/**************************************************************************\
MODULE: ZZ_pXFactoring
SUMMARY:
Routines are provided for factorization of polynomials over ZZ_p, as
well as routines for related problems such as testing irreducibility
and constructing irreducible polynomials of given degree.
\**************************************************************************/
#include <NTL/ZZ_pX.h>
#include <NTL/pair_ZZ_pX_long.h>
void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);
vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f);
// Performs square-free decomposition. f must be monic. If f =
// prod_i g_i^i, then u is set to a lest of pairs (g_i, i). The list
// is is increasing order of i, with trivial terms (i.e., g_i = 1)
// deleted.
void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);
vec_ZZ_p FindRoots(const ZZ_pX& f);
// f is monic, and has deg(f) distinct roots. returns the list of
// roots
void FindRoot(ZZ_p& root, const ZZ_pX& f);
ZZ_p FindRoot(const ZZ_pX& f);
// finds a single root of f. assumes that f is monic and splits into
// distinct linear factors
void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0);
// Assumes f is square-free and monic. returns list of factors of f.
// Uses "Berlekamp" approach, as described in detail in [Shoup,
// J. Symbolic Comp. 20:363-397, 1995].
void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f,
long verbose=0);
vec_pair_ZZ_pX_long berlekamp(const ZZ_pX& f, long verbose=0);
// returns a list of factors, with multiplicities. f must be monic.
// Calls SFBerlekamp.
void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h,
long verbose=0);
// This computes a distinct-degree factorization. The input must be
// monic and square-free. factors is set to a list of pairs (g, d),
// where g is the product of all irreducible factors of f of degree d.
// Only nontrivial pairs (i.e., g != 1) are included. The polynomial
// h is assumed to be equal to X^p mod f.
// This routine implements the baby step/giant step algorithm
// of [Kaltofen and Shoup, STOC 1995].
// further described in [Shoup, J. Symbolic Comp. 20:363-397, 1995].
// NOTE: When factoring "large" polynomials,
// this routine uses external files to store some intermediate
// results, which are removed if the routine terminates normally.
// These files are stored in the current directory under names of the
// form tmp-*.
// The definition of "large" is controlled by the variable
extern double ZZ_pXFileThresh
// which can be set by the user. If the sizes of the tables
// exceeds ZZ_pXFileThresh KB, external files are used.
// Initial value is NTL_FILE_THRESH (defined in tools.h).
void EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& h,
long d, long verbose=0);
vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& h,
long d, long verbose=0);
// Performs equal-degree factorization. f is monic, square-free, and
// all irreducible factors have same degree. h = X^p mod f. d =
// degree of irreducible factors of f. This routine implements the
// algorithm of [von zur Gathen and Shoup, Computational Complexity
// 2:187-224, 1992].
void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0);
// EDF for d==1
void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0);
// Assumes f is monic and square-free. returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach, using the routines NewDDF and
// EDF above.
void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f,
long verbose=0);
vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0);
// returns a list of factors, with multiplicities. f must be monic.
// Calls SquareFreeDecomp and SFCanZass.
// NOTE: these routines use modular composition. The space
// used for the required tables can be controlled by the variable
// ZZ_pXArgBound (see ZZ_pX.txt).
void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);
ZZ_pX mul(const vec_pair_ZZ_pX_long& v);
// multiplies polynomials, with multiplicities
/**************************************************************************\
Irreducible Polynomials
\**************************************************************************/
long ProbIrredTest(const ZZ_pX& f, long iter=1);
// performs a fast, probabilistic irreduciblity test. The test can
// err only if f is reducible, and the error probability is bounded by
// p^{-iter}. This implements an algorithm from [Shoup, J. Symbolic
// Comp. 17:371-391, 1994].
long DetIrredTest(const ZZ_pX& f);
// performs a recursive deterministic irreducibility test. Fast in
// the worst-case (when input is irreducible). This implements an
// algorithm from [Shoup, J. Symbolic Comp. 17:371-391, 1994].
long IterIrredTest(const ZZ_pX& f);
// performs an iterative deterministic irreducibility test, based on
// DDF. Fast on average (when f has a small factor).
void BuildIrred(ZZ_pX& f, long n);
ZZ_pX BuildIrred_ZZ_pX(long n);
// Build a monic irreducible poly of degree n.
void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);
ZZ_pX BuildRandomIrred(const ZZ_pX& g);
// g is a monic irreducible polynomial. Constructs a random monic
// irreducible polynomial f of the same degree.
long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// f is assumed to be an "equal degree" polynomial; h = X^p mod f.
// The common degree of the irreducible factors of f is computed This
// routine is useful in counting points on elliptic curves
long ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);
// Same as above, but uses a slightly faster probabilistic algorithm.
// The return value may be 0 or may be too big, but for large p
// (relative to n), this happens with very low probability.
void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& h);
ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F,
const ZZ_pX& h);
// w = a+a^q+...+^{q^{d-1}} mod f; it is assumed that d >= 0, and h =
// X^q mod f, q a power of p. This routine implements an algorithm
// from [von zur Gathen and Shoup, Computational Complexity 2:187-224,
// 1992].
void PowerCompose(ZZ_pX& w, const ZZ_pX& h, long d, const ZZ_pXModulus& F);
ZZ_pX PowerCompose(const ZZ_pX& h, long d, const ZZ_pXModulus& F);
// w = X^{q^d} mod f; it is assumed that d >= 0, and h = X^q mod f, q
// a power of p. This routine implements an algorithm from [von zur
// Gathen and Shoup, Computational Complexity 2:187-224, 1992]