INSTALLATION NOTES for OpenBSD/mvme68k 2.8 What is OpenBSD? ---------------- OpenBSD is a fully functional, multi-platform UN*X-like Operating System based on Berkeley Networking Release 2 (Net/2) and 4.4BSD-Lite. There are several operating systems in this family, but OpenBSD differentiates itself by putting security and correctness first. The OpenBSD team strives to achieve what is called 'a secure by default' status. This means that an OpenBSD user should feel safe that their newly installed machine will not be compromised. This 'secure by default' goal is achieved by taking a proactive stance on security. Since security flaws are essentially mistakes in design or implement- ation, the OpenBSD team puts as much importance on finding and fixing existing design flaws and implementation bugs as it does writing new code. This means that an OpenBSD system will not only be more secure, but it will be more stable. The source code for all critical system components has been checked for remote-access, local-access, denial- of-service, data destruction, and information-gathering problems. In addition to bug fixing, OpenBSD has integrated strong cryptography into the base system. A fully functional IPSEC implementation is provided as well as support for common protocols such as SSL and SSH. Network filtering and monitoring tools such as ipf, ipnat, and bridging are also standard. For high performance demands, support for hardware cryptography has also been added to the base system. Because security is often seen as a tradeoff with usability, OpenBSD provides as many security options as possible to allow the user to enjoy secure computing without feeling burdened by it. Though security is the primary goal, OpenBSD continues the multi- platform tradition. Ports to mvme68k, powerpc and arc machines have been added to the system. To further this work, kernel interfaces have continued to be refined and several subsystems and device drivers are shared in a machine independent fashion among the different ports. You can look for this trend to continue as newer architectures become available. To integrate more smoothly in other environments, OpenBSD 2.8 has significantly enhanced the binary emulation subsystem (which includes iBCS2, Linux, OSF/1, SunOS, SVR4, Solaris, and Ultrix compatibility) and several kernel subsystems have been generalized to support this more readily. The binary emulation strategy is aimed at making the emulation as accurate as possible so that it is transparent to the user. Many new user programs have been added in OpenBSD 2.8, as well, bringing it closer to our goal of supplying a complete and modern UN*X-like environment. Tools like perl and ksh are standard, as are numerous other useful tools. Because OpenBSD is from Canada, the export of Cryptography pieces (such as SSH, IPSEC, and kerberosIV) to the world is not restricted. (NOTE: OpenBSD can not be re-exported from the US once it has entered the US. Because of this, take care NOT to get the distribution from an FTP server in the US if you are outside of Canada and the US.) OpenBSD/mvme68k 2.8 was written under contract for Willowglen Singapore for an embedded application. Theo de Raadt, Dale Rahn, Chuck Cranor, and Steve Murphree were involved in working on this port which runs on the MVME147, MVME162, MVME167, MVME177 and perhaps other models also. Sources of OpenBSD: ------------------- This is a list of currently known ftp servers: Australia: ftp://ftp.aba.net.au/pub/OpenBSD == ftp://ftp.au.openbsd.org/pub/OpenBSD ftp://ftp.wiretapped.net/pub/OpenBSD/ ftp://ftp.it.net.au/mirrors/OpenBSD Austria: ftp://gd.tuwien.ac.at/opsys/OpenBSD Canada: ftp://openbsd.sunsite.ualberta.ca/pub/OpenBSD == ftp://ftp.openbsd.org/pub/OpenBSD ftp://ftp.ca.openbsd.org/pub/OpenBSD ftp://ftp1.ca.openbsd.org/pub/OpenBSD France: ftp://ftp.lip6.fr/pub/OpenBSD == ftp://ftp.fr.openbsd.org/pub/OpenBSD ftp://ftp.bsdfr.org/pub/OpenBSD Germany: ftp://ftp.fu-berlin.de/unix/OpenBSD == ftp://ftp.de.openbsd.org/unix/OpenBSD ftp://ftp.gigabell.net/pub/OpenBSD Greece: ftp://filoktitis.noc.uoa.gr/pub/OpenBSD ftp://ftp.duth.gr/pub/OpenBSD Japan: ftp://ftp.dti.ad.jp/pub/OpenBSD == ftp://ftp.jp.openbsd.org/OpenBSD ftp://ftp.kddlabs.co.jp/OpenBSD ftp://ftp.netlab.is.tsukuba.ac.jp/pub/os/OpenBSD Korea: ftp://ftp.snu.ac.kr/pub/BSD/OpenBSD/ Norway: ftp://ftp.inet.no/pub/OpenBSD Russia: ftp://ftp.chg.ru/pub/OpenBSD ftp://ftp.radio-msu.net/pub/OpenBSD Sweden: ftp://ftp.stacken.kth.se/pub/OpenBSD == ftp://ftp.se.openbsd.org/pub/OpenBSD ftp://ftp1.se.openbsd.org/pub/OpenBSD ftp://ftp.sunet.se/pub/OpenBSD Switzerland: ftp://sunsite.cnlab-switch.ch/pub/OpenBSD Taiwan: ftp://openbsd.csie.nctu.edu.tw/pub/OpenBSD Thailand: ftp://ftp.kmitl.ac.th/pub/OpenBSD United Kingdom: ftp://ftp.knowledge.com/pub/mirrors/OpenBSD ftp://ftp.plig.org/pub/OpenBSD USA: ftp://anonopenbsd.cs.colorado.edu/pub/OpenBSD == ftp://ftp.usa.openbsd.org/pub/OpenBSD ftp://ftp3.usa.openbsd.org/pub/OpenBSD ftp://ftp6.usa.openbsd.org/pub/OpenBSD ftp://ftp.eecs.umich.edu/pub/OpenBSD == ftp://ftp1.usa.openbsd.org/pub/OpenBSD ftp://ftp4.usa.openbsd.org/pub/OpenBSD ftp://ftp.op.net/pub/OpenBSD ftp://download.sourceforge.net/pub/mirrors/OpenBSD ftp://ftp.cerias.purdue.edu/pub/os/OpenBSD ftp://ftp.compsci.lyon.edu/pub/distributions/OpenBSD ftp://ftp.op.net/pub/OpenBSD ftp://ftp.src.uchicago.edu/pub/openbsd ftp://rt.fm/pub/OpenBSD As well, the file ftp://ftp.openbsd.org/pub/OpenBSD/2.8/ftplist contains a list which is continually updated. If you wish to become a distribution site for OpenBSD, contact deraadt@cvs.openbsd.org. OpenBSD 2.8 Release Contents: ----------------------------- The OpenBSD 2.8 release is organized in the following way. In the .../2.8 directory, for each of the architectures having an OpenBSD 2.8 binary distribution, there is a sub-directory. The mvme68k-specific portion of the OpenBSD 2.8 release is found in the "mvme68k" subdirectory of the distribution. That subdirectory is laid out as follows: .../2.8/mvme68k/ INSTALL.mvme68k Installation notes; this file. CKSUM Output of the cksum(1) and md5(1) programs MD5 usable for verification of the correctness of downloaded files. *.tgz mvme68k binary distribution sets; see below. bsd A stock GENERIC mvme68k kernel which will be installed on your system during the install. bsd.rd A compressed RAMDISK kernel; the embedded filesystem contains the installation tools. Used for simple installation from a pre- existing system. The OpenBSD/mvme68k binary distribution sets contain the binaries which comprise the OpenBSD 2.8 release for mvme68k systems. There are ten binary distribution sets. The binary distribution sets can be found in the "mvme68k" subdirectory of the OpenBSD 2.8 distribution tree, and are as follows: base28 The OpenBSD/mvme68k 2.8 base binary distribution. You MUST install this distribution set. It contains the base OpenBSD utilities that are necessary for the system to run and be minimally functional. It includes shared library support, and excludes everything described below. [ 11.2M gzipped, 33.9M uncompressed ] comp28 The OpenBSD/mvme68k Compiler tools. All of the tools relating to C, C++, and FORTRAN (yes, there are two!) are supported. This set includes the system include files (/usr/include), the linker, the compiler tool chain, and the various system libraries (except the shared libraries, which are included as part of the base set). This set also includes the manual pages for all of the utilities it contains, as well as the system call and library manual pages. [ 7.0M gzipped, 23.5M uncompressed ] etc28 This distribution set contains the system configuration files that reside in /etc and in several other places. This set MUST be installed if you are installing the system from scratch, but should NOT be used if you are upgrading. (If you are upgrading, it's recommended that you get a copy of this set and CAREFULLY upgrade your configuration files by hand.) [ 92K gzipped, 490K uncompressed ] game28 This set includes the games and their manual pages. [ 2.7M gzipped, 6.7M uncompressed ] man28 This set includes all of the manual pages for the binaries and other software contained in the base set. Note that it does not include any of the manual pages that are included in the other sets. [ 2.4M gzipped, 9.2M uncompressed ] misc28 This set includes the system dictionaries (which are rather large), the typesettable document set, and man pages for other architectures which happen to be installed from the source tree by default. [ 1.7M gzipped, 5.9M uncompressed ] xbase28 This set includes the base X distribution. This includes programs, headers, libraries, configuration files. xfont28 This set includes all of the X fonts. xserv28 This set includes all of the X servers. OpenBSD System Requirements and Supported Devices: -------------------------------------------------- OpenBSD/mvme68k 2.8 runs on the following classes of machines: - MVME147 - Motorola with 68030 and 68881 - MVME162 - Motorola with 68040 - MVME167 - Motorola with 68040 - MVME177 - Motorola with 68060 The minimal configuration requires 4M of RAM and ~60M of disk space. To install the entire system requires much more disk space, and to compile the system, more RAM is recommended. (OpenBSD with 4M of RAM feels like Solaris with 4M of RAM.) Note that until you have around 16M of RAM, getting more RAM is more important than getting a faster CPU.) Supported devices include: MVME147: serial ports: on-board ttya and ttyb ethernet: on-board AMD 7990 Lance ethernet ("le0") SCSI: on-board Parallel: a driver exists, but it is not integrated. MVME162: serial ports: on-board tty00-03 - Zilog Z85230 SCC ethernet: on-board Intel 82596CA ethernet ("ie0") MVME376 VME bus ehternet ("le*") SCSI: on-board SCSI controller NCR53c710 Parallel: Not available for this board VME: drivers for short I/O access Flash: 1 MB flash, either Intel 28F008SA or 28F020 driver is available, but doesn't work Jumper GPIO3 selects Flash memory map and must be installed for booting with the Flash driver (default) SRAM: supported VMEbus: untested IP: untested MVME167 serial: on-board tty00 - tty03 - Cirrus Logic CD2401 ethernet: on-board Intel 82596CA ethernet ("ie0") MVME376 VME bus ehternet ("le*") SCSI: on-board SCSI controller NCR53c710 Parallel: Not supported SRAM: supported VMEbus: supported MVME177 serial: on-board tty00 - tty03 - Cirrus Logic CD2401 ethernet: on-board Intel 82596CA ethernet ("ie0") MVME376 VME bus ehternet ("le*") SCSI: on-board SCSI controller NCR53c710 Parallel: Not supported SRAM: supported VMEbus: supported Getting the OpenBSD System onto Useful Media: --------------------------------------------- Installation is supported from several media types, including: NFS partitions FTP Tape The steps necessary to prepare the distribution sets for installation depend on which method of installation you choose. The various methods are explained below. To prepare for installing via an NFS partition: Place the OpenBSD software you wish to install into a directory on an NFS server, and make that directory mountable by the machine which you will be installing OpenBSD on. This will probably require modifying the /etc/exports file of the NFS server and resetting mountd, acts which will require superuser privileges. Note the numeric IP address of the NFS server and of the router closest to the the new OpenBSD machine, if the NFS server is not on a network which is directly attached to the OpenBSD machine. If you are using a diskless setup to install OpenBSD on your machine, you can take advantage of the fact that the above has already been done on your machine's server. So, you can conveniently put the OpenBSD filesets in your machine's root filesystem on the server where the install program can find them. Once you have done this, you can proceed to the next step in the installation process, preparing your system for OpenBSD installation. To prepare for installing via FTP: NOTE: this method of installation is recommended only for those already familiar with using the BSD network-manipulation commands and interfaces. If you aren't, this documentation should help, but is not intended to be all-encompassing. The preparations for this method of installation are easy: all you have to do is make sure that there's some FTP site from which you can retrieve the OpenBSD installation when it's time to do the install. You should know the numeric IP address of that site, the numeric IP address of your nearest router if one is necessary Once you have done this, you can proceed to the next step in the installation process, preparing your system for OpenBSD installation. To prepare for installing via a tape: To install OpenBSD from a tape, you need to somehow get the OpenBSD filesets you wish to install on your system on to the appropriate kind of tape, in tar format. If you're making the tape on a UN*X system, the easiest way to do so is: tar cvf where "" is the name of the tape device that describes the tape drive you're using (possibly something like /dev/nrst0, but we make no guarantees 8-). Under SunOS 5.x, this would be something like /dev/rmt/0mbn. Again, your mileage may vary. If you can't figure it out, ask your system administrator. "" are the names of the "set_name.nnn" files which you want to be placed on the tape. Once you have done this, you can proceed to the next step in the installation process, preparing your system for OpenBSD installation. Preparing your System for OpenBSD Installation: ----------------------------------------------- ; ; This section should talk about setting up the NVRAM environment ; on the various models. ; MVME162: Be sure to use the SET command to set the date before trying to use the ethernet support in the 162-Bug. MVME162/167/177: 162-Bug> env Local SCSI Bus Reset on Debugger Startup [Y/N] = N? y Network Auto Boot Enable [Y/N] = N? y Network Auto Boot at power-up only [Y/N] = Y? n Network Auto Boot Abort Delay = 5? 2 Network Auto Boot Configuration Parameters Pointer (NVRAM) = 00000000? fffc0080 Update Non-Volatile RAM (Y/N)? y Reset Local System (CPU) (Y/N)? y MVME147: May need to set the ethernet address using the LSAD 147-Bug command. Installing the OpenBSD System: ------------------------------ Installing OpenBSD is a relatively complex process, but if you have this document in hand it shouldn't be too much trouble. There are several ways to install OpenBSD onto a disk. The easiest way in terms of preliminary setup is to use the OpenBSD ramdisk kernel that can be booted from tape. Alternatively, if your mvme68k is hooked up in a network you can find a server and arrange for a diskless setup which is a convenient way to install on a machine whose disk does not currently hold a usable operating system (see the section `Installing using a diskless setup' below). Installing using the OpenBSD ramdisk kernel. The ramdisk kernel is a kernel that containes an OpenBSD filesystem holding all utilities necessary to install OpenBSD on a local disk. It is distributed as a binary file with the name bsd.rd. The ramdisk kernel can be loaded via a network boot-server. This is the fastest installation method. It also may loaded via tape. After the initial probe messages you'll asked to start the install or upgrade procedure. Proceed to the section `Running the installation scripts' below. Installing using a diskless setup. First, you must setup a diskless client configuration on a server. If you are using a OpenBSD system as the boot-server, have a look at the diskless(8) manual page for guidelines on how to proceed with this. If the server runs another operating system, you'll have to consult documentation that came with it (on SunOS systems, add_client(8) is a good start). Second, you must configure the netboot parameters in the mvme68k Bug using the NIOT command. The Load Address should be 0x3F0000. The Execution Address should be 0x3F0000. Your mvme68k expects to be able to download a second stage bootstrap program via TFTP after having acquired its IP address through RevARP when instructed to boot "over the net". It will look for a filename composed of the machine's IP address followed by the machine's architecture, separated by a period. For example, a sun4c machine which has been assigned IP address 130.115.144.11, will make an TFTP request for a file that has been named in the nvram. Normally, this file is a second-stage boot program, which should be located in a place where the TFTP daemon can find it (remember, many TFTP daemons run in a chroot'ed environment). You can find the boot program in `/usr/mdec/netboot' in the OpenBSD/mvme68k distribution. After the boot program has been loaded into memory and given control by the PROM, it starts locating the machine's remote root directory through the BOOTPARAM protocol. First a BOOTPARAM WHOAMI request is broadcast on the local net. The answer to this request (if it comes in) contains the client's name. This name is used in next step, a BOOTPARAM GETFILE request -- sent to the server that responded to the WHOAMI request -- requesting the name and address of the machine that will serve the client's root directory, as well as the path of the client's root on that server. Finally, this information (if it comes in) is used to issue a REMOTE MOUNT request to the client's root filesystem server, asking for an NFS file handle corresponding to the root filesystem. If successful, the boot program starts reading from the remote root filesystem in search of the kernel which is then read into memory. As noted above in the section `Preparing your System for OpenBSD Installation', you have several options when choosing a location to store the installation filesets. However, the easiest way is to put the *.tgz files you want to install into the root directory for your client on the server. Next, unpack `base28.tgz' and `etc.28.tgz' on the server in the root directory for your machine. If you elect to use a separately NFS-mounted filesystem for `/usr' with your diskless setup, make sure the "./usr" base files in base28.tgz end up in the correct location. One way to do this is to temporarily use a loopback mount on the server, re-routing /usr to your server's exported OpenBSD "/usr" directory. Also put the kernel and the install/upgrade scripts into the root directory. A few configuration files need to be edited: /etc/hosts Add the IP addresses of both server and client. /etc/myname This files contains the client's hostname; use the same name as in /etc/hosts. /etc/fstab Enter the entries for the remotely mounted filesystems. For example: server:/export/root/client / nfs rw 0 0 server:/export/exec/sun4.OpenBSD /usr nfs rw 0 0 Now you must populate the the `/dev' directory for your client. If you server runs SunOS 4.x, you can simply change your working directory to `/dev' and run the MAKEDEV script: `sh MAKEDEV all'. On SunOS 5.x systems, MAKEDEV can also be used, but there'll be error messages about unknown user and groups. These errors are inconsequential for the purpose of installing OpenBSD. However, you may want to correct them if you plan to the diskless setup regularly. In that case, you may re-run MAKEDEV on your OpenBSD machine once it has booted. Boot your workstation from the server by entering the appropriate `boot' command at the monitor prompt. Depending on the PROM version in your machine, this command takes one of the following forms: 167-bug> nbo 00 00 bsd -s This will boot the OpenBSD kernel in single-user mode. 167-bug> nbo 00 00 bsd.rd This will boot the OpenBSD ramdisk kernel. If you use a diskless setup with a separately NFS-mounted /usr filesystem, mount /usr by hand now: OpenBSD# mount /usr At this point, it's worth checking the disk label and partition sizes on the disk you want to install OpenBSD onto. OpenBSD understands SunOS-style disklabels, so if your disk was previously used by SunOS there will be a usable label on it. Use `disklabel -e ' (where is the device name assigned by the OpenBSD kernel, e.g. `sd0') to view and modify the partition sizes. See the section `Preparing your System for OpenBSD Installation' above for suggestions about disk partition sizes. Make sure all your partitions start and end on cylinder boundaries. NOTE: if you are installing on a SCSI disk that does *not* have a SunOS or OpenBSD label on it, you may still be able to use disklabel(8) but you'll have to create all partitions from scratch. If your disk is listed in `/etc/disktab', you may use the entry (which in most cases only defines a `c' partition to describe the whole disk) to put an initial label on the disk. DO NOT USE `disklabel -r ...' TO INITIALIZE YOUR DISK LABEL; THIS WILL LEAD TO UNPREDICTABLE RESULTS. This deficiency will be fixed in a next release. Here follows an example of what you'll see while in the disklabel editor. Do not touch any of the parameters except for the `label: ' entry and the actual partition size information at the bottom (the lines starting with `a:', `b:', ...). The size and offset fields are given in sector units. Be sure to make these numbers multiples of the of the number of sectors per cylinder: the kernel might be picky about these things, but aside from this you'll have the least chance of wasting disk space. Partitions on which you intend to have a mountable filesystem, should be given fstype `4.2BSD'. Remember, the `c' partition should describe the whole disk. The `(Cyl. x - y)' info that appears after the hash (`#') character is treated as a comment and need not be filled in when altering partitions. Special note: the line containing `8 partitions:' is best left alone, even if you define less then eight partitions. If this line displays a different number and the program complains about it (after you leave the editor), then try setting it to `8 partitions:'. OpenBSD# disklabel sd2 # /dev/rsd2c: type: SCSI disk: SCSI disk label: Hold Your Breath flags: bytes/sector: 512 sectors/track: 64 tracks/cylinder: 7 sectors/cylinder: 448 cylinders: 1429 rpm: 3600 interleave: 1 trackskew: 0 cylinderskew: 0 headswitch: 0 # milliseconds track-to-track seek: 0 # milliseconds drivedata: 0 8 partitions: # size offset fstype [fsize bsize cpg] a: 50176 0 4.2BSD 0 0 0 # (Cyl. 0 - 111) b: 64512 50176 swap # (Cyl. 112 - 255) c: 640192 0 unknown # (Cyl. 0 - 1428) d: 525504 114688 4.2BSD 0 0 0 # (Cyl. 256 - 1428) If you are upgrading a OpenBSD installation, start the upgrade script: OpenBSD# sh upgrade.sh else, start the installation script: OpenBSD# sh install.sh These scripts will do most of the work of transferring the system from the tar files onto your disk. You will frequently be asked for confirmation before the script proceeds with each phase of the installation process. Occasionally, you'll have to provide a piece of information such as the name of the disk you want to install on or IP addresses and domain names you want to assign. If your system has more than one disk, you may want to look at the output of the dmesg(8) command to see how your disks have been identified by the kernel. The installation script goes through the following phases: - determination of the disk to install OpenBSD on - checking of the partition information on the disk - creating and mounting the OpenBSD filesystems - setup of IP configuration - extraction of the distribution tar files - installation of boot programs Now try a reboot. (If needed, swap your scsi id's first). Initially I'd suggest you "bo bsd -bs", then try multiuser after that. if you boot single-user the OpenBSD incantation to make the root filesystem writable is OpenBSD# mount -u /dev/sd0a / Congratulations, you have successfully installed OpenBSD 2.8. When you reboot into OpenBSD, you should log in as "root" at the login prompt. You should create yourself an account and protect it and the "root" account with good passwords. Some of the files in the OpenBSD 2.8 distribution might need to be tailored for your site. In particular, the /etc/mail/sendmail.cf file will almost definitely need to be adjusted, and other files in /etc will probably need to be modified. If you are unfamiliar with UN*X-like system administration, it's recommended that you buy a book that discusses it. Upgrading a previously-installed OpenBSD System: ------------------------------------------------ To upgrade to OpenBSD 2.8 from a previous version follow the instructions in the section "Installing OpenBSD", but run the script `upgrade.sh' in stead of `install.sh'. The upgrade script will use the existing disk partitions to install the new system in, and also preserves the files in `/etc'. Getting source code for your OpenBSD System: -------------------------------------------- Now that your OpenBSD system is up and running, you probably want to get access to source code so that you can recompile pieces of the system. A few methods are provided. If you have an OpenBSD CD, the source code is provided. Otherwise, you can get the pieces over the Internet using ANONCVS, CTM or FTP. For more information, see http://www.openbsd.org/anoncvs.html http://www.openbsd.org/ctm.html http://www.openbsd.org/ftp.html Using online OpenBSD documentation: ----------------------------------- Documentation is available if you first install the manual distribution set. Traditionally, the UN*X "man pages" (documentation) are denoted by 'name(section)'. Some examples of this are intro(1), man(1), apropos(1), passwd(1), and passwd(5). The section numbers group the topics into several categories, but three are of primary interest: user commands are in section 1, file formats are in section 5, and administrative information is in section 8. The 'man' command is used to view the documentation on a topic, and is started by entering 'man [section] topic'. The brackets [] around the section should not be entered, but rather indicate that the section is optional. If you don't ask for a particular section, the topic with the least-numbered section name will be displayed. For instance, after logging in, enter man passwd to read the documentation for passwd(1). To view the documentation for passwd(5), enter man 5 passwd instead. If you are unsure of what man page you are looking for, enter apropos subject-word where "subject-word" is your topic of interest; a list of possibly related man pages will be displayed. Adding third party software; ``packages'' and ``ports'': ------------------------------------------------------- As complete as your OpenBSD system is, you may want to add any of several excellent third party software applications. There are several ways to do this. You can: 1) Obtain the source code and build the application based upon whatever installation procedures are provided with the application. 2) Use the OpenBSD ``ports'' collection to automatically get any needed source file, apply any required patches, create the application, and install it for you. 3) Use the OpenBSD ``package'' collection to grab a pre-compiled and tested version of the application for your hardware. If you purchased the OpenBSD CD-ROM you already have several popular ``packages'', and the ``ports'' collection. Instructions for installing applications from the various sources using the different installation methods follow. If emacs is to be installed it should be installed first as it creates the ``info'' directory file that may be modified by other applications. You should also refer to the packages(7) manual page. Installing applications from the CD-ROM package collection: The OpenBSD CD-ROM ships with several applications pre-built for various hardware architectures. The number of applications vary according to available disk space. Check the directory 2.8/packages/mvme68k to see which packages are available for your hardware architecture. That directory will be on the same CD-ROM containing the OS installation files for your architecture. To install one or more of these packages you must 1) become the superuser (root) 2) mount the appropriage CD-ROM 3) use the ``pkg_add'' command to install the software Example (in which we use su(1) to get superuser privileges, thus you have to be in group "wheel", see the manual page for su(1)). $ su Password: # mkdir -p /cdrom # mount /dev/cd0a /cdrom # pkg_add /cdrom/2.8/packages/mvme68k/ # # umount /cdrom Package names are usually the application name and version with .tgz appended, e.g. emacs-20.3.tgz Installing applications from the ftp.openbsd.org package collection: All available packages for your architecture have been placed on ftp.openbsd.org in the directory pub/OpenBSD/2.8/packages/mvme68k/ You may want to peruse this to see what packages are available. The packages are also on the OpenBSD FTP mirror sites. See http://www.openbsd.org/ftp.html for a list of current ftp mirror sites. Installation of a package is very easy. 1) become the superuser (root) 2) use the ``pkg_add'' command to install the software ``pkg_add'' is smart enough to know how to download the software from the OpenBSD ftp server. Example: $ su Password: # pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/2.8/packages/mvme68k/emacs-20.3.tgz Packages available include (at least): ImageMagick-4.2.0.tgz m4-1.4.tgz Xaw3d-1.3.tgz mm-2.7.tgz aalib-1.2.tgz mpeg_lib-1.2.1.tgz afm-1.0.tgz mpeg_play-2.4.tgz autoconf-2.13.tgz netpbm-19940301.tgz bash-2.03.tgz netpipes-4.1.1-export.tgz bison-1.25.tgz nmh-1.0.tgz bzip2-0.9.0c.tgz pgp-2.6.3-intl.tgz compface-1.0.tgz pgp-2.6.3-usa.tgz cucipop-1.31.tgz pine-4.10.tgz dejagnu-1.3.tgz png-1.0.3.tgz egcs-1.1.2.tgz psutils-1.17-a4.tgz emacs-20.3.tgz psutils-1.17-letter.tgz enscript-1.6.1.tgz screen-3.7.6.tgz ethereal-0.5.1.tgz sharutils-4.2.tgz expect-5.28.tgz sniffit-0.3.5.tgz fetchmail-4.7.9.tgz freetype-1.2.tgz gettext-0.10.35.tgz tar-1.12.tgz ghostscript-5.10.tgz tcl-8.0.5.tgz gimp-1.1.4.tgz tcsh-6.08.00.tgz glib-1.2.1.tgz teTeX-0.4.tgz glimpse-4.1.tgz tiff-3.4.tgz gmake-3.77.tgz tk-8.0.5.tgz gnuplot-3.7.tgz transfig-3.2.1.tgz gtk+-1.2.1.tgz unzip-5.40.tgz gv-3.5.8.tgz viewfax-2.3.tgz id-utils-3.2.tgz wget-1.5.3.tgz idled-1.16.tgz xcolors-1.3.tgz iozone-2.01.tgz xfig-3.2.2.tgz ircii-2.8.2-epic3.004.tgz xntp3-5.93e-export.tgz ispell-3.1.20.tgz xpaint-2.5.5.tgz jove-4.16.tgz xpdf-0.80.tgz jpeg-6b.tgz xphoon-91.9.18.tgz lesstif-0.88.0.tgz xspread-2.1.tgz libslang-1.2.2.tgz xv-3.10a.tgz Note: these packages may not exist for all architectures; other packages may be added. Some packages are only available via ftp. Installing applications from the CD-ROM ports collection: The CD-ROM ``ports'' collection is a set of Makefiles, patches, and other files used to control the building and installation of an application from source files. Creating an application from sources can require a lot of disk space, sometimes 50 megabytes or more. The first step is to determine which of your disks has enough room. Once you've made this determination read the file README.ports on CD-ROM 2 to see how to copy or mount the ports directory. To build an application you must: 1) become the superuser (root) 2) have network access, or obtain the actual source files by some other means. 3) cd to the ports directory containing the port you wish to build. To build samba, for example, where you'd previously copied the ports files into the /usr/ports directory: cd /usr/ports/net/samba 4) make 5) make install 6) make clean Installing applications from the OpenBSD ports collection: See http://www.openbsd.org/ports.html for current instructions on obtaining and installing OpenBSD ports. You should also refer to the ports(7) manual page. Installing other applications: If an OpenBSD package or port does not exist for an application you're pretty much on your own. The first thing to do is ask ports@openbsd.org if anyone is working on a port -- there may be one in progress. If no luck there you may try the FreeBSD ports or NetBSD package collection. If you are on an i386 based machine it is quite possible that the FreeBSD port, if one exists, will work for you. If you can't find an existing port try to make your own and feed it back to OpenBSD. That's how our ports collection grows. Some details can be found at http://www.openbsd.org/porting.html with more help coming from the mailing list, ports@openbsd.org. Administrivia: -------------- There are various mailing lists available via the mailing list server at . To get help on using the mailing list server, send mail to that address with an empty body, and it will reply with instructions. There are also two OpenBSD Usenet newsgroups, comp.unix.bsd.openbsd.announce for important announcements and comp.unix.bsd.openbsd.misc for general OpenBSD discussion. To report bugs, use the 'sendbug' command shipped with OpenBSD, and fill in as much information about the problem as you can. Good bug reports include lots of details. Additionally, bug reports can be sent by mail to: bugs@OpenBSD.ORG Use of 'sendbug' is encouraged, however, because bugs reported with it are entered into the OpenBSD bugs database, and thus can't slip through the cracks. As a favor, please avoid mailing huge documents or files to the mailing lists. Instead, put the material you would have sent up for FTP somewhere, then mail the appropriate list about it, or, if you'd rather not do that, mail the list saying you'll send the data to those who want it.