This allows you to set tags related to different proxies.

Note: There is a caveat relating to proxy load balancing - if you use this then the node
will inherit the proxy tags from all the proxies specified, not just the one that is selected
through load balancing.

max_sessions This controls the amount of sessions that nss4 will spawn to the same proxy. Each child
(default: 5) that ns4 spawns will attempt to connect to a proxy, this means you can have multiple
connections to the same proxy simultaneously.

min_nodes_per_session This controls the loading algorithm and determines when to spawn new children. This is

(default: 1) used with "max_sessions" and it won't spawn another session unless the previous
session has "min_nodes_per_session" defined through it. The default values work very
well and are generally left alone.

max_proxy_retries This defines the amount of times that ns4 will attempt to connect to a proxy server in
(default: 3) case the connection to the proxy server times out.

timeout This is the timeout that ns4 will wait for an expected prompt before bombing out. The
(default: 10 sec) "max_proxy_retries" * "timeout" is used to determine how long nsz will wait before

determining a proxy is dead.

Note: The red elements are mandatory elements and must be specified within every instance of the element. The
brackets [] indicate that this element supports a list to specify multiple entries.

Taking the above proxy elements into consideration an example proxy configuration would look like:

proxy:
id: ssh-proxy
address: 20.30.10.1
method: "ssh [user]@[host]"
username: root
password:
encoding: rotl3
value: frperg
prompt: "“ssh-proxy:/"

v4.3.6

30

6.2.4. Transports

Transports are used as destinations for the output that ns4 collects from nodes. This output is generated from the list
of commands within the configuration file. Only commands within the configuration file can be sent to transports
and commands which are run from the command line can only be outputted locally. The standard behaviour of ns4 is
to create a directory on the transport server which matches the current date using the format "YYYYMMDD" and
then a directory with the name of the command (unless an alias is specified). The file is then written using the format
"[Node].[Date].txt". Multiple commands within the configuration file will generate multiple directories being made
on the transport server; one for each command.

Transports are not mandatory unless you define some commands under the container options. If you decided you

don't want to define any commands then ns4 will login to the node and then logout from the node without doing
anything. This could be useful if you wish to use ns4 for health checking purposes.

6.2.4.1. transport_ftp

The "transport_ftp" element is used to define a transport which uses an FTP server as the destination. It is defined
using the following elements:

Id This is the id of the transport.

address This is the IP address of the ftp server. However, this doesn't necessarily need to be an
IP address and a hostname will also be accepted.

username This is the username of the ftp server.

password This is the password of the ftp server.

max_retries This determines the maximum amount of times nsz will attempt to connect to an ftp
(default: 3) server before declaring it dead.

Note: The red elements are mandatory elements and must be specified within every instance of the element.

Taking the above transport_ftp elements into consideration an example ftp configuration would look like:

‘ transport_ftp:

. id: db-server
address: 20.30.10.76
username: ns4
password:

encoding: roti3
value: frperg

Transports are not automatically implied from the configuration for nodes and need to be specified under container
options (like proxies) (as of v4.3.6 of ns4). Due to hierarchical inheritance rules, nodes will inherit container options
which are defined at a higher level. This means that, by default, no transports will be used unless they are defined on
the root container under options with the “transport” attribute.

Note: ns4 has mandatory and optional Perl modules which are used depending on what the user has configured.

Transports fall within the category of optional Perl modules and to use the "transport_ftp" element you will need to
ensure you have installed the Net::FTP module.

6.2.4.2. transport_sftp

V4.3.6

31

The "transport_sftp" element is used to define a transport which uses an SFTP server as the destination. It is defined
using the following elements:

Id This is the id of the transport.

address This is the IP address of the sftp server. However, this doesn't necessarily need to be an
IP address and a hostname will also be accepted.

username This is the username of the sftp server.

password This is the password of the sftp server.

max_retries This determines the maximum amount of times ns4 will attempt to connect to a sftp
(default: 3) server before declaring it dead.

Note: The red elements are mandatory elements and must be specified within every instance of the element.

Taking the above transport_sftp elements into consideration an example sftp configuration would look like:

- transport_sftp:

. id: db-server
address: 20.30.10.76
username: ns4
password:

encoding: roti3
value: frperg

Transports are not automatically implied from the configuration for nodes and need to be specified under container
options (like proxies) (as of v4.3.6 of ns4). Due to hierarchical inheritance rules, nodes will inherit container options
which are defined at a higher level. This means that, by default, no transports will be used unless they are defined on
the root container under options with the “transport” attribute.

Note: ns4 has mandatory and optional Perl modules which are used depending on what the user has configured.
Transports fall within the category of optional Perl modules and to use the "transport_sftp" element you will need to
ensure you have installed the Net::SSH2 module.

6.2.5. Alerts

Alerts are used to notify users via a certain method that a node has failed when nss; attempted to connect to it.
Depending on the alert type depends on what elements you are expected to fill in. To enable ns4 to send alerts you
must specially enable it from the command line using the "-A" option. It is generally a good idea to enable this option

if you are running ns4 from a crontab to collect your network configurations. An alert won't be sent if there weren't
any nodes which couldn't be accessed and it will only include nodes which failed.

6.2.5.1. alert_smtp

The "alert_smtp" method allows you to define an alert which will send an email containing the list of failed nodes. It
uses the following elements:

id This is an id to use for a reference for this alert.

relay This is your SMTP relay which you can use to send email through. You must specify a
relay which is capable of forwarding traffic to the recipients specified. This can either be
an IP address or a hostname.

v4.3.6

32

from This is the address which will be used in the "MAIL FROM" part of the SMTP message
and also the "From:" part of the message headers.

[to] This element allows you to specify multiple SMTP recipients which will receive the
message.
[cc] This element allows you to specify multiple SMTP recipients which will receive a carbon

copy of the message.

username This is used to specify a username if your SMTP relay requires authentication.
password This is used to specify a password if your SMTP relay requires authentication.
timeout This is a timeout which is used when attempting to connect to the SMTP relay.

(default: 15 sec)

Note: The red elements are mandatory elements and must be specified within every instance of the element. The
brackets [] indicate that this element supports a list to specify multiple entries.

Taking the above alert elements into consideration an example alert configuration would look like:

———

*alert_smtp:
id: smtp-relay
relay: 20.30.40.56
from: root@ns4-host-box
to:

alerts@my-company.org

sysadmin@my-company.org

Alerts are not automatically implied from the configuration for nodes and need to be specified under container
options (like proxies) (as of v4.3.6 of ns4). Due to hierarchical inheritance rules, nodes will inherit container options
which are defined at a higher level. This means that, by default, no alerts will be used unless they are defined on the
root container under options with the “alert” attribute.

Note: ns4 has mandatory and optional Perl modules which are used depending on what the user has configured.

Alerts fall within the category of optional Perl modules and to use the "alert_smtp" element you will need to ensure
you have installed the Net::SMTP module.

6.2.5.2. alert_http

The "alert_http" method uses the HTTP POST method to post the list of failed nodes to a web page. This can be used
in environments where SMTP access to an outside server is not possible but they allow HTTP access. It uses the
following elements:

id This is an id to use for a reference for this alert.

post_url This is the complete URL address to the CGl script that you want ns4 to post the results
to. It will use the following elements to post the data as:

start_time This contains the start time of when ns4 was started.

elapsed_time This contains the total amount of time that ns4 spent logging into
nodes.

V4.3.6

33

cmd_line This contains the command line which was passed to ns.
data This contains the actual list of failed nodes.

An example of a post_url would be:
http://www.mysite.com/cgi-bin/ns4.cqi

proxy_url If you don't have direct access to the HTTP server then you have the option of
specifying a proxy URL. The format of this matches the standard Unix format for the
http_proxy environment variable.

An example of a proxy_url would be:
http://username:password@proxy address

timeout This is a timeout which is used when attempting to connect to the HTTP server.
(default: 30 sec)

Note: The red elements are mandatory elements and must be specified within every instance of the element. The
brackets [] indicate that this element supports a list to specify multiple entries.

Taking the above alert elements into consideration an example alert configuration would look like:

alert_http:
id: http-server
post_url: http://www.mysite.com/cgi-bin/ns4.cgi

The above example will do a HTTP POST to ns4.cgi and an example ns4.cgi is included below (the below scenario was
used when there was no direct access to an SMTP server but the results still needed to be sent via email):

é #!/usr/bin/perl -Tw
- use strict;

: use Net::SMTP;
. use CGI::Simple;

: print "Content-Type: text/html\r\n\r\n";
: my $qCGI = new CGI::Simple;

- if (defined $qCGI->param ("data")) {
if (my $nSMTP = new Net::SMTP ("127.0.0.1")) {
$nSMTP->auth ("username", "password");
if ($nSMTP->ok) {
$nSMTP->mail ("ns4-alerts\@myserver.com");
if ($nSMTP->o0k) {
$nSMTP->to ("ns4-clients\@myserver.com");
if ($nSMTP->ok) {
$nSMTP->data;
if ($nSMTP->ok) {
$nSMTP->datasend ("X-Priority: 1\n");
$nSMTP->datasend ("From: ns4-alerts\@myserver.com\n");
$nSMTP->datasend ("To: ns4-clients\@myserver.com\n");

$nSMTP->datasend ("Subject: " . $9CGI->param ("cmd_line") . "\n\n");
$nSMTP->datasend ("Start Time: " . $9qCGI->param (“"start_time") . "\n");
$nSMTP->datasend ("Elapsed Time: " . $qCGI->param (“"elapsed_time") . "\n\n");

$nSMTP->datasend ($9qCGI->param ("data") . "\n");
$nSMTP->dataend;
if (not $nSMTP->o0k) {
print $nSMTP->message;
¥

else {

v4.3.6

34

¥
¥
else {
print $nSMTP->message;
¥
¥
else {
print $nSMTP->message;
¥
)
else {
print $nSMTP->message;
)
}
else {
print $nSMTP->message;
}
: $nSMTP->quit;
ol
i
- else {

print "ERROR\n";

The only rule is that the CGI script must return "OK" as the response to the POST request so ns4 is able to see that the
request succeeded. Any other result that the CGI script returns will be treated as a fail and will be used by ns4 as the
reason of the failure.

Alerts are not automatically implied from the configuration for nodes and need to be specified under container
options (like proxies) (as of v4.3.6 of ns4). Due to hierarchical inheritance rules, nodes will inherit container options
which are defined at a higher level. This means that, by default, no alerts will be used unless they are defined on the
root container under options with the “alert” attribute.

Note: ns4 has mandatory and optional Perl modules which are used depending on what the user has configured.
Alerts fall within the category of optional Perl modules and to use the "alert_smtp" element you will need to ensure
you have installed the LWP::UserAgent module.

6.2.6. Containers

Containers don't really contain any individual values but they enable groups to be formed to allow inheritance to
occur. They are also mandatory as nodes must be defined within containers as container options refer to the nodes
within the container.

For inheritance, containers can be nested within other containers - there isn't a limit on the amount of containers
which can be nested. The only limit is what the user writing the configuration file deems as manageable. Below is a
potential example of how containers can be used:

- container:
- # Parent Container
container:
- # PE Routers
options:
location: "Routers/PE"
- # P Routers
options:
location: "Routers/P"
- # CE Routers
options:
location: "Routers/CE"
options:
username: admin
password: secret

V4.3.6

35

In the above example all the nodes within the containers will inherit the username and password element, but they
will define their own location elements.

6.2.7. Nodes

A node is an element which ns4 attempts to login to. This could be a router, switch or an appliance which supports a
CLI. A node itself only has a very basic list of elements which must be defined under it (id and address) - the options
for the nodes appear under container options which are where you define your cartridge, etc. Although they are
called container options they are really node options as they are relevant to the node.

There isn't really much to the definition of a node as all the different bits which are associated with the node are
defined elsewhere. There isn't any limitation on what nodes ns4 is able to deal with due to the ability to write
cartridges. The only real limitation is they have to support a CLI.

id This is the id/name of the node which can be accessed through the special variable
[Node] so it is important that this name is found within the prompt of the node. When
you write cartridges you generally use special variables or regex's within the prompt so
it is important that the node has the correct prompt defined. This element will be
treated as literal text so you don't need to escape any special regex characters. A simple
validation is done on this value to ensure that it doesn't contain a "\", /", "*", "?", ":" or
any form of space.

address[:port] This is the IP address of the node. However, this doesn't necessarily need to be an IP
address and a hostname will also be accepted. You can also specify an optional port if
you are connecting to a node connected to a terminal server line.

This value is optional and if omitted nss4 will use the “id” for the address. It will also
output "DNS” as the address in report outputs.

Note: The red elements are mandatory elements and must be specified within every instance of the element.

Taking the above node elements into consideration an example node configuration would look like:

- container:
node:

id: PEe1
address: 172.16.0.101

id: PE@2
address: 172.16.0.102

id: PE@3
address: 172.16.0.103

id: PEe4
address: 172.16.0.104

6.2.7.1. Dynamic Transformations

Within the configuration file we have the ability to dynamically create nodes without having to specify all of them
statically if they have sequential numbering. To show how this works, let’s assume we have a list of 10 routers which
are aptly named Roi, Ro2 upto Rio which have an IP address of 172.16.0.101, 172.16.0.102 upto 172.16.0.110.
Normally we would have to define them individually which would take up time and space within the configuration
file.

v4.3.6

36

Dynamic transformations introduces the “{base, count[, stepl}” syntax which can be used within the configuration file
when there are nodes which follow a naming sequence. The “base” parameter is the starting value which is used on
the first node with the “count” being the amount of nodes to dynamically create. The “step” parameter is optional
and will default to 1 if omitted — negative values can also be used for the “step” parameter.

Instead of having to define 10 separate lines within the configuration file we could do the following:

container:
node:
- {id: “R{01,10}”, address: “172.16.0.1{01,10}”}

In the above example we have used “01” as opposed to “1” — if a leading space is entered into the “base” parameter
then this is maintained within the formatting when the numbers are outputted.

By using the above configuration it will now define 10 routers that all have the same properties and options that they
would have had if they were all individually defined.

Note: When using dynamic transformations the “count” parameter must be consistent with all occurrences on a
single line. If you specify 10 routers you can't specify a count of only 7 on the IP address otherwise there will be a
mismatch. However, you could always omit the “address” and rely on DNS if the hostname/id exists within DNS.

Let’s now assume we have Ro1 to R1o as previously, except now the IP addressing is reversed and Ro1 has an address
of 172.16.0.110 and R10 having an IP address of 172.16.0.101:

container:
node:
- {id: “R{@1,10}”, address: “172.16.0.1{10,10,-1}"}

In the above example we have used the optional “step” parameter within the IP address to deduct one from every
new node which will create our 10 routers, but will reversed IP addresses.

Note: Dynamic transformations are taken at face value which means if you use a “base” parameter of 254 with a
“count” parameter of 25 then it won't automatically increment the third octet of the IP address when you reach 256.
There is no limit on the amount of braces which can occur within a single line.

In summary, dynamic transformations can have potential value as a time and space saver, but it is very much
dependant on the users naming and addressing scheme as they have to be sequential to take full advantage of this
feature.

6.2.8. Container Options

Container options are used to specify different options associated with the nodes defined within the container.
Although they are called container options they should really be called node options as they only contain options
which are specific to nodes. The power of ns4 is in the ability to inherit container options on a per element basis which
allows you to construct configuration files which gives you the most flexibility.

There are two types of container options: standard and custom. The standard options are defined within the core of

nss and cannot be changed, but the custom options allow you to create user-defined options which you can then
reference from within scripts and cartridges using the "[C:*]" syntax.

6.2.8.1. Standard Options

v4.3.6

37

The following options are defined as of the latest version of ns4. They cannot be changed outside the main code and
are deemed to be adequate for most nodes.

cartridge

username
password

method

[transport]

[alert]

This is required to specify the id of the cartridge that is relevant for the nodes within
this container.

This specifies the username for the nodes within this container.
This specifies the password for the nodes within this container.

This is a string which determines what command is going to be run to connect to the
node. It will consist of the binary (i.e. telnet/ssh) and the parameters to pass to it. We
allow three different dynamic variables within brackets which can be used to construct
this string: [Host], [Port], [User] (case insensitive).

This string is passed directly to the Unix "exec" function call, so you need to ensure that
you place a comma between parameters. | am hoping that the following examples will
demonstrate this:

"fusr/bin/telnet [host], [port]"
This will connect by running "fusr/binftelnet" and it will substitute the [host] and
[port] parameters for the real values at runtime.

"Jusr/bin/ssh -p [port], [user]@[host]"
This will connect by running "fusr/bin/ssh" and it will substitute the [host], [port]
and [user] parameters for the real values at runtime.

"fusr/bin/ssh -v, -p [port], -I[user], [host]"
This is an extension to the example above and demonstrates the flexibility in
being able to enable ssh to be more vocal for you to diagnose any connection
related issues. Each parameter needs to be separated by a comma.

Note: So ns4 is able to work out default port numbers the binary at the left of the string
must contain either "ssh" or "telnet".

This allows you to specify the id of the transport that is relevant for the nodes within
this container. You may specify more than one transport within this attribute to have
the outputs sent to multiple transports.

* container:
options:
transport: sftp_server

The above example demonstrates how to specify a transport for the nodes within the
container. They will use the transport “sftp_server” which has been defined globally.

This allows you to specify the id of the alert that is relevant for the nodes within this
container. You may specify more than one alert within this attribute to have the failed
nodes list sent to multiple alerts.

* container:
options:

v4.3.6

[proxy]

The above example demonstrates how to specify an alert for the nodes within the
container. We have specified multiple alerts which will both be used by the nodes
within this container.

This allows you to specify the id of the proxy that is relevant for the nodes within this
container or allows proxy chaining by specifying multiple proxies. If you don't specify
this option then ns4 will assume that you are using the null proxy and the nodes are
directly accessible.

If we are going through a single proxy then we could define our cartridge options as
follows:

. container:
options:
proxy: ssh-proxy

However, if we wanted to daisy chain through multiple proxies then we could define it
as follows:

- container:
options:
proxy:

ssh-proxy

ts-proxy

Note: The connection will flow through the proxies in the order that they are specified.

When we define multiple proxies there are a few elements within the proxy which no
longer have any meaning and are ignored. These only have a meaning if they are
defined within the first proxy in the list:

rawpty

max_sessions
min_nodes_per_session
max_proxy_retries

The values within the first proxy within the list are used to define the characteristics of
the connection.

We also have the ability to load balance across multiple proxies. This can be achieved
using the "|" character to split up the proxies. This can be used if we have two different
proxies which allow you to access the same nodes:

. container:
options:
proxy: proxy-alphal|proxy-beta

In the above example we are sending 50% of the nodes through "proxy-alpha" and 50%

V4.3.6

location

[command]

39

of the nodes through "proxy-beta". If we wanted to send 66% through "proxy-alpha"
then we could specify "proxy-alpha" twice to weight it. To see what nodes are going
through which proxy you can run nsg with the "-r" parameter which outputs the report.

When you send output to a transport you can specify a location to enable ns4 to create
a directory structure for your configurations. By default ns4 will place the configuration
into a directory with the current date using the format "YYYYMMDD". By using this
option you could extend that directory to include a name (i.e. YYYYMMDD/Routers/PE)
if you used "Routers/PE" for a location.

This defines the list of commands which ns4 is going to run on the nodes which are
defined within this container. This option allows you to specify a list of commands, but
you need to ensure that you define an transport if you have defined commands.

The command element also supports the use of the alias element, which allows you to
redefine the directory that is created on the transport server if you wish. You would use
this if you have a complicated command that you wanted to shorten:

* container:
options:
command:

show running-config

value: show ip cef hardware register-asic spiderpig location ©x01
alias: show ip cef

In the above example instead of creating a really long directory to contain the output, it
would get shortened to "show ip cef" which is much more manageable.

We also have the ability to enter sub-modes for running commands which need to be
run from sub-modes. See the list option within the command line options for more
details, but an example is included below:

- container:
options:
command:

show running-config
"{admin, ~.*[Node]\(admin\)#}"

value: show running-config
alias: admin show running-config

Note: If we omit the prompt then it will use the default node prompt.

Note: The prompt within the above syntax for sub-modes is treated as a regular
expression so you need to ensure that it has been escaped if you are using characters
which could potentially be treated as regular expressions that you wouldn't want to.

Note: If you do enter a sub-mode then you need to ensure that you leave the sub-mode

before nss attempts to finish otherwise it will not see the correct prompt that it
expects.

v4.3.6

40

[tag] This allows you to define a list of tags which are associated with the node. You can then
use these tags when you select nodes that you wish to execute commands on.

[gpg_keyid] This allows you to encrypt the data using GnuPG before it is sent to the ftp servers. This
option allows you to specify a list of gpg key ids which are defined within the local
user's key ring. If you use this option you also need to ensure you define the global
option "gpg_path".

max_node_retries This defines the maximum amount of times that ns4 will attempt to login to a node
(default: 3) before it declares the node as dead. One exception is when you are running a script on a
node and you come across a script syntax error and then it won't attempt to retry.

timeout This is the timeout that ns4 will wait for an expected prompt before bombing out. The
(default: 10 sec) "max_proxy_retries" * "timeout" is used to determine how long nsz will wait before
determining a node is dead.

snmp_community If you are using ns4 to poll SNMPs OIDs then you need to use this option to specify the
community string that will be used to access the node.

[snmp_oids] This value is used to specify the SNMP OIDs that are going to be polled. You need to
define both the “id"” and “oid” attribute where the “id” attribute is used to give it a name
which is printed to the screen and the “oid” attribute is used to specify the actual OID.

For an example, please see the documentation around the "-p” command line option.

Note: The red elements are mandatory elements and must be specified within every instance of the element. The
brackets [] indicate that this element supports a list to specify multiple entries.

Taking the above container option elements into consideration an example container options configuration would
look like:

: container:
options:
cartridge: cisco-ios
proxy: ssh-proxy
username: admin
password: secret
method: "ssh [user]@[host]"
command:

show running-config

show startup-config

tag:
CISCo
PE
snmp_oids:
- {id: "Free Mem", oid: "1.3.6.1.4.1.9.9.48.1.1.1.6.1"}
- {id: "cpu", oid: "1.3.6.1.4.1.9.9.109.1.1.1.1.7.1"}

snmp_community: "CISCO"

6.2.8.2. Custom Options

By default there aren't any custom options as it is down to the user to define. Depending on the node which you are
using depends on the type of custom options that you would decide to define. An example custom option which we

v4.3.6

41

have used throughout our examples is the Cisco enable password. You would define that as a custom option under
the container options and then you could implement it within cartridges using the "[C:Enable]" syntax.

You can define as many custom variables as you want and you can call them whatever you want. They are defined
within a separate structure so they won't clash with any other variables within the schema. Custom options allow you
to use the encoding element to encode the values as we don't know what you could be using custom options for. As
an example you would define a custom option as follows:

: container:
options:
custom:
enable:
encoding: rotil3
password: frperg

If we put all the above together from all the different sections then we can construct a basic configuration file which
illustrates some of the different elements we have used throughout the examples within this document:

- container:
node:
id: PE@1
address: 172.16.0.101
id: PE@2
address: 172.16.0.102
id: PE@3
address: 172.16.0.103
id: PEe4
address: 172.16.0.104
options:
cartridge: cisco-ios
location: "Routers/PE"
proxy: ssh-proxy
username: admin
password:
encoding: rotil3
value: frperg
method: "ssh [user]@[host]"
command: show running-config
tag: CISCO
custom:
enable:
encoding: rotil3
value: frperg

. proxy:
- id: ssh-proxy

address: 20.30.10.1

method: "ssh [user]@[host]"

username: root

password:

encoding: rotl3

value: frperg

prompt: "~ssh-proxy:/"

: transport_ftp:

© id: localhost
address: 127.0.0.1
username: guest
password:
encoding: roti3

V4.3.6

42

©alert_smtp:

Doid: smtp-relay
relay: 20.30.40.56
from: root@ns4-host-box
to: alerts@my-company.org

v4.3.6

43

7. Socks Wrapper

This is a new feature in ns4 which allows you to use SSH dynamic port forwarding to connect through proxies.
Normally, ns4 will log into a proxy using telnet/ssh and then spawn telnet/ssh from the proxy to connect to the node.
There is a one-to-one mapping between proxy and node which means you can only process a single node through a
proxy at any given time. We are limited by the amount of connections that we can have through a proxy as networks
are not designed to have lots of connections to the same place. For this reason we limit the amount of simultaneous
connections to a proxy to 5 by default (this can be changed) which means we can only process 5 nodes at a time.

Secure Shell (SSH) has the ability to forward ports and this can be achieved by two mechanisms. Firstly, we can
manually create tunnels on-demand or alternatively we can put SSH into dynamic mode (-D) which makes it act like a
Socks proxy. ns4 uses the latter and will connect to a proxy and act as a Socks proxy which means we can connect to
nodes through the Socks proxy. As we only have a single connection to the proxy it means we can increase the
amount of simultaneous connections to be able to process more devices at the same time (by default this is 12).

To use this feature you need an additional program which is called a Socks Wrapper as SSH is not able to connect to
nodes via a Socks proxy (even though it can act as a Socks proxy). Within the ns4 distribution in the “contrib/”
directory is a file called “connect.c” which needs to be compiled on your system. This should be a relatively simple
task as long as you have a compiler installed. Once you have compiled “connect.c” you need to place it into an
accessible location (e.g. “/usr/local/bin”).

Now that everything is in place for this feature to work, it is a good idea to give an overview of how this feature
actually works. When nsy identifies that a proxy has been configured to use the Socks Wrapper it identifies what
nodes support this based on the following criteria:

Nodes’ method is SSH

Proxies’ method is SSH

Proxy supports port forwarding
We aren’t using a multi-hop proxy
[t isn’t a null proxy

VW e

Once the above criteria has been satisfied ns4 connects to the proxy using the syntax specified within the “method”
element, except it adds the “-D” parameter. By default, ns4 will use a random port for “-D”, but you can override this
by using the “local_socks_port” element. Once we have connected to the proxy and we are ready to accept Socks
connections we spawn all children to connect to the nodes. Each node is connected to using the *method” element
with the following parameters added: “-o ProxyCommand Jusr/local/bin/connect -S 127.0.0.1:<PORT> <HOST>
<PORT>". This makes SSH use the Socks Wrapper to connect to the node via the Socks proxy.

Two new elements have been added to the configuration file to support this feature: “socks_wrapper” and
“local_socks_port”. You can either enable the Socks Wrapper globally, or you can enable it on a per-proxy basis. It is
advisable to enable it on a per-proxy basis and this won't work with some SSH proxies (this feature is still
experimental, although has been tested using certain proxies). The “local_socks_port” option can only be specified
under the proxy as this option is only relevant to the proxy and has to be different for every proxy.

In summary, all you need to do to enable the new Socks Wrapper mode is defined the “socks_wrapper” element
under the proxy and nsz will attempt to use this method for all nodes which match the criteria listed above. If you
have a mix of nodes which support telnet and SSH going through the same proxy then ns4 will split them up and use
the regular method for nodes using telnet and the Socks Wrapper mode for nodes using SSH.

V4.3.6

44

8. Error Messages

This section details some of ns4's most common error messages that will be seen when connecting to nodes and tries
to explain what they actually mean, although most of them | am hoping are pretty self explanatory:

8.1. Proxy Errors

Login Timed Out
This indicates that the login process timed out - this was during entering the username or password for the proxy
server.

Invalid Username/Password
This indicates that ns4 saw either the "username" or "password" prompt twice which means the password or
username was invalid.

Host Key Failed
This indicates that the local SSH host key that is stored on the local machine doesn't match what the proxy server
is presenting. You will need to clean out the invalid entry within your "known_hosts" file.

Couldn't Spawn Command
This indicates that the command you have specified within the "method" under the proxy couldn't be spawned.

Port Forwarding Failed
This indicates that you have requested the proxy to use the Socks Wrapper, but when it attempted to act as a
socks proxy using a dynamic port (either random, or locally specified) it failed to listen on that port.

8.2. Node Errors

Login Timed Out
This indicates that the login process timed out - this was during entering the username or password for the node.

Invalid Username/Password
This indicates that ns4 saw either the "username" or "password" prompt twice which means the password or
username was invalid.

Buffer Space Exceeded
This indicates that ns4 got back more from a single command than was defined within “max_buffer_kb".

Host Key Failed
This indicates that the local SSH host key or SSH key stored on the proxy (if applicable) doesn't match what the
node is presenting. You will need to clean out the invalid entry within your or the proxies "known_hosts" file.

Couldn't Spawn Command
This indicates that the command you have specified within the "method" under the node couldn't be spawned.

Cartridge Processing Prematurely Terminated
This indicates that the server responded with an EOF half way through processing the cartridge.

Script Not Suitable
This indicates that the script is not suitable for the node which has been selected. This should be defined within
the $script_criteria variable at the top of your script.

Script Timed Out
This indicates that the script took longer than the interval defined within the $script_timeout variable at the
beginning of your script. If you haven't defined it within your script then it will use the default of 120 seconds (2
minutes).

v4.3.6

45

Pre/Post Command Failed
So we don't get into never ending loops, ns4 will only allow each element within the pre or post sections to be
executed once. This error will be seen if an entry in the pre or post section gets matched twice.

Script Syntax Error

This indicates that a syntax error has been discovered within your script — this also indicates that your script most
probably prematurely exited so some commands may have been executed on the node.

v4.3.6

46

9. Shell Return Codes

When a Unix program exits then it will return a code which identifies if it was successful or not. From a Unix shell this
value can be obtained by looking at the “$?” variable. Most programs don’t bother setting the correct return code so
you will always get back o regardless of what the program did. ns4 actually sets the return code so you are able to
determine if ns4 was successful or not.

At the present moment in time ns4 supports the following shell return codes:

o OK

1 Not OK

2 All Nodes Failed

5 Invalid Usage

10 Some Nodes Failed

v4.3.6

47

10. Scripts

The true power of ns4 lies within its ability to use scripts to automate tasks within your network. Scripts are written in
100% pure Perl and are extended to support ns4 through the internal ScriptObject package which gives your scripts
access to the context of the node. A script is a snippet of Perl code which is executed after ns4 logs into a node - you
don't have to deal with the complex task of logging on or off from a node as that is handled by ns4.

Below is the standard template of a basic script which we will use as a reference while we explain how scripts work:

$script_version = <<SV;

My Router/Switch Script vi.0

Copyright (c) 2009 Chris Mason <chris\@noodles.org.uk>
SV

$ns4_version = "4.3.6";
$script_timeout = 120;
$script_criteria = “:”’;

my $global var = “This is a script variable accessible within the script”;

sub pre {
print “This happens before we connect to any nodes\n”;
return (100);

}

sub main {
print “This happens on every node\n”;

my $sO = new ScriptObject;
$s0->cmd (“write memory”);

return (100);
}

sub post {
print “This happens after we have connected to all nodes\n”’;
return (100);

Note: Although itisn't enforced the general recommended extension for an nsg script is ".nss".

Note: All scripts must have a positive return code as the last line of the script. Scripts are handled like Perl modules so
need to be able to see this to know that the script has been loaded successfully. By placing a “1;” as the last line in
your script you will fulfil this criteria.

10.1. Pre-Defined Script Variables

There are currently four pre-defined script variables: $script_version, $nss4_version, s$script_timeout and
$script_criteria. None of these pre-defined script variables are mandatory - there are defaults for $script_timeout and
$script_criteria of “120” and “:" respectively.

10.1.1. script_version

This will allow you to output a short version message before you script starts, either with the version of your script or
a short message about your script.

é $script_version = <<SV;
© My Router/Switch Script v1.0
: Copyright (c) 2009 Chris Mason <chris\@noodles.org.uk>

v4.3.6

2 ns4 v4.3.6

: Configuration Management Tool

“url http://www.noodles.org.uk/ns4.html
* by Chris Mason <chris@noodles.org.uk>

- * My Router/Switch Script v1.0
. * Copyright (c) 2009 Chris Mason <chris@noodles.org.uk>

10.1.2. script_criteria

This defines what nodes this script may run on. It allows you to stop someone from running a script designed for a
Cisco router to be run on a Juniper firewall. It is very rare that a script will be compatible with two difference pieces of
kit made by different vendors as their CLI will vary.

The syntax for the $script_criteria is as follows:
":YLX:Y,...]"

There are two parts to the above syntax with a mandatory colon separating them in the middle. The X indicates a
regular expression which is used to specify nodes based upon a tag and the Y indicates a reqular expression which is
used to specify nodes based upon the node name. If you omit either the X or the Y then they are replaced with a
match all regular expression.

By using a comma you can add multiple X:Y expressions that allow you to select multiple groups as the comma acts
like an OR operator.
" This script can be run on all nodes as X (tag) will be evaluated as '.*' and Y
(name) will be evaluated as '.+', which means all nodes would match. This is
the default if you omit the s$script_criteria definition.

"APE\s:" This script will only be allowed to run on nodes which are associated with the
"PE" tag. Any node which has the "PE" tag will match as Y (name) will be
evaluated as'.+'.

":APP" This script will only be allowed to run on nodes which start with the letters
"PP". The tag (X) is irrelevant and will be treated as '.*".

":APE,:APP" This script will only be allowed to run on nodes which start with "PE" or "PP".
However, this could have been written as ":A(PE|PP)".

"APE\$:01\$, PP\$:02\s" This could have not been achieved without the use of the comma as we are
selecting different nodes with different tags. This will allow all nodes with the
tag of "PE" and ending in "01" to run this script as well as all nodes with the

tag of "PP" and ending in "02".

Note: Due to the way scripts are loaded you need to escape the $ sign otherwise it is interpreted as a scalar in Perl.
For example, "APEs:” would have to be written as “APE\s:".

10.1.3. NS4_version

v4.3.6

49

This variable allows you to specify a minimum version of ns4 required to run this script. If this variable is omitted then
there are no version restrictions. This can be used if you are writing scripts which utilise features which are found in
later versions of ns4. The format of this variable should be in the format of the version number of ns4, i.e. “4.3.6".

10.1.4. script_timeout

This option allows you to set a limit (in seconds) on the amount of time a script will run on a node. There have been
cases where a script could get stuck in a loop due to it being poorly written which would cause ns4 to freeze waiting
indefinitely. We have now introduced an option which allows us to set a limit.

10.2. Script Defined Variables

Within scripts we also have the ability to define variables which are global to the scope of the script. These are
defined as follows:

Due to the architecture of nss there are a couple of restrictions regarding changing global variables. As the “pre”
routine is run before we connect to any nodes we have the ability to modify these global variables and the changes
will be seen within the “main” and “post” blocks. However, ns4 adopts a threaded model (forking) which means any
changes made to these variables within the “main” block are not visible outside this block (i.e. in the “post” block).

There is also a caveat to this which should be taken into consideration — there are situations when multiple nodes are
executed within the same forked process (e.g. if processing more than one node) — in this scenario future nodes
within the same forked process will be able to see changes made to global variables as they are still within scope. To
ensure that no unexpected results happen it is recommended not to change the value of a global variable within the
“main” block.

10.3. sub pre()

The “pre” subroutine is optional unlike the “main” subroutine and allows you to run portions of code before you
connect to any nodes. An example of where this could be required would be if you wanted to create a configuration
repository, where the “pre” subroutine could be used to check for its existence and if it didn’t exist then it could create
it.

10.4. sub main()

The “main” subroutine is where the heart of the script is as it contains the script which is actually executed on each
node. This would be where you would run commands and fetch output from nodes. Unlike the “pre” and “post”
subroutines the “main” subroutine is run once on every node once you have logged on.

10.5. sub post()

The “post” subroutine is optional unlike the *main” subroutine and is like the “pre” routine, except it allows you to run
portions of code after you have processed the nodes. An example of where this could be required would be if you
wanted to email a report based on the output of the nodes. Each node could write data to a temporary file within the
“main"” subroutine and then you could check to see if that file exists and then email it in the “post” routine.

10.6. Return Codes

"o\

The “pre”, "main” and “post” subroutines must return a value at the end of the subroutine for the script to succeed.
There are a few options which can be used here.

v4.3.6

50

1. ‘return (200);" — this will ensure that an “OK" status code is passed back, however it lacks the ability to
pass a message.

2. ‘return (“100:Stats Updated”);’ — this allows us to pass through an "OK" status code, but ns4 will display
the message contained after the colon within the return statement.

3. ‘return ("Something Went Wrong");’ — the final option is to return a status message which doesn’t begin
with “100” which will result in a Custom Script Response (CSR) being presented which indicates an error
occurred.

If the “pre” block doesn’t respond with an “"OK"” status code then the “main” and “post” blocks are skipped.

10.7. ScriptObject

A ScriptObject is a package within ns4 which you can create an instance of, from within your script. From that
instance you are able to access the various methods of the ScriptObject to control the node. Without the
ScriptObject instance you have no way to talk to the program and your script will just be a simple Perl script with no
ns4 interactions.

Note: The ScriptObject can be instantiated anywhere within the script — even created once globally, however certain
methods can only be executed from within the “main” block. These are methods which require connectivity to a node
to succeed, i.e. “cmd” method or “dvar” method with a node specific dynamic variable.

10.7.1. new

] my $sO = new ScriptObject;

Creates a new ScriptObject instance. This command doesn't take any parameters and returns a new instance of the
ScriptObject package.

10.7.2. cmd
| my @sR = $sO->cmd (“show running-config", [Prompt => ...], [Timeout => ...]);
" or
[my $sR = $sO->cmd ("show running-config", [Prompt => ...], [Timeout => ...]);

After you have created a ScriptObject instance you can use the "cmd" method to run a command on a node. The
return value of the "cmd" method is context sensitive depending on the Ivalue of the function call. If you specify an
array then ns4 will split each line up within the output as opposed to a scalar where ns4 will join the content with
"CRLF".

There are two optional parameters which can be passed to the "cmd" method: the "Prompt" (case sensitive)
parameter allows you to specify an alternative prompt if it is not going to be the default prompt and the "Timeout"
(case sensitive) parameter which allows you to redefine the timeout for that command.

Generally, the default node timeout is adequate for most commands and can be omitted - the only exception is if you
are trying to fetch a large output which takes a long time before it starts sending output. When you receive content
from the node the timeout is reset, so it is a time in seconds that passes where content has not been received. The
prompt can also be omitted if it matches what is defined within the cartridge as the normal prompt that you logged
in with.

$s0O->cmd ("write");

v4.3.6

51

This will execute the command "write" on a Cisco router. This command doesn't prompt you for anything and it
will save the configuration into NVRAM so it isn't lost if the router was reloaded. We haven't assigned the output
to a variable as we don't care what the output is and we haven't specified a prompt as it doesn't change when we
run this command.

my @r = $s0->cmd ("show cIns neighbor | include Up");
In the above example we are looking for CLNS neighbours which are currently in the "Up" state. We are also
assigning the output to the variable "@r" so we are able to parse it using Perl. We have returned it as an array so
we don't have to split the contents. As an example below | have included the output from this command first, then
shown how we could parse it in Perl:

é PE@1# show clns neighbors | include Up
- PPO2 Eto/e aabb.cc00.6600 Up 26 L1 IS-IS
. PPO7 Et3/0 aabb.cc00.6b03 Up 28 L1 IS-IS

‘my @ = $s0->cmd ("show clns neighbors | include Up");

é foreach my $1 (@r) {
if ($1 =~ m/*(\S+)/) {
print $sO->dvar ("Node") . " has a neighbor of $1\n";

We can also see in the above example the use of special variables to output context sensitive information.

$s0->cmd ("configure terminal", Prompt => "A.*\Q" . $s0->dvar ("Node") . "(config)#\E");
We have specified a prompt this time because when we enter configuration mode the prompt changes on a Cisco
router. We are using special variables to dynamically place the node name into the prompt and we have had to
escape the meaning of the brackets otherwise they would be interpreted as a special character.

This allows us to create dynamic configuration scripts which we can run on multiple nodes. Below is an example
which could be used on a Cisco router (we have used the MATCH_X special variable to make the syntax simpler):

‘' my $nPrompt = $s0->dvar ("MATCH_L*,N:Prompt,#");

. $s0->cmd ("configure terminal®, Prompt => $nPrompt . "\Q(config)\E#");

* $s0->cmd ("line vty @ 4", Prompt => $nPrompt . "\Q(config-line)\E#");

. $s0->cmd (“"exec-timeout 30 0", Prompt => $nPrompt . "\Q(config-line)\E#");
* $s0->cmd (“"end");

We don't need to specify a prompt when we use the "end" command as it takes us out of configuration mode and
back to the default prompt we saw when we logged in.

However, there is an alternative if you don't fancy having to redefine the prompt every time that you change sub-
modes. You can specify a wildcard within the actual prompt within the cartridge so it doesn't matter what sub-
mode you enter as the regular expression still matches:

A *[Node].*#

The above syntax will allow any character to appear after the prompt name. When using the above syntax you

could omit the Prompt parameter from the "cmd" method. However, you then assume that every command is
going to be executed successfully and you are always going to enter the new sub-mode.

v4.3.6

52

my @r = $s0->cmd ("show running-config", Timeout => 60);
As we have seen this command take a while on a busy Cisco router we have decided to change the default
timeout to 60 seconds. However, we don't want to specify a prompt as we know it doesn't change when we use
this command. We have also assigned the output to "@r" so we can parse it later.

Note: If any of the commands timeout then ns4 will handle that and break out of the script immediately.

Note: The "Prompt" parameter expects a regular expression so ensure that if you are passing in the node name that
you escape any special characters. For example "PEo1-CISCO" would have to be passed in as "PEo1\-CISCO" which
you can achieve using the "\Q" and "\E" meta characters.

10.7.3. svar

. print "Script Variables 'mtu' is '" . $sO->svar ("mtu") . "'\n";

The "svar" method allows you to access script variables which have been passed through on the command line. In the
above example we have used the variable "mtu" which would have been passed through using the following syntax:

[$ ns4 -n PEQLl -s myscript.nss,mtu=1500

Note: If the script variable doesn't exist then the "svar" method will return "undef".

10.7.4. dvar

| my $sR = $sO->cmd ("show running-config", Prompt => $sO->dvar ("N:Prompt"));

The "dvar" method allows you to access special variables like you would normally do using square brackets within
cartridges. Instead of using brackets you would use the "dvar" method. If the special variable doesn't exist then the
method will return "undef". The "dvar" method also supports the more complex MATCH_X special variables which
could be used in the following context:

| $s0->cmd (“"configure terminal®, Prompt => $sO->dvar ("MATCH_L*,N:Prompt,#") . "\Q(config)#\E");

The above example also shows the concept of escaping characters using the "\Q" and "\E" meta characters as it is
being treated as a regular expression. The "N:Prompt" special variable doesn't want to be escaped as it should be
treated as a regular expression. If you didn't use the "N:Prompt" special variable and constructed the prompt
manually you would have to escape the special variables:

[$s0->cmd ("configure terminal®, Prompt => "~.*\Q" . $sO->dvar ("Node") . "#(config)\E");

The "dvar" method is also used for custom special variables which are defined within container options and can be
used as follows:

B+ e e e e e e e e -

| print "Node is " . $sO->dvar ("Node") . "\n";
+ print "Node Type is " . $sO->dvar ("C:Type") . "\n";

10.7.5. break

v4.3.6

53

. return ("Break Detected") if ($sO->break);

The "break" method allows us to check if CTRL-C has been pressed by the user. ns4 will always finish scripts when a
break sequence has been detected, but if you want the ability to terminate your script early you can check for the
break sequence using the "break" method.

10.7.6. lock

. if ($s0->lock ([timeout])) {
+ # Do something exclusively
* $s0->unlock;

[)

. else {

return (“Lock Failed”);

As the same script can be running on multiple nodes in parallel due to the threaded architecture of ns4 it is important
to understand the implications this can have on output and writing to files. If multiple threads attempt to write to the
same file at the same time then you will end up with muddled up text and in the worst case scenario — missing text.

The “lock” subroutine provides a function to obtain a mutex lock where you can get exclusive access while you have
obtained the lock. This stops other parallel processes from doing the same thing at the same time. Once you have
finished you “unlock” which releases the mutex lock for another process to obtain it.

Warning: It is best practice to only do the absolutely minimum that is necessary within the mutex lock otherwise
other threads/processes are starved and will halt while they wait for the mutex lock. An optional “timeout” value can
be specified which is the time it will wait for the lock until it fails. If this parameter isn't specified then a default value

of 5 seconds is used.

Warning: Check all the execution paths of your code and ensure that you use the “unlock” subroutine otherwise you
will cause lock timeouts. If you return from within the lock you need to ensure you “unlock” first!

10.7.7. unlock
See “lock”.

10.7.8. create_config_tree

my @rc = $s0->cmd (“show running-config”);
my $ct = $sO->create_config_tree (\@rc);
or

«my $ct = $s0->create_config tree (“config.txt”);

The above function is used to create a hash tree of a configuration file. It analyses a configuration file and based on
indentation will create a tree hierarchy. It is mostly used by the “cdiff.nss” script, but | have added it to ns4 as it
contains some nice functions which could be reused in other scripts.

This function together with “output_config_tree” can be used to normalize the formatting of configurations of

routers. It can be used to sanitise the amount of spaces within indentations as well as removing comments and
whitespace.

v4.3.6

54

The subroutine returns a reference to a hash of hashes which either can be outputted using the aforementioned
“output_config_tree” subroutine or could be used in the “diff_configs” subroutine.

10.7.9. output_config_tree

$s0->output_config_tree ($ct);

“or
: $s0->output_config_tree ($ct, $fh);

This function takes a reference to a hash tree as generated by “create_config_tree” and will either output it to the
screen or to a file. If outputted to a file then you pass through a reference to an open file handle. If multiple routers
are being processed then please see the “lock” and “unlock” subroutines for creating a mutex lock.

10.7.10. diff_configs

| my $diff = $sO->diff_configs ($ct_a, $ct _b);

This subroutine is used to create a functional hierarchical diff between two configuration hash trees which have been
generated by “create_config_tree”. It will compute which elements have been removed or added and will create an
output diff which will contain all the hierarchy to easily identify which sections a configuration line has come from.
This subroutine will return a reference to a config diff hash which can be outputted using the “output_config_diff”
subroutine.

10.7.11. output_config_diff

- $50->output_config diff ($diff);
" or

. $s0->output_config diff ($diff, $fh);

This subroutine is identical to “output_config_tree” except it outputs a configuration diff as opposed to a tree. If
outputted to a file then you pass through a reference to an open file handle. If multiple routers are being processed
then please see the “lock” and “unlock” subroutines for creating a mutex lock.

10.8. Demonstration Script

When we take all the above into consideration we can come up with the following example to demonstrate a script
utilising all the different types of syntax:

* $script_version = <<SV;

+ My Demonstration Script v1.0

. Copyright (c) 2009 Chris Mason <chris\@noodles.org.uk>
Y

- my $sMTU = 1500;
my $sO = new ScriptObject;

" sub pre {
if (defined ($sO->svar (“mtu”))) {
$sMTU = $sO->svar (“mtu”);
}

else {

v4.3.6

55

 sub main {
* my $nPrompt = $sO->dvar (“MATCH_L*,n:prompt,#");
my $nID = $sO->dvar (“node”);

my @ = $s0->cmd ("show clns neighbors | include IS-IS");
$s0->cmd (“"configure terminal", Prompt => $nPrompt . "\Q(config)\E#");

foreach my $1 (@r) {
return ("Break Detected") if ($sO->break);
if ($1 =~ m/~A(\S+)\s+(\S+)/) {
$s0->cmd ("interface $2", Prompt => $nPrompt . "\Q(config-if)\E#");
$s0->cmd ("description >>> $nID ($2) to $1 <<<", Prompt => $nPrompt . "\Q(config-if)\E#");
$s0->cmd ("mtu " . $sMTU, Prompt => $nPrompt . "\Q(config-if)\E#");
$s0->cmd ("exit", Prompt => $nPrompt . "\Q(config)\E#");
}
}

$s0->cmd ("end");
$s0->cmd ("write");
100;

The above script logs into a Cisco router and formats the descriptions on all the core facing IS-IS interfaces. It also
changes the MTU to either 1500 or the value that is passed through in the "mtu" script option. It then finishes by
saving the configuration to NVRAM.

Note: As stated above the value which you specify within the "Prompt" parameter is very much dependent on what
the prompt is defined as within the cartridge. By using the MATCH_X special variable with the "N:Prompt" value you
need to ensure that the prompt you construct is going to be compatible with what you have defined within the
cartridge.

V4.3.6

