Home | Namespaces | Hierarchy | Alphabetical List | Class list | Files | Namespace Members | Class members | File members | Tutorials

vector3d.h

Go to the documentation of this file.
00001 // Copyright (C) 2002-2010 Nikolaus Gebhardt
00002 // This file is part of the "Irrlicht Engine".
00003 // For conditions of distribution and use, see copyright notice in irrlicht.h
00004 
00005 #ifndef __IRR_POINT_3D_H_INCLUDED__
00006 #define __IRR_POINT_3D_H_INCLUDED__
00007 
00008 #include "irrMath.h"
00009 
00010 namespace irr
00011 {
00012 namespace core
00013 {
00014 
00016 
00021         template <class T>
00022         class vector3d
00023         {
00024         public:
00026                 vector3d() : X(0), Y(0), Z(0) {}
00028                 vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
00030                 explicit vector3d(T n) : X(n), Y(n), Z(n) {}
00032                 vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
00033 
00034                 // operators
00035 
00036                 vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
00037 
00038                 vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
00039 
00040                 vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
00041                 vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
00042                 vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
00043                 vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
00044 
00045                 vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
00046                 vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
00047                 vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
00048                 vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
00049 
00050                 vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
00051                 vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
00052                 vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
00053                 vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
00054 
00055                 vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
00056                 vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
00057                 vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
00058                 vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
00059 
00061                 bool operator<=(const vector3d<T>&other) const
00062                 {
00063                         return  (X<other.X || core::equals(X, other.X)) ||
00064                                         (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y))) ||
00065                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z<other.Z || core::equals(Z, other.Z)));
00066                 }
00067 
00069                 bool operator>=(const vector3d<T>&other) const
00070                 {
00071                         return  (X>other.X || core::equals(X, other.X)) ||
00072                                         (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y))) ||
00073                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && (Z>other.Z || core::equals(Z, other.Z)));
00074                 }
00075 
00077                 bool operator<(const vector3d<T>&other) const
00078                 {
00079                         return  (X<other.X && !core::equals(X, other.X)) ||
00080                                         (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y)) ||
00081                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && Z<other.Z && !core::equals(Z, other.Z));
00082                 }
00083 
00085                 bool operator>(const vector3d<T>&other) const
00086                 {
00087                         return  (X>other.X && !core::equals(X, other.X)) ||
00088                                         (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y)) ||
00089                                         (core::equals(X, other.X) && core::equals(Y, other.Y) && Z>other.Z && !core::equals(Z, other.Z));
00090                 }
00091 
00093                 bool operator==(const vector3d<T>& other) const
00094                 {
00095                         return this->equals(other);
00096                 }
00097 
00098                 bool operator!=(const vector3d<T>& other) const
00099                 {
00100                         return !this->equals(other);
00101                 }
00102 
00103                 // functions
00104 
00106                 bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
00107                 {
00108                         return core::equals(X, other.X, tolerance) &&
00109                                 core::equals(Y, other.Y, tolerance) &&
00110                                 core::equals(Z, other.Z, tolerance);
00111                 }
00112 
00113                 vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
00114                 vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
00115 
00117                 T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
00118 
00120 
00122                 T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
00123 
00125                 T dotProduct(const vector3d<T>& other) const
00126                 {
00127                         return X*other.X + Y*other.Y + Z*other.Z;
00128                 }
00129 
00131 
00132                 T getDistanceFrom(const vector3d<T>& other) const
00133                 {
00134                         return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
00135                 }
00136 
00138 
00139                 T getDistanceFromSQ(const vector3d<T>& other) const
00140                 {
00141                         return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
00142                 }
00143 
00145 
00147                 vector3d<T> crossProduct(const vector3d<T>& p) const
00148                 {
00149                         return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
00150                 }
00151 
00153 
00157                 bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
00158                 {
00159                         const T f = (end - begin).getLengthSQ();
00160                         return getDistanceFromSQ(begin) <= f &&
00161                                 getDistanceFromSQ(end) <= f;
00162                 }
00163 
00165 
00168                 vector3d<T>& normalize()
00169                 {
00170                         f64 length = X*X + Y*Y + Z*Z;
00171                         if (core::equals(length, 0.0)) // this check isn't an optimization but prevents getting NAN in the sqrt.
00172                                 return *this;
00173                         length = core::reciprocal_squareroot(length);
00174 
00175                         X = (T)(X * length);
00176                         Y = (T)(Y * length);
00177                         Z = (T)(Z * length);
00178                         return *this;
00179                 }
00180 
00182                 vector3d<T>& setLength(T newlength)
00183                 {
00184                         normalize();
00185                         return (*this *= newlength);
00186                 }
00187 
00189                 vector3d<T>& invert()
00190                 {
00191                         X *= -1;
00192                         Y *= -1;
00193                         Z *= -1;
00194                         return *this;
00195                 }
00196 
00198 
00200                 void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00201                 {
00202                         degrees *= DEGTORAD64;
00203                         f64 cs = cos(degrees);
00204                         f64 sn = sin(degrees);
00205                         X -= center.X;
00206                         Z -= center.Z;
00207                         set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
00208                         X += center.X;
00209                         Z += center.Z;
00210                 }
00211 
00213 
00215                 void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00216                 {
00217                         degrees *= DEGTORAD64;
00218                         f64 cs = cos(degrees);
00219                         f64 sn = sin(degrees);
00220                         X -= center.X;
00221                         Y -= center.Y;
00222                         set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
00223                         X += center.X;
00224                         Y += center.Y;
00225                 }
00226 
00228 
00230                 void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00231                 {
00232                         degrees *= DEGTORAD64;
00233                         f64 cs = cos(degrees);
00234                         f64 sn = sin(degrees);
00235                         Z -= center.Z;
00236                         Y -= center.Y;
00237                         set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
00238                         Z += center.Z;
00239                         Y += center.Y;
00240                 }
00241 
00243 
00247                 vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
00248                 {
00249                         const f64 inv = 1.0 - d;
00250                         return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
00251                 }
00252 
00254 
00259                 vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
00260                 {
00261                         // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
00262                         const f64 inv = (T) 1.0 - d;
00263                         const f64 mul0 = inv * inv;
00264                         const f64 mul1 = (T) 2.0 * d * inv;
00265                         const f64 mul2 = d * d;
00266 
00267                         return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
00268                                         (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
00269                                         (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
00270                 }
00271 
00273 
00278                 vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
00279                 {
00280                         X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
00281                         Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
00282                         Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
00283                         return *this;
00284                 }
00285 
00286 
00288 
00301                 vector3d<T> getHorizontalAngle() const
00302                 {
00303                         vector3d<T> angle;
00304 
00305                         const f64 tmp = (atan2((f64)X, (f64)Z) * RADTODEG64);
00306                         angle.Y = (T)tmp;
00307 
00308                         if (angle.Y < 0)
00309                                 angle.Y += 360;
00310                         if (angle.Y >= 360)
00311                                 angle.Y -= 360;
00312 
00313                         const f64 z1 = core::squareroot(X*X + Z*Z);
00314 
00315                         angle.X = (T)(atan2((f64)z1, (f64)Y) * RADTODEG64 - 90.0);
00316 
00317                         if (angle.X < 0)
00318                                 angle.X += 360;
00319                         if (angle.X >= 360)
00320                                 angle.X -= 360;
00321 
00322                         return angle;
00323                 }
00324 
00326 
00330                 vector3d<T> getSphericalCoordinateAngles()
00331                 {
00332                         vector3d<T> angle;
00333                         const f64 length = X*X + Y*Y + Z*Z;
00334 
00335                         if (length)
00336                         {
00337                                 if (X!=0)
00338                                 {
00339                                         angle.Y = (T)(atan2((f64)Z,(f64)X) * RADTODEG64);
00340                                 }
00341                                 else if (Z<0)
00342                                         angle.Y=180;
00343 
00344                                 angle.X = (T)(acos(Y * core::reciprocal_squareroot(length)) * RADTODEG64);
00345                         }
00346                         return angle;
00347                 }
00348 
00350 
00357                 vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
00358                 {
00359                         const f64 cr = cos( core::DEGTORAD64 * X );
00360                         const f64 sr = sin( core::DEGTORAD64 * X );
00361                         const f64 cp = cos( core::DEGTORAD64 * Y );
00362                         const f64 sp = sin( core::DEGTORAD64 * Y );
00363                         const f64 cy = cos( core::DEGTORAD64 * Z );
00364                         const f64 sy = sin( core::DEGTORAD64 * Z );
00365 
00366                         const f64 srsp = sr*sp;
00367                         const f64 crsp = cr*sp;
00368 
00369                         const f64 pseudoMatrix[] = {
00370                                 ( cp*cy ), ( cp*sy ), ( -sp ),
00371                                 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
00372                                 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
00373 
00374                         return vector3d<T>(
00375                                 (T)(forwards.X * pseudoMatrix[0] +
00376                                         forwards.Y * pseudoMatrix[3] +
00377                                         forwards.Z * pseudoMatrix[6]),
00378                                 (T)(forwards.X * pseudoMatrix[1] +
00379                                         forwards.Y * pseudoMatrix[4] +
00380                                         forwards.Z * pseudoMatrix[7]),
00381                                 (T)(forwards.X * pseudoMatrix[2] +
00382                                         forwards.Y * pseudoMatrix[5] +
00383                                         forwards.Z * pseudoMatrix[8]));
00384                 }
00385 
00387 
00389                 void getAs4Values(T* array) const
00390                 {
00391                         array[0] = X;
00392                         array[1] = Y;
00393                         array[2] = Z;
00394                         array[3] = 0;
00395                 }
00396 
00398                 T X;
00399 
00401                 T Y;
00402 
00404                 T Z;
00405         };
00406 
00408         // Implementor note: inline keyword needed due to template specialization for s32. Otherwise put specialization into a .cpp
00409         template <>
00410         inline vector3d<s32> vector3d<s32>::operator /(s32 val) const {return core::vector3d<s32>(X/val,Y/val,Z/val);}
00411         template <>
00412         inline vector3d<s32>& vector3d<s32>::operator /=(s32 val) {X/=val;Y/=val;Z/=val; return *this;}
00413 
00415         typedef vector3d<f32> vector3df;
00416 
00418         typedef vector3d<s32> vector3di;
00419 
00421         template<class S, class T>
00422         vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
00423 
00424 } // end namespace core
00425 } // end namespace irr
00426 
00427 #endif
00428 

The Irrlicht Engine
The Irrlicht Engine Documentation © 2003-2010 by Nikolaus Gebhardt. Generated on Sun Oct 24 12:41:58 2010 by Doxygen (1.6.2)